

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
	Q		Benefite
1.	A)	Attempt any six:	12
	a)	State any two advantages and disadvantages of digital circuits.	2M
	Ans.	Advantages of digital circuits:	
		1. Digital Electronic circuits are relatively easy to design.	
		2. It has higher accuracy, programmability.	
		3. Transmitted signals are not degraded over long distances.	
		4. Digital Signals can be stored easily.	
		5. Digital Electronics is comparatively more immune to 'error' and	Any two
		'noise'. But in case of high speed designs a small noise can induce error in signal.	advanta ges and
		6. More Digital Circuits can be fabricated on integrated chips; this	disadvan
		helps us obtain complex systems in smaller size.	tages
			¹∕2 M
		Disadvantages of digital circuits:	each
		1. Digital Circuits operate only with digital signals hence, encoders and decoders are required for the process. This increases the cost	
		of equipment.	
		2. Energy consumption in digital circuit is more than analog circuit	

Г

٦

Subj	ect: Digit	al Techniques Subject Code: 17	333
		 for same calculation or signal processing. 3. Production of heat is more due to higher energy consumption. 4. For smaller circuits Digital Circuits are comparatively expensive. 5. Real world is analogue in nature, all quantities such as light, temperature, sound etc. For Digital Systems it is required to translate a continuous signal to discrete which leads to small quantization errors. To reduce quantization errors large amount of data needs to be stored in Digital Circuit. 6. Portability of digital circuit is difficult. 	
	b)	Define Fan-out and Power Dissipation.	2M
	Ans.	Fan-out: Fan out is the maximum number of similar gates which can be driven by a gate. A fan out of 6 indicates that the gate can drive maximum 6 inputs of gates having same IC family.	Fan-out 1M
		Power Dissipation: Power dissipation is the amount of power dissipated in an IC. Due to applied voltage V_{ee} and current flowing through the $I_{c'}$ some power is dissipated in it in the form of heat. It is determined by the current I_{cc} that it draws from the V_{cc} supply. The power dissipated is given by $P = V_{cc} X I_{cc}$ This power is in milliwatts.	Power dissipati on 1M
	c)	Draw symbol and truth table of 3-i/p Ex-OR gate.	2M
	Ans.	Symbol of 3-i/p Ex-OR gate:	
			Symbol 1M
		Truth table of 3-i/p Ex-OR gate: For XOR gates, we can have the HIGH input when odd numbers of inputs are at HIGH level. The 3-input X-OR gate is called as 'Odd functioned OR gate'.	

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

			Inputs		outputs	1	
		w	x	Y	Q = A⊕B⊕C	1	
		0	0	0	0		
		0	0	1	1		Truth
		0	1	0	1	_	Table
		0	1	1	0	-	
		1	0	0	1	-	<i>1M</i>
	1	1	0	0	0	-	
		1	1	1	1		
						-	
d)	Convert (1011	0). –	(2) . (9)	<u>)</u>			2M
u)					10		2111
	(Note: Calcula		ased o	on bas	e 16).		
Ans.	• $(10110)_2 =$	(?) ₁₆ :					
	Step 1. Split tl	ne giv	en bir	narv n	umber into	groups from right, each	
	containing 4 bi			iary II	unioer mito	Stoups from fight, each	
	containing 4 bi	ts.					Each
		1		011	0		calculati
		Grou	ın 2	Grou	ın 1		
	Stop 2. Add 0					p is lack of 4 bits.	on 1M
	Group 2 contai	ning c	only I	bit so	add three ze	ros to the left.	
		00	01 (0110			
	Step 3: Find th			alent f 0110 ↓	for each grou	ıp.	
			1	6			
	$(10110)_2 = (1)_2$	(6) ₁₆					
	• $(10110)_2 =$ Find out Octal Convert the 1 containing 3 bi 10 group 2	Equiv oinary	num 0			from right side, each	
	group 2 contain	ns only	y 2 bit	s, so a	dd 0 to the l	eft	

MODEL ANSWER

Subject Code:

