

Subject Code: 17415 (DMT)

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
- 5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept

	SUMMER – 2018 EXAMINATION	NS	
	Model Answer	Subject Code: 17415 (DMT)	
1	Attempt any <u>TEN</u> of the following:	20	
1 a)	State Fleming's right hand rule. Ans: Fleming's Right Hand Rule: Stretch out the first three fingers of your right hand such that perpendicular to each other, <i>align</i> first finger in direction thumb in direction of relative motion of conductor with respec- middle finger will give the direction of induced EMF.	of magnetic field, 2 Mark	S
1b)	Classify different types of generators. Ans: Different Types of Generators: 1) Separately excited DC generator 2) Self excited DC generator: (i) DC series generator (ii) DC shunt generator (iii) DC compound generator: short shunt and long shurd differential)	2 Mark nt / (cumulative or	S
1 c)	Draw: (i) Torque Vs. Armature current (ii) Speed Vs. armature current Characteristics for DC shunt motor. Ans: (i) Torque Vs. Armature current: Torque		
	T	1 Mark each =	

Armature current I A

2 Marks

(ii) Speed Vs. Armature current:

1 d) State Fleming's left hand rule.

Ans:

Fleming's Left Hand Rule:

Stretch out the first three fingers of your left hand such that they are mutually perpendicular to each other, align first finger in direction of magnetic field, 2 Marks middle finger in direction of current *then* the thumb will give the direction of force acting on the conductor.

Subject Code: 17415 (DMT)

- 1e) Which DC motor can be selected for following types of loads
 - (i) Electric Traction
 - (ii) Lathe Machine
 - (iii)Crane

(iv)Printing Machine

Ans:

1f)

1g)

1h)

Ans:		
(i) Electric Traction	D.C. Series motor.	1/2 Mark
(ii) Lathe Machine	D.C. Shunt motor.	each
(iii) Crane	D.C. Series motor.	=
(iv) Printing Machine	D. C. Cumulative compound motor	2 Marks
Give classification of DC motors		
Ans:		
Classification of DC motors:		
(i) DC series motor		2 Marks
(ii) DC shunt motor		
(iii) DC Compound motor : short	shunt and long shunt	
Classify types of transformers.		
Ans:		
Classification of Transformer I	Based On:	
i) Construction:		
Shell type, Core type, Berr	y type	
ii) Change in voltage level:		2 Marks for
Step-Up, Step-Down,		any one
iii) Number of phases:		category
Single phase, Three phase		
iv) Purpose:		
Power T/F, Distribution T	/F	
v) Use:	untura l	
Instrument, Protection, Co	ontrol	
vi) Cooling: Self-cooled, Air-cooled, F cooled.	orced-air cooled, Oil-cooled, Forced-oil	
Draw circuit diagram for short ci	rcuit test of single phase transformer.	
Ans:		
Circuit Diagram for Short Circ	cuit Test of Single Phase Transformer:	

Isc Wsc Isc Wsc H.V. side L.V. side Single of Wattmeter Secondary is short circuited Variac Vsc

Transformer under test

1 i) Why transformer rating is in kVA? **Ans:**

Subject Code: 17415 (DMT)

2 Marks

Transformer Rating is in kVA:

The life of insulation of transformer depends upon temperature. Temperature rise results from losses of transformer. The copper loss of transformer depends on the current and the iron loss depends on the voltage. Hence total transformer losses depend on volt-amperes and not on phase angle between voltage and current. The losses are independent of load power factor. To prevent transformer from damage due to temperature rise, it is highly essential to limit the losses. The limiting values are referred as rating. To limit the losses, the operating voltage & current must be maintained within limits. Hence transformer rating is in kVA.

Write difference between efficiency and all day efficiency of transformer. 1 j) Ans:

Difference Between Efficiency and All Day Efficiency of Transformer:

Sr. No.	Efficiency	All Day Efficiency	
1.	The efficiency or commercial	The all-day efficiency of	
	efficiency of transformer is	transformer is defined as	
	defined as ratio of output	ratio of output energy to	Any two
	power to input power.	input energy in 24 hours.	valid points
2.	$Efficiency = \frac{Output power}{Input power}$	All day Efficiency kWh Output in 24 hrs	= 2 Marks
		kWh Input in 24 hrs	
3.	Very much applicable for Power	Very much applicable for	
	transformers	Distribution transformers	

1 k) Draw connection diagram of transformer for Scott connection. Ans:

Connection Diagram of Transformer for Scott - connection:

11) State types of cooling arrangements used in transformer (Any four). Ans:

Different Types of Cooling System used for 3 phase Transformer:

- Air Natural (AN)
- Air Forced (AF) .
- Oil Natural Air Natural (ONAN)
- Oil Natural Air Forced (ONAF)
- Oil Forced Air Natural (OFAN)

¹/₂ Mark for each of any four

Ans:

SUMMER – 2018 EXAMINAT	TONS
Model Answer	S

Subject Code: 17415 (DMT)

Oil Forced Air Forced (OFAF) Oil Natural Water Forced (ONWF) Oil Forced Water Forced (OFWF) . 2 Attempt any **FOUR** of the following: 16 2a) State principle of operation of DC generator. Ans: **Principle of Operation of DC Generator:** Working principle of DC generator is dynamically induced emf or 1 Mark • electromagnetic induction. 1 Mark According to this principle, if flux is cut by conductor then an emf is • induced in the conductor. The magnitude of the induced emf is calculated by Faraday's 2nd law of • electromagnetic induction and the direction is given by Lenz law OR 1 Mark Fleming's right hand rule. In case of DC generator, when armature winding is rotated by the prime • 1 Mark mover under the influence of magnetic poles, the flux is cut by armature conductor hence an emf is dynamically induced into armature winding. Derive an e.m.f. equation of generator. 2b) Ans: **Derivation of e.m.f. Equation of Generator:** Let P = no of poles, \emptyset = average flux per pole (Wb), 1 Mark Z = total no of armature conductors.A = number of parallel paths of armature winding, N = speed of generator in RPM. $E_g = emf of generator$ By Faraday's Laws of electromagnetic induction Induced emf in each conductor $e_c = \frac{d\phi}{dt}$ Here, the flux cut by one armature conductor in one revolution = $P \emptyset$. The time for one revolution = (60/N) sec. Hence $e_c = ($ flux cut in one revolution)/(time for one revolution) volt $= \frac{P \emptyset}{60} = \frac{P \emptyset N}{60} \quad volt$ 1 Mark For Z conductors the total emf will be $Ez = Z \frac{P \oslash N}{60}$ volt 1 Mark Depending on the number of identical parallel paths the conductors get divided into those many paths (depending on the armature winding type as wave and lap winding) Hence induced emf $E_g = E_Z/A = \frac{\phi ZN}{60} \frac{P}{A}$ volts A= P (lap winding) A= 2 (wave winding) 1 Mark 2c) "D.C. Series motor cannot operate on no-load."- Justify the statement.

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT)

D.C. Series Motor Cannot Operate on No - load - Justification:

- At no load the field current (which is also the armature current) is very small and hence the useful air-gap field flux. Also the torque is very small.
- As $N \propto \frac{1}{\alpha}$ the speed rises excessively high / dangerous values and it is • mechanically very harmful for machine.
- At high speeds due to centrifugal forces of the rotating parts they may damage the machine.

Hence DC series motor should never be started on no-load.

2d) Write power stages of DC motor with flow diagram.

Ans:

Flow Diagram of Power Stages of DC motor:

State the necessity of starter for D.C. motor. State various types of D.C. motor 2e) starter.