	010 110	
	ψ ψ	
	2 6	
	Arrange the numbers in same order	
	So the Octal equivalent is 26	
	$(10110)_2 = (26)_8$	
e)	State any four Boolean Laws.	2M
An		
	A + 1 = 1	
	$\mathbf{A} + 0 = \mathbf{A}$	
	$A \cdot 1 = A$	Any 4
	$A \cdot 0 = 0$	Boolean
	$A + A = A$ $A \cdot A = A$	laws
	$\begin{array}{l} A \cdot A = A \\ A + B = B + A \end{array}$	¹ / ₂ M
	A+B = B+A $A = B = B = A$	each
	(A + B) + C = A + (B + C)	
	(A + B) + C = A + (B + C) (A B) C = A (B C)	
	A (B + C) = A B + A C	
	A + (B C) = (A + B) (A + C)	
f)	Explain the rules to simplify Boolean equation using K-map (any	2M
,	two).	
An		
	1. Enter a '1' on the K-map for each fundamental product	
	that produces a '1' in the truth table. Enter 'o' case 'o' else	
	where.	Any 2
	2. Encircle the octet, quads, pairs remember to roll and	rules
	overlap to get the largest group possible.	1M each
	3. If any isolated '1' remains encircle each.	
	4. Eliminate any redundant group.	
	5. Write the Boolean expression by 'o' ring the product	
	corresponding to encircled groups.	
g)	Compare RAM and ROM memories (any two point)	2M
An		
	Data The data is not The data is permanent it	
	permanent and it can be altered but only a be altered any limited number of times	
	be altered any limited number of times	

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

		number of times.	that too at slow speed.					
	Speed	It is high-speed	It is much slower than the	Any 2				
		memory.	RAM	points				
	CPU	The CPU can access	The CPU can not access	1M each				
	Interaction	the data stored on it.	the data stored on it. In					
			order to do so, the data is					
			first copied to the RAM.					
	Size and	Large size with	Small size with less					
	capacity	higher capacity.	capacity.					
	Usage	Primary memory	Firmware like BIOS or					
		(DRAM DIMM	UEFI, RFID tags,					
		modules), CPU	microcontrollers, medical					
		Cache	devices, and at places					
			where a small and					
			permanent memory					
b)	State two grad	fightion of DAC	solution.	2M				
h) Ans.	-	fication of DAC. Resolution is defined as	the ratio of change in analog	Z 1 V1				
A115 .		of 1 LSB at the digital input						
	1 0	0	output voltage i.e. the analog					
		when all the digital input						
	1	6 I I I I I I I I I I I I I I I I I I I						
		Resolution = $\frac{V_{FS}}{2^n - 1}$						
		2 ⁿ -1		specifica				
	2 Accuracy: A	courses indicates how a	lose the analog output voltage	tion of				
			he deviation of actual output	DAC				
			pends on the accuracy of the	1M each				
		-	vision of the reference voltage					
			erms of percentage of the full					
	•	t means maximum outpu						
	1	1	C					
	3. Linearity:							
	• The rela	ation between the digi	tal input and analog output					
	should b	e linear.						
	However	r practically it is not so	due to the error in the values					
	of resiste	ors used for the resistive	networks.					
	4. Temperature	e sensitivity:						

Г

٦

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subjec	ct: Digi	tal Techniques	_01					Subject (Code: 1'	7333
1.	B) a) Ans.	 The analog output vodue to changes in term But practically the obseques the resistance with changes in temp 5. Settling time: The time required to value, after the chang The settling time show 6. Long term drift Long term drift are aging and can affect a Characteristics mainly 7. Supply rejection Supply rejection indilinearity and other involtage is varied. Supply rejection is uchange at or near full 8. Speed: It is defined as the to digital to analog. It is that can be performed Attempt any two: State and prove DeMorg Theorem1: It state that the of its complements 	perat utput ce va eratu o sett e in c uld be main all the y affe cates impor scale s also <u>l per</u>	ture. is a lues re. le th ligita e as s ly d e cha ected the rtant y spece volt need defi secon	a func and of and of an	tion OPA alog it is c as po resis istics nearing of acter d as the	of te MP outp callec ssible stor a s. ity, sj DAC istics perce e	emperatur paramete ut within d as settlin e. and semi peed etc. to main when the entage of a conver iber of co	e. It is so rs change the final ng time. conductor tain scale, he supply full scale	8 4M
			٨	P	A+B	Ā	P	Ā.B	T	Theore m 1M
			0	0	1	1	1	1		m 1M each
			0	1	0	1	0	0		Prove
		$\overline{A + B} = \overline{A} \cdot \overline{B}$	1	0	0	0	1	0	-	1M each
			1	1	0	0	0	0	-	
		NOR = Bubbled AND						h		