Ans:

Necessity of Starter for D.C. Motor:

Armature current, is given by equation $Ia=(V-E_b)/Ra$

- i) If the motor is at standstill or rest, back emf E_b is zero (as $E_b=\Phi ZNP/60A$, at start speed N is zero). This causes starting current Ia=V/Ra, which is 2 Marks large as armature resistance is usually low. This large starting current may damage armature winding.
- ii) Hence to limit the very high starting current, the starter is required.
- iii) Once motor picks up the speed, the back $emf E_b$ is induced in armature winding and armature current is limited to safe value. So starter is not 2 Marks required under running condition.

Types of D.C. motor starters:

i) Two point starter

- ii)Three point starter
- iii) Four point starter
- A 220 V DC shunt motor runs at a speed of 850 rpm and takes a current 20A 2ffrom mains. Calculate the speed if the torque is doubled. Armature resistance is 0.2Ω

Ans:

Given: DC shunt motor of , V=220 V, N1= 850 rpm, Ia1= 20 A, Ra= 0.2Ω For finding speed N₂, $T_2 = 2T_{1.}$

4 Marks

Subject Code: 17415 (DMT)

16

$\frac{T_1}{T_1} = \frac{I_{a1}}{T_{a1}}$		T ₁	20	
$\frac{1}{T_2} = \frac{1}{I_{a2}}$	••	$\overline{2T_1}$ =	I_{a2}	1 Mark
$\therefore I_{a2} = 40 \text{ A}$				

As
$$E_{b1} = V - I_{a1}R_a = 220 - (20 \times 0.2) = 216 V$$
 1 Mark

$$E_{b2} = V - I_{a2}R_a = 220 - (40 \times 0.2) = 212 V$$
 1 Mark
 $\frac{N_2}{N_2} = \frac{E_{b2}}{R_2}$

$$\therefore N_2 = \frac{E_{b2}}{E_{b1}} \times N_1 = \frac{212}{216} \times 850 = 834.259 \text{ rpm}$$
 1 Mark

3 Attempt any <u>FOUR</u> of the following:

3a) Draw practical transformer on load phasor diagram at lagging P.F. Ans

Phasor Diagram of Practical Transformer for lagging load p.f. :

3b) Estimate the percentage efficiency and regulation of a 100 kVA, 6600V/250V, 50Hz 1¢ transformer at full load and 0.8 lagging p.f. from following readings;`
O. C. test : 6600 V, 1.5 A, 900 W,
S. C. test : 290 V, 12 A, 860 W.
Ans:
From the SC test:

200

T 7

$$Z_{1T} = \frac{V_{sc}}{I_{sc}} = \frac{290}{12} = 24.166 \,\Omega$$
$$R_{1T} = \frac{W_{sc}}{I_{sc}^2} = \frac{860}{12^2} = 5.972 \,\Omega$$
$$X_{1T} = \sqrt{Z_{1T}^2 - R_{1T}^2} = \sqrt{24.166^2 - 5.972^2} = 23.416\Omega \qquad 1 \,\text{Mark}$$

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT)

To find efficiency:

 P_i = 900W P_{cu} = 860W at 12 A load current

 $Efficiency = \frac{F.L.\,output \times cos\emptyset}{F.L.\,output \times cos\emptyset + Losses}$

Full load current on HV side = 100000/6600 = 15.15 A

Full load copper losses = $(15.15/12)^2[860] = 1.6 \times 860 = 1371 \text{ W}$

Total losses = 1371 + 900 = 2271 W.

$$= \frac{100000 \times 0.8}{100000 \times 0.8 + 2271} = \frac{80000}{81760} \times 100$$

=0.9723 OR 97.23% 1 Mark

Regulation

Total approximate voltage drop as referred to primary is $= I_1(R_{1T}cos\emptyset + X_{1T}sin\emptyset)$ $I_1 = \frac{VA}{V_1} = \frac{100000}{6600} = 15.151 \text{ A}$ Voltage drop= 15.151[(5.972 × 0.8) + (23.416 × 0.6)] = 285.24 volts $VoltageRegulation = \frac{Voltagedrop}{NoloadVoltage} = \frac{285.24}{6600}$ 1 Mark $= 0.0432 \quad or \quad 4.32\%$

3c) Compare distribution transformer with power transformer on any four points.. **Ans:**

Comparision of Distribution Transformer with Power Transformer:

Parameters	Distribution Transformer	Power Transformer
Typical Voltages	11kV,6.6kV, 3.3kV,	400kV, 220kV,
	440V, 230V	110kV,66kV,33kV
Power Rating	Lower (< 1MVA)	Higher (> 1MVA)
Size	Small	Big
Load	50-70% of full load	Full load
Insulation Level	Low	High
Installation	Pole mounted/ Plinth	Compulsory Plinth
	Mounted.	Mounted
Maximum	Obtained near 50% of	Obtained near 100% of
efficiency	full load	full load
Type of	All day efficiency	Only power efficiency
efficiency	needs to be defined	is sufficient

1 Mark each of any four points = 4 Marks

3d) Draw the equivalent circuit of transformer referred to primary. State the meaning of each term.

Subject Code: 17415 (DMT)

Ans:

Equivalent Circuit Diagram of Transformer Referred to Primary:

2 Marks Equivalent Diagram

- V₁-Primary Input voltage
- I_1 _ Input Current
- $I_0\mbox{-} Exciting \mbox{ current}/\mbox{ No load current}$
- I_m Magnetizing component of no load current
- $I_{\ensuremath{\text{w}}\xspace}$ Working component of no load current
- R₀- Core loss resistance
- X₀- magnetizing reactance
- R1 -Primary winding resistance
- X₁ Primary winding reactance
- E_1 Induced emf in Primary winding
- $R_2^{\,\prime}$ Secondary winding resistance referred to primary
- X₂'- Secondary winding reactance referred to primary
- $I_2\;$ Secondary winding current
- $I_{2}{}^{\prime }\ -Primary\ equivalent\ of\ secondary\ current$
- K- Transformation ratio
- V₂ Secondary terminal voltage
- V_2' Primary equivalent of secondary terminal voltage
- Z_L-Load impedance
- Z_L '- Primary equivalent of load impedance
- (in terminology only passive parameters: resistances and inductive reactance need to be mentioned which are to be awarded marks, voltages, currents are not required).
- 3e) State any two advantages of parallel operation of transformer.

State the two conditions for connecting single phase transformers in parallel.

Ans:

Advantages of Parallel Operation of Transformer:

- i) Reliability of the supply system enhances.
- ii) Highly varying load demands can be fulfilled. Any two
- iii) Loading only the relevant capacity transformer to operate at high Advantages efficiency.
- iv) Overloading of transformers is avoided and hence the life of transformer 2 Marks increases.
- v) Reserved capacity can be reduced. (Any related advantages should be considered)

Conditions for Connecting Single Phase Transformers in Parallel:

1) Voltage ratings and voltage ratios of the transformers must be same.

2 Marks for terminology

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT)

2) Transformer polarity wise connections must be carried out.

3) Percentage / p.u. impedances should be equal for load sharing to occur in Any two proportion to the kVA ratings.

4) X/R ratio of the transformer windings should be equal for load sharing at = 2 Marks identical power factor.

3f) Identify the circuit diagram given in Fig. No. 1. Select proper range of all meters if the transformer is having rating of 440 V/ 220 V, 2kVA

Ans:

4 4 a)