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

	Theorem2: It states that, the	e con	nple	eme	nt c	fa	product	t is equal to su	m		
	of the complements.	••••	p				p=00000	- 15 - 1 - 10 5 -			
			D	ĀB	Ā	B	$\overline{A} + \overline{B}$				
		A 0	В 0	AD	A 1	B 1	1				
	$\overline{A}.\overline{B} = \overline{A} + \overline{B}$	0	1	1	1	0	1				
	A.D - A + D	1	0	1	0	1	1				
	NAND = Bubbled OR	1	1	0	0	0	0				
	independent of the second s										
b)	Perform the following BCI) su	btra	acti	on i	ısin	g 9's c	omplement	4M		
	i) $(47)_{10} - (31)_{10}$ ii) (52	2) ₁₀ ·	- (6	57) ₁₀)						
Ans.	Ans. i) $(47)_{10} - (31)_{10}$: Step 1: Take 9's compliment of 31										
	Step 1. Take 7 S compliment		51								
	99 –										
	$\frac{31}{60}$	0	1.	000							
	$68 \longrightarrow 0110$ Step 2:	0	10	000					2M		
	0100 0111								2111		
	+0110 1000										
	1010 1111		(Inv	valic	l BI	DC I	No.>9))			
	Step 3:										
	1010 1111										
	Add 6 0110 0110										
	<u>1</u> 0001 0101 Carry1										
	$\frac{1}{0001 \ 0110}$		-								
		נ									
	1 6										
	$(47)_{10} - (31)_{10} : (16)_{10}$										
	ii) $(52)_{10} - (67)_{10}$										
	Step 1: Take 9's compliment	nt of	67								
			07						2M		

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4M
Ans.	OR gate using NOR gate: Expression for OR gate is $Y = A + B = \overline{A + B}$	
	As $A = A = A = A = A = A = A = A = A = A $	OR gate using NOR gate 2M
	AND gate using NOR gate: Expression for AND gate is $Y = AB = \overline{\overline{AB}} (as \overline{\overline{A}} = A)$	AND
	Applying De Morgan's second theorem, $Y = \overline{\overline{A} + \overline{B}}$, we can implement using NOR gates at this stage.	gate using NOR gate 2M

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

			$= \underbrace{A - Y = A \cdot B}_{B}$	
2.	a)	Attempt any four of the following: Simplify the following Boolean express i) $Y = AB + ABC + \overline{AB} + A\overline{BC}$ ii) $Y = (A + B) (A + \overline{B}) (\overline{A} + B)$	sion	16 4M
	Ans.	i) $\mathbf{Y} = \mathbf{AB} + \mathbf{ABC} + \overline{\mathbf{AB}} + \mathbf{A\overline{B}C}$		2M
		$= AB + ABC + A\overline{B}C + \overline{A}B$ $= AB + AC (B + \overline{B}) + \overline{A}B$		2111
		$= AB + AC + \overline{A}B$	$[B+\overline{B}=1]$	
		$= B[A + \overline{A}] + AC$	$[A + \overline{A} = 1]$	
		= B + AC		
		ii) $\mathbf{Y} = (\mathbf{A} + \mathbf{B}) (\mathbf{A} + \overline{\mathbf{B}}) (\overline{\mathbf{A}} + \mathbf{B})$ = $(\mathbf{A} \cdot \mathbf{A} + \mathbf{A}\overline{\mathbf{B}} + \mathbf{A}\mathbf{B} + \mathbf{B}\overline{\mathbf{B}}) \cdot (\overline{\mathbf{A}} + \mathbf{B})$		
		$= (A + A\overline{B} + AB + 0) \cdot (\overline{A} + B)$		
		$= [A(1+B) + A\overline{B}]. (\overline{A} + B)$	1 + B = 1	2M
		$= [A + A\overline{B}] \cdot [\overline{A} + B]$		
		$= A (1 + \overline{B}). (\overline{A} + B)$	$1 + \overline{B} = 1$	
		$=$ A. (\overline{A} + B)		

Subject: Digital Techniques

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject Code: 17333

	$= A \cdot \overline{A} + AB \qquad \qquad A \overline{A} = 0$	
	$\mathbf{Y} = \mathbf{A}\mathbf{B}$	
b)	Subtract the given number using 2's complement	4M
Ans.	i) $(11011)_2 - (11100)$ i) $(11011)_2 - (11100)$: Step 1: 2's compliment of 2 nd no,	
	$\begin{array}{c}1 & 1 & 1 & 0 & 0\\ \downarrow & \downarrow & \downarrow & \downarrow \\ \end{array}$	
	0 0 0 1 1 (1's compliment of 2^{nd} no.) + 1	
	0 0 1 0 0 (2's compliment) Step 2: Add first no of the 2's compliment of 2^{nd} no	
	$+ \frac{\begin{array}{c} 1 & 1 & 0 & 1 & 1 \\ + & 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 \end{array}}{\longrightarrow} \text{No carry}$	2M
	Take 2's compliment of Answer $1 \ 1 \ 1 \ 1 \ 1$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	
	$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 \\ + & & 1 & \\ \hline 0 & 0 & 0 & 0 & 1 & \text{with -ve sign} \\ \end{array}$	
	$(11011)_2 - (11100): -(00001)_2$	
	ii) $(1010)_2 - (101)_2$: Make 2^{nd} no as 04 digits by adding '0' to left side $\longrightarrow 0 \ 1 \ 0 \ 1$ Step 1: 2's compliment of 2^{nd} no	

Subiect: Digi	SU tal Techniques	UMMER –	· 2018	EXAMINA		ct Code:	17333]
	$ \begin{array}{c} 0 & 1 & 0 \\ & \downarrow \downarrow \downarrow \\ 1 & 0 & 1 \\ + \\ \hline 1 & 0 & 1 \\ \end{array} $ Step 2: Add 1 st r $ \begin{array}{c} 1 & 0 & 1 \\ + & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 \end{array} $	$ \begin{array}{c} \downarrow \downarrow \\ 0 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ 1 \\ \hline 0 \\ 1 \\ \hline \end{array} $	he 2's	complimen	t of 2 nd no.		2M	1
c) Ans.	carry Step 3: Carry is Step 4 : Answer $(1010)_2 - (101)_2$ Design Half sub Half subtractor inputs and two o	is in true for : +(0101) ₂ otracter us r: Half sub	orm ing K otractor ferenc	-map. r is a comb e and borro		cuit with two	4 M	1
			Trut	th Table				
		Inpu		Outp				
		A	В	Difference A – B	Borrow		Tru	
		0 0 1 1	0 1 0 1	0 1 1 0	0 1 0 0		tabl 1M	
			Ĵ,	B alf ractor Borrow			1M j differ ce	rei

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject Code: 17333 **Subject: Digital Techniques** 1:2 Circuit De-mux-1 diagram S. G, 2M So Din 1:2 De-mux-2 Y, G. **Truth Table** Truth Inputs Outputs table 1M S1 So Yo Y₁ Y₂ Y₃ 0 0 1 0 0 0 $S_1 = 0$ 1st demultiplexer 0 0 1 1 0 0 1 0 0 0 1 0 2nd demultiplexer $S_1 = 1$ 1 1 0 0 0 1 Explana Select lines S_0 of demultiplexer-1 and demultiplexer-2 are connected together but select line S₁ is connected directly to enable input of tion 1M demultiplexer-1 and it is connected to demultiplexer-2 through inverter. Attempt any four of the following: 3. 16 Simplify the following expression using Boolean Laws and De-**4M** a) morgan's theorems. If student has attempted to solve the question award appropriate *4M* Ans. marks. **Design 16 : 1 multiplexer using 8 : 1 multiplexer 4M** b) (Note: Any other correct diagram may also be considered) Ans.

MODEL ANSWER

Subject: Digit	SUMMER – 2018 EXAMINATION al Techniques Subject Code: 17	/333
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left\begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \left\begin{array}{c} \end{array} \left\left(\\ \end{array} \left) \end{array} \left(\\ \end{array} \left) \end{array} \left) \bigg{c} \end{array} \left(\\ \bigg) \bigg{c} \end{array} \left) \bigg{c} \end{array} \left(\\ \bigg) \bigg{c} \bigg) \bigg{c} \bigg) \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c} \bigg{c}	Correct diagram 4M
c) Ans.	 Describe different types of triggering methods for a flip-flop. 1. Level triggering: The latch or flip-flop circuits which respond to their inputs, only if their enable input (E) or clock input held at an active HIGH or LOW level are called as level triggered latches or flip flops. Positive level triggered: If the outputs of S-R flip flop response to the input changes, for its clock input at high (1), level then it is called as the positive level triggered S-R flip flop. Negative level triggered FF: If the outputs of an S-R flip-flop respond to the input changes, for its clock input at low (0) level, then it is called as the negative level triggered S-R flip-flop. 2. Edge Triggering: The flip-flop which changes their outputs only corresponding to the positive or negative edge of the clock input are called as edge triggered flip-flops. Types of edge triggered flip-flops: There are two types of edge triggered flip flops; will allow its outputs to change only at the instants corresponding to the rising edges of clock (or positive spikes). Its outputs will not 	4M 2M each for each type of triggerin g