	Given circuit in Fig. No. 1 is for short circuit test on single phase transformer.	1 Mark
	Here,	
	Primary full load current = $(2000/440) = 4.545$ A.	
	Secondary full load current = $(2000/220) = 9.09$ A.	1 Mark
	Generally for circulation of full load short circuit current 10% of rated voltage i.e.10%	
	of 220 V = 22V is required.	
	Hence rating of meters on primary side are;	
	Ammeter- (0.5 A)	1.5 Marks
	Voltmeter $(0-30 \text{ V})$ Wettmeter $(5.4 \text{ mp}/30, 50, 60 \text{ V}, 200 \text{ W})$	
	Wattmeter - 5 Amp / 30, 50, 60 V, 200W. Rating of meters on secondary side are;	
	Ammeter - (0-10 A)	0.5 Mark
	Attempt any <u>FOUR</u> of the following:	16
)	A 40 kVA, single phase transformer with a ratio of 2000 / 250 V has a primary	
	resistance of 1.15Ω and a secondary resistance of 0.01555Ω . If the transformer	
	is designed for 75% of full load. Find its efficiency when delivering full load at	
	0.8 power factor.	
	Ans:	
	Given: 40kVA, $V_1 = 2000 V$, $V_2 = 250 V$, $R_1 = 1.15 \Omega$, $R_2 = 0.01555 \Omega$,	
	P.F. = 0.8.	
	$\mathbf{K} = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{250}{2000} = 0.125$	
	As the transformer is designed for 75% of full load, it means that the	1Mark
	transformer exhibits maximum efficiency at 75% of full load.	Innurk
	Cu losses at 75% of full load = $(0.75)^2 \times P_{cuFL}$	
	At maximum efficiency, Cu losses = Iron losses	
	Hence, $(0.75)^2 \times P_{cuFL} = P_i$	
	Full load primary current = $40 \times 1000/2000 = 20A$	

Subject Code: 17415 (DMT)

 $\begin{array}{ll} \mbox{Equivalent primary resistance} = R_{01} = R_1 + R_2 / K^2 \\ = 1.15 + 0.01555 / (0.125)^2 = 2.145 \ \Omega & 1 \mbox{Mark} \\ \mbox{Full load Cu losses } P_{cuFL} = I_1^2 \times R_{01} = 20^2 \times 2.145 = 858 \ W \\ \mbox{As , } (0.75)^2 \times P_{cuFL} = P_i \\ 0.5625 \times 858 = P_i = \mbox{Iron losses} = 482.625 \ W & 1 \mbox{Mark} \\ \end{array}$

Efficiency when delivering full load at 0.8 power factor:

Full load Efficiency =
$$\frac{\text{output}}{\text{output + losses}}$$

= $\frac{40 \times 1000 \times 0.8}{(40 \times 1000 \times 0.8) + (858 + 482.625)}$ 1Mark
= $\frac{32000}{33340.625}$ = 0.9597 OR 95.97%

- 4 b) Fig. No. 2 shows the equivalent circuit of 220/2200 V, single phase transformer as referred to the primary side. Calculate:
 - (i) Primary current.
 - (ii) Power factor.

(iii)Secondary terminal voltage.

(iv)Output of transformer.

Fig. No. 2

Ans:

Given , $R_0=450 \Omega$, $R_{t1}=0.015 \Omega$, $R_{L} = 6 \Omega$ $X_0=250 \Omega$, $X_{t1}=0.6 \Omega$, $X_L = 4 \Omega$, Transformation ratio $K = \frac{V_2}{V_1} = \frac{2200}{220} = 10$ $I_C = \frac{V_1}{R_0} = \frac{220}{450} = 0.488 \text{ A}$ $I_m = \frac{V_1}{X_0} = \frac{220}{250} = 0.88 \text{ A}$ $I_0 = \sqrt{0.488^2 + 0.88^2} = 1.006 \text{ A}$ $R_T = R_{t1} + R_L' = 0.15 + 6 = 6.15 \Omega$ $X_T = X_{t1} + X_L' = 0.6 + 4 = 4.6 \Omega$

4 c)