SUMMER – 2018 EXAMINATION

Page 15 / 38

d)

Ans.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

17333 **Subject: Digital Techniques** Subject Code: respond to change in inputs at any other instant of time. Negative edge triggered flip flops: Negative edge triggered flipflops will respond only to the going edges (or spikes) of the clock. Draw and explain 3-bit asynchronous up counter with timing **4M** diagram. Following figure shows 3-bit asynchronous counter. It uses 3 flipflops, i.e. it has 23 = 8 states The clock pulse is applied to flip-flop A and QA output of flip-flop A acts as a clock input for Flip-flop B and QB output of flip-flop B acts as a clock input for Flip-flop C. Logic 1 º Diagram Pr Q. Ta Pr Qr TR Pr Q T_c of ΠΓ FF-A Counter FF-B FF-C *1M* C C, C 0QA 3Q Q0

> Timing Diagram *1M*

Using 3-bit ripple counter we can count 0-7. Because we know by 3 bit we can represents minimum 0 (000) and maximum 7 (111). The clock inputs of the three flip flops are connected in cascade. The T input of each flip flop is connected to a constant 1, which means that the state of the flip flop will toggle at each negative edge of its clock. Explana Thus the clock input of the first flip flop is connected to tion 2M the *Clock* line. The other two flip flops have their clock inputs driven

MODEL ANSWER

SUMMER - 2018 EXAMINATION

MODEL ANSWER

Subject: Digital Techniques

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

			SELE	CTION			ACTIVE-HIGH DA	TA	
			JELL			M = H		ETIC OPERATIONS	
		\$3	S2	S1	S0	LOGIC FUNCTIONS	<mark>℃</mark> n = H (no carry)	C _n = L (with carry)	
		L	L	L	L	F = A	F=A	F = A PLUS 1	
		L	L	L	н	$F = \overline{A + B}$	F = A + B	F = (A + B) PLUS 1	Any
		L	L	н	L	F = AB	F = A + B	$F = (A + \overline{B}) PLUS 1$	four
		L	L	н	н	F = 0	F = MINUS 1 (2's COMPL)	F = ZERO	function
		L	н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1	s 2M
		L	н	L	н	F = B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1	5 2171
		L	н	н	L	F = A 🕣 B	F = A MINUS B MINUS 1	F = A MINUS B	
		L	н	н	н	F = AB	F = AB MINUS 1	F = AB	
		н	L	L	L	F = A + B	F = A PLUS AB	F = A PLUS AB PLUS 1	
		н	L	L	н	F = A 🕀 B	F = A PLUS B	F = A PLUS B PLUS 1	
		н	L	н	L	F = B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1	
		н	L	н	н	F = AB	F = AB MINUS 1	F = AB	
		н	н	L	L	F = 1	F = A PLUS A	F = A PLUS A PLUS 1	
		н	н	L	н	$F = A + \overline{B}$	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1	
		н	н	н	L	F = A + B	$F = (A + \overline{B}) PLUS A$	$F = (A + \overline{B}) PLUS A PLUS 1$	
		н	н	н	н	F = A	F = A MINUS 1	F = A	
4.		Atten	npt :	any	fou	r of the fol	lowing:		16
	a)	Descr	ibe	woi	·kin	g of JK Fli	ip-Flop and write	e its truth table.	4M
	/						lop optional)		
	Ans.	(11000	. 20	~870		j u njup j	top optional)		
	Alls.								
				_		Trut	th Table		
					J	K CLI			
					0	o t	Q ₀ (no ch	ange)	Truth
					1	o t	1		Table
					0	1 t	0		<i>2M</i>
					1	1 †	Q ₀ (togg	les)	