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT) $I_2' = \frac{V_1}{\sqrt{(R_T^2 + X_T^2)^2}} = \frac{220}{\sqrt{(6.15^2 + 4.6^2)}} = \frac{220}{\sqrt{58.98}} = \frac{220}{7.68} = 28.645 \, A < 36.75^\circ$ i) Primary current $I_1 = \sqrt{{I_0}^2 + {I'_2}^2} = \sqrt{1.006^2 + 28.645^2} = 28.66 \text{ A}$ 1 Mark iii)Terminal Voltage , $V'_2 = I'_2 \times Z'_L$ $= 28.645 A < 36.75^{\circ} \times 7.22 < 33.68^{\circ}$ = 206.816 V <70.43° Terminal voltage referred to secondary = $k \times V_2'$ 1 Mark $= 10 \times 206.816 = 2068.16$ V ii) Power Factor Phase angle between V'_{2} and I'_{2} is 70.43° - 36.75° = 33.68° = ϕ 1 Mark \therefore Power Factor = $\cos \phi = \cos 33.68 = 0.832$ lag iv) Output of Transformer 1 Mark $= I'_2 \times V'_2 = 28.645 \times 206.816 = 5924.244 \text{ VA}$ Two transformers A of 40 kVA with % $Z_A=(3+j4)\Omega$ and B of 25 kVA. Share equally a load of 50kVA. While working in parallel. Find how they will share a load of 40 kVA. Comment your answer. Ans: Given: Total load shared, S = 50 kVA,

Since the transformers share load equally, Load shared by each transformer $S_A = S_B = 25$ kVA Impedance of transformer A, $Z_A = (3+j4) \Omega$

Load shared by transformer B

$$S_{B} = S \frac{Z_{A}}{Z_{A} + Z_{B}}$$

$$25 = 50 \times \frac{(3+j4)}{(3+j4) + Z_{B}}$$

$$(3+j4) + Z_{B} = 2 \times (3+j4)$$

$$Z_{B} = 2 \times (3+j4) - (3+j4)$$

$$Z_{B} = (3+j4) \Omega$$
2 Marks

NOTE: If we assume, $Z_A = (3+j4)\%$, it is on the base of its rating i.e 40 kVA. The value of Z_B obtained above is also on the same base i.e 40 kVA.

Load sharing:

$$S_{A} = S \frac{Z_{B}}{Z_{A} + Z_{B}}$$

$$S_{A} = 40 \times \frac{(3 + j4)}{(3 + j4) + (3 + j4)}$$

$$S_{A} = 20 \text{ kVA} \text{ and } S_{B} = 20 \text{ kVA which can be obtained as,} \qquad 2 \text{ Marks}$$

$$S_{B} = S \frac{Z_{A}}{Z_{A} + Z_{B}}$$

$$S_{B} = 40 \times \frac{(3 + j4)}{(3 + j4) + (3 + j4)}$$

$$S_{B} = 20 \text{ kVA}$$

Subject Code: 17415 (DMT)

Comment: Load shared by transformer A is same as that of load shared by transformer B.

4 d) The efficiency of 100 kVA, 1100/440 V, 1¢ transformer is 87% on half load at 0.8(lag) and 89% on full load at unity power factor. Determine iron and copper losses.

Ans:

Full load effciency, $\eta_{FL} = \frac{KVA \times 1000 \times PF}{(KVA \times 1000 \times PF) + P_i + P_{cu}} \times 100$ $P_i = Iron loss which is constant.$ $P_{cu} = Full \ load \ Cu \ loss$

 $\therefore 0.89 = \frac{100 \times 1000}{(100 \times 1000) + P_i + P_{cuFL}} = \frac{100000}{100000 + P_i + P_{cuFL}}$

 $\therefore P_i + P_{cuFL} = 12359.55W \dots \dots \dots \dots (i)$

$$P_{cuHL} = \frac{1}{2}^{2} \times P_{cuFL} = \frac{P_{cuFL}}{4}$$

Effciency at Half load, $\eta_{HL} = \frac{1/2 \times KVA \times 1000 \times PF}{(1/2 \times KVA \times 1000 \times PF) + P_{i} + P_{cuHL/4}}$

$$0.87 = \frac{1/2 \times 100 \times 1000 \times 0.8}{(1/2 \times 100 \times 1000 \times 0.8) + P_i + \frac{P_{cuFL}}{4}}$$

$$0.87 = \frac{40000}{(40000) + P_i + \frac{P_{cuFL}}{4}}$$

$$P_{i} + \frac{P_{cuFL}}{4} = 5977.01W \dots \dots \dots (ii)$$
Subtracting (i) from (ii) and solving we get,
Copper losses = $P_{cuFL} = 8510.05 W$
Iron losses = $P_{i} = 3849.49W$
1 Mark

List various losses in a transformer and the places at which they occur. 4 e) Ans:

Various Losses in a Transformer:

Sr.	Losses in Transformer	Places at which the losses occur	
No.			
1	Copper Losses	Windings of transformer	4 Marks
2	Iron Losses or Core Losses	Core of the transformer	
	i) Eddy Current losses		
	ii) Hysteresis Losses		

1 Mark

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT)

4f) Derive the condition for obtaining maximum efficiency of transformer.
 Ans:
 Condition for Obtaining Maximum Efficiency of Transformer:

The efficiency of transformer is given by,

$$\eta = \frac{V_2 I_2(\cos\phi_2)}{V_2 I_2(\cos\phi_2) + P_i + I_2^2 R_{02}}$$
1 Mark

- In above equation P_i is constant and V₂ is practically constant.

At specified value of load p.f. $\cos \phi_2$, the efficiency is maximum when $\frac{d\eta}{dI_2} = 0$

 $\frac{d\eta}{dI_{2}} = \frac{d}{dI_{2}} \left[\frac{V_{2}I_{2}(\cos\phi_{2})}{V_{2}I_{2}(\cos\phi_{2}) + P_{i} + I_{2}^{2}R_{02}} \right] = 0$ 1 Mark Solving the above equation, we get $Pi - I_{2}^{2}R_{02} = 0$ $I_{2}^{2}R_{02} = Pi$

:. Condition for Maximum efficiency is,

Copper loss = Iron loss

As V_2 and pf are constant, (let $A = V_2 x pf = constant$): dividing numerator and denominator by I_2 we get

$$\eta = \left[\frac{A}{A + \frac{P_i}{I_2} + I_2 R_{02}}\right] = \left[\frac{1}{1 + \frac{P_i}{I_2} + I_2 R_{02}}\right]$$
1 Mark

This expression is maximized when the denominator is minimum. Hence differentiating the denominator with respect to I_2 and equating it to 0

we have $-\frac{P_i}{I_{02}^2} + R_{02} = 0$, (that is $I_{02}{}^2R_{02} = P_i$ is the condition) differentiating once more to determine whether it is max or min at this condition we get $\frac{2P_i}{I_{02}^3}$ which is always positive which means that the denominator is 1 Mark minimum and hence the expression of efficiency is maximum at the condition derived

(copper losses = iron losses)

5 Attempt any <u>FOUR</u> of the following

16

5a) Draw polarity test of 1- ϕ transformer.

Ans:

Circuit Diagram of Polarity test of Single Phase Transformer:

Subject Code: 17415 (DMT)

4 Marks

OR any equivalent diagram

5b) A 500kVA, distribution transformer having copper and iron losses of 5kW and 3kW respectively on full load. The transformer is loaded as shown below

Loading (KW)	Power Factor (lag)	No. of hrs.
400	0.8	08
300	0.75	10
200	0.8	03
No load		03

Ans:

The problem can be solved by using following steps:

Step-I Calculate output energy in KWh

Step-II : Convert the loading from kW to KVA

Step-III : Calculate copper losses at different KVA values

Step-IV: Calculate copper losses in 24 hours

Step-V: Calculate iron losses in 24 hours

Step-VI: Calculate All day efficiency

No of Hrs	Load in KW	P.F	Output energy in kWh= load in KW × No. of hrs	Load in KVA= Load in KW power factor	Copper Losses at different kVA= Copper Losses at Full load × (<u>Load KVA</u>) ²	Total cu Losses in kwh	Total Iron losses
08	400	0.8	3200	$\frac{400}{0.8}$ =500	$5 kw \times \left(\frac{500}{500}\right)^2 = 5 kw$	5×8 = 40 kWh	
10	300	0.7 5	3000	400	3.2 kw	32	$3 \times 24 = 72 kWH$
03	200	0.8	600	250	1.25 kw	3.75	
03	No load		0	0	0	0	
			Total= 6800 kWH			Total = 75.75 kWH	Total=72 kWH