MODEL ANSWER

Page 20 / 38

MODEL ANSWER

SUMMER – 2018 EXAMINATION Subject: Digital Techniques Subject:

Subject Code:

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

	semiconductor body of the device. Source and drain contacts are made to regions at the end of the channel. An insulating layer of oxide is grown over the channel, then a conductive (silicon or aluminum) gate electrode is deposited, and a further thick layer of oxide is deposited over the gate electrode. The floating-gate electrode has no connections to other parts of the integrated circuit and is completely insulated by the surrounding layers of oxide. A control gate electrode is deposited and further oxide covers it. ^[2] To retrieve data from the EPROM, the address represented by the values at the address pins of the EPROM is decoded and used to connect one word (usually an 8-bit) of storage to the output buffer amplifiers. Each bit of the word is a 1 or 0, depending on the storage transistor being switched on or off, conducting or non-conducting. The switching state of the field-effect transistor is controlled by the voltage on the control gate of the transistor. Presence of a voltage on this gate creates a conductive channel in the transistor, switching it on. In effect, the stored charge on the floating gate allows the threshold voltage of the transistor to be programmed. The programming process is not electrically reversible. To erase the data stored in the array of transistors, ultraviolet light is directed onto the die. Photons of the UV light cause ionization within the silicon oxide, which allow the stored charge on the floating gate to dissipate. Since the whole memory array is exposed, all the memory is erased at	
d)	the same time. The process takes several minutes for UV lamps. Draw the circuit diagram of 3-bit R-2R ladder type DAC obtain its only output voltage expression.	4 M
Ans.	Consider Input/Output CBA = 100	

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

	Va R R	
	$\frac{V_R}{2}$ $\frac{M}{2}$ $\frac{M}{2}$ $\frac{V_A}{2}$	
	$V_R \circ 2R = V_R$	
	2(4:R) 4.	
	Thus the output voltage contributed by Next significant bit is $V_R/_4$	
	Similarly, We can prove that output voltage contributed by bit A is $\frac{V_R}{8}$	
	Applying Super position theorem, we get	
	$V_{A} = \frac{V_{R}}{2} + \frac{V_{R}}{4} + \frac{V_{R}}{8}$ for input CBA = 111.	
	$V_{A} = \frac{V_{R}}{2} [b_{2}] + \frac{V_{R}}{4} b_{1} + \frac{V_{R}}{8} b_{0}$	
	$= \frac{V_R}{8} \left[2^2 b_2 + 2^1 b_1 + 2^0 b_0 \right]$	
e)	Define following terms with reference to A/D converters and list any four application of A/D converters. i) Resolution	4M
A	ii) Quantization error	
Ans.	i) Resolution: It is define as the maximum number of digital output codes. Resolution= 2^n	
	Resolution-2	Each
	Resolution is defined as the ratio of change in the value of the input analog voltage VA, required to change the digital output by 1 LSB.	Definitio n 1M
	Resolution= $V_{FS}/(2^n-1)$	

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

	 ii) Quantization Error: An ADC, the whole range of analog voltage in an interval is represented by only one digital value. ∴, There is an error called Quantization error. Quantization error can be reduced by increasing the number of bits. Applications of A/D converter: Computers use analog-to-digital converters in order to convert signals from analog to digital before they can be interpreted. For example, a modem will convert signals from digital to analog before transmitting them over telephone lines that carry only analog signals. These signals are then converted back into digital form at the receiving end so that the computer can interpret the data in digital format. In a digital signal processing system, an ADC is required if the input signal is analog. For example, a fast video ADC is used in TV tuner cards. 8, 10, 12, or 16 bit analog to digital controllers are common in microcontrollers. They are also needed in digital storage oscilloscopes. Analog to digital converters are used in music reproduction technology when done using computers. In such an application, an ADC is needed when an analog recording is used in order to create the PCM data stream that goes onto a CD or a digital music file. ADC is used in Cell phones ADC is used in digital oscilloscope 	Any four Applicat ions 2M
f) Ans.	 Design a mod-6 asynchronous counter with truth table and logic diagram. (<i>Note: K-map is optional</i>) MOD 6 asynchronous counter will require 3 flip flops and will count from 000 to 101. Rest of the states are invalid. To design the combinational circuit of valid states, following truth table and K-map is drawn: 	4M

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

		Image: Circuit diagram of MOD 6 asynchronous counter					
5.		Attempt any four of the following:	16				
	a)	How many flip-flops are required to construct the following	4M				
		modulus counters?					
		i) 27 ii) 83 iii) 95 iv) 9					
	Ans.	The Number of flip flops are calculated from the formula: $2^n \ge m$					
	11100	Where $n = no$ of flip flops and m is the number of states.					
		i) $27 = 5$					
		ii) 83 = 7					
		iii) 95 = 7					
		iv) $9 = 4$					
	b)	Draw logic diagram of S-R Flip-Flop with negative edge	4 M				
	A m =	triggering and write its truth table.					
	Ans.	s o					
		c	Diagram				
			2M				
		R Q					

MODEL ANSWER

2010 EVANINATION CUMATED

Subject:

SUMMER – 2018 EXAMINATION			1
: Digital Techniques Subje	ect Code:	17333	
 The 74LS47 display decoder receives the BCD code a the necessary signals to activate the appropriate LI responsible for displaying the number of pulses app 74LS47 decoder is designed for driving a common-and LOW (logic-0) output will illuminate an LED segment v (logic-1) output will turn it "OFF". For normal operation, the LT (Lamp test), BI/RB Input/Ripple Blanking Output) and RBI (Ripple Blankin all be open or connected to logic-1 (HIGH). The functions of the pins are: LT (Lamp test): This is used to check the segments is connected to logic 0 all the segments of the display the decoder will be ON. For normal decoding this ter connected to logic 1 level. 	ED segmen plied. As the ode display, while a HIG GO (Blankin ing Input) mu s of LED. If a connected	ts a H Funcngst $2Mitto$	oins
• RBI (Ripple Blanking Input): It is to be connected normal decoding operations. If it is connected to segment outputs will generate data for normal 7 segm of all BCD inputs except zero. Whenever the correspond to zero, the 7 segment display switches used for blanking out leading zeros in multi digit disp	o logic 0 th nent decodin BCD inp s off. This	ne ng ut	
• BI (Blanking input): If it is connected to 0 level, switched off irrespective of BCD inputs. That conserving power in multiplexed displays.	1 V		
• RBO (Ripple Blanking output): This output which a logic 1 goes to logic 0 during the zero blanking int used for cascading purpose and is connected to RBI of stages.	terval. This	is	

	stages.	
d) Ans.	Implement using NOR gates only $Y = (A + B).(\overline{A} + C)$	4M

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

Y= (A+B). (A+C) - Product of sum form:-Circuit diagram ABC *3M* (A+B Output $\frac{1}{2} = (A+B) \cdot (A+C)$ expressi on simplific ation · 4 = (A+B). (A+C) *1M* e) **Convert the following: 4M** i) $(429)_{10} = (?)_{BCD}$ ii) $(2.45)_{10} = (?)_2$ iii) $(AF)_{16} = (?)_8$ iv) $(1011010)_2 = (?)_{16}$ Ans. Each conversi on 1M each

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

MODEL ANSWER

17333 Subject Code: **Subject: Digital Techniques** CLEAR 0 1 2 3 4 5 6 7 8 CLK 0 Timing Q₀ 0 diagram *1M* Q1 0 Q2 0 Q3 0 The Johnson counter designed with D flip flop is shown below. It has four stages i.e. four flip flops connected in series type or cascaded. Initially zero / Null is fed to the Johnson counter and on applying the clock signal, outputs will change to "1000", "1100", "1110", "1111", Explana "0111", "0011", "0001", "0000" in a sequence and the sequence will tion 1M repeat for next clock signal. The Johnson counter produces a special pattern by passing four 0's and then four 1's and thus it produces a special pattern by counting up down. Attempt any four of the following: 16 6. Explain successive approximation method of ADC with neat a) **4M** diagram. Ans.

SUMMER – 2018 EXAMINATION

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

17333

Subject Code:

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

	Dis-Advantages:			
	1. The circuit is comp	lex.		
	2. The conversion time	e is more than flash type	ADC.	
b)	List four application	s flip -flops.		4 M
Ans.	Applications flip-flo	ps:		
	a) It can be used as me	emory element.		
	b) It can be used to eli	minate key debounce.		Any 4
	c) It is used as a build	ing block in sequential ci	rcuits such as counters	applicati
	and registers.			ons 1M
	d) It can be used as de	lay element.		each
c)		memory and compare	RAM and ROM (any	4 M
Ans.	2 point).			
A115.		Memories		
	Sequential R	lead and Read	ad only Content addressable	Classific
	•		mories memories	ation
			ROM) (CAM)	2M
				21/1
	Shift Charge coupled	•		
	registers devices (CCD)	ROM	PROM EPROM EAROM	
]	
	Sr Parameters	RAM	ROM	
		Encore dh'a an ann ann	Energy (1) is an energy of	A
	1 Definition	From this memory	From this memory	Any 2
		data can be read,	data can only be	points
		write, erase or	read	1M each
	2 Effect of	modified.	No. offeret of a company	
	2 Effect of	Stored information is	No effect of power	
	power	retained only as long	on stored	
		as power is on.	information. Information does	
		Information stored is		
		lost if power is turned	not get lost	
		off		

Subj	ect: Digit	al Tecl		ER – 2018 EX	KAMINA'I		7333
		3	Applications	For temporal storage	ту	For permanent storage of information	
	d) Ans.	Comp pts).	pare combinatio	on circuit and	l sequentia	al logic circuit. (any 4	4M
	1115.	Sr No	Combinatio	nal circuits	Sec	quential circuits	
		1	In combination the output depends combinationa variables.	variables on the	output va	ential circuits , the ariables depends upon ant inputs as well as on output.	Any 4 points
		2	Memory ur required in the	nit is not ese circuits.	•	unit is required in ircuits to store the output.	1M each
		3	These circuits speed becaus between the output is c propogation d	the delay input and due to the		al circuits are slower the combinational	
		4	These are easy		These designing	are complex in g.	
	e)	5 With	Ex: Parallel A		Ex: Seria	al Adder. of ramp type ADC.	4M
	Ans.		: Any other diag	-	-		7111

MODEL ANSWER

Subject: Digital Techniques

Subject Code:

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:

type A/D converter. This method uses a clock source, a counter and a	
D/A converter.	
An analog input is applied to one input of an OP AMP which is used	
as a voltage comparator. A start or convert pulse is applied to the set	
input of the flip-flop through a mono stable multivibrator (i.e. control	
logic) and also to the reset input of the binary counter. This pulse	
resets the binary counter and makes it ready for counting. As the	
counter resets, output of the D/A converter reduces to zero and thus	
with positive analog input to the voltage comparator, the output of the	
comparator goes low, which makes $R = 0$. The start pulse also	
triggers the mono stable multivibrator, which introduces the desired	
delay in the action of the other circuits. Thus the output of the mono	
stable multivibrator goes high. This makes $S = 1$, while R was already	
made 0.	
The RS flip-flop sets and the Y output goes high. The AND gate is	
enabled & the counter starts the counting the clock pulses. The output	
of the counter is fed to n D/A converter which produces an analog	
output in response to the digital signal as its input. This binary output	
starts increasing continuously with time. The output of the D/A	
converter also starts increasing in steps. The analog output is a	
staircase signal as shown in fig.	
This D/A output is fed to the reference voltage for the comparator.	
The staircase signal (i.e. digital output) is compared by the	
comparator with the analog voltage. So long as the input signal, Vs is	
greater than the digital output the gate remains enabled and clock	
pulses are counted by the counter, thus continuously raising the	
digital output. But as soon as the staircase digital output exceeds the	
given analog input, the output of the comparator changes from a low	
to a high level. This makes $R = 1$, while S is at 0. Thus, the flip-flop	
resets and Y output goes low. Hence the AND gate is disabled and no	
clock pulses can now reach the counter. This stops the counting and	
the binary output of the counter represents the final digital output. The staircase ramp or counter method is simple and least expensive.	
It is faster as compared to dual slope method. It needs longer time for	
conversion because of the following of the reasons	
(a) The counter starts after it is reset to zero,	
(b) The rate of clock pulses also decides the conversion time, and	
(c) Conversion time is different for analog voltages of different	
magnitudes.	

Subject: Digital Techniques

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject Code: 17333

4M	ght shift register has ses are applied what	ck pul	clo	er 3	110. Aft	e ,	f)
		FF-	FF-3 1 ate	7-2 1 -OR ga	0 EX	Clock	
Proper		1 0	1	0	Clock		Ans.
output		1 1	0	1	1		
at each		0 1	1	0	2		
step 4M		1 0	0	1	3		