1Mark

2 Marks

SUMMER – 2018 EXAMINATIONS Model Answer Subject Code: 17415 (DMT)

Output Energyin 24 hrs

$$\% Efficiency_{Allday} = \frac{1}{0utput \ Energy \ in \ 24 \ Hrs + Losses in \ 24 \ Hrs} \times 100$$

1 Mark

1 Mark of

four points

= 4 Marks

 $\times 100 = \frac{6800}{6947.75} \times 100 = 97.87\%$ $\overline{6800 + 75.75 + 72}$ % $Efficiency_{Allday} = 97.87\%$ OR 0.9787

5c) State the advantages of amorphous core type distribution transformer. Ans:

Advantages of amorphous core type distribution transformer:

- Increases efficiency of transformer as constant losses are reduced by 75 % 1) compared to conventional transformers.
- 2) The material has high electrical resistivity hence low core losses.
- 3) Amorphous material has lower hysteresis losses, hence less energy wasted in magnetizing & demagnetizing the core during each cycle of supply current.
- 4) Amorphous metal have very thin laminations, which results in lowering the each of any eddy current losses.
- 5) Reduced magnetizing current.
- 6) Better overload capacity.
- 7) High Reliability.
- 8) Excellent short circuit capacity.
- 9) Less maintenance cost.

5d) State with neat sketch the construction of three phase autotransformer.

Ans:

Construction of three phase auto transformer:

- The coils connected in star are placed on electromagnetic cores; each phase of auto-transformer consists of a single continuous winding common to primary and secondary circuit.
- The limbs (electromagnetic cores) are made of laminations (sheet steel with silicon).
- Explanation • The output terminal connections are gang / simultaneously operated to get 2 Marks identical tapings to all phases and are brought out on the insulated plate. The variable voltage can be obtained with tapings to which the output terminals are connected as required.

Subject Code: 17415 (DMT)

Draw diagrams for phasing out test.

Ans:-

Aim of Conducting Phasing Out Test on Three Phase Transformer:

This test is carried out to identify primary & secondary windings belonging to same phase of poly-phase transformer.

OR

2 Marks for Aim

¹/₂ Mark for

each of any

eight points

16

This test is carried to find out the corresponding HV and LV winding of a phase of poly-phase transformer.

Diagram:

5 f) Write selection criteria of distribution transformer with any four points. **Ans:-**

Selection Criteria for distribution transformer:

- i) Load requirements that decides kVA Rating
- ii) Required Tappings
- iii) Vector group.
- iv) Winding Impedances
- v) Termination Arrangement.
- vi) Cooling system
- vii) Nature of load
- viii) Ambient/ Environment conditions
- ix) Voltage ratings
- x) Nature of service required
- xi) Tariff applicable etc.

6 Attempt any <u>FOUR</u> of the following

6a) Identify the parts shown in the diagram of a transformer in Fig.No.3.

Subject Code: 17415 (DMT)

¹/₂ Mark for each = 4 Marks

Ans:

Parts Shown in The Diagram of a Transformer:

- 1-Conservator Tank
- 2-Breather
- **3-Buchholz Relay**
- 4-Cooling Tubes
- 5-Magnetic Core
- 6-HT Terminal Bushings
- 7-Drain Valve
- 8-Transformer Tank

6b) Compare auto transformer with two-winding transformer (Any four point). Ans:

Comparison of autotransformer with two-winding transformer:

Sr No	Autotransformer	Two winding Transformer	
1	Only one winding, part of the winding is common for primary and secondary.	There are two separate windings for primary and secondary.	
2	Movable contact exist	No movable contact between primary and secondary	
3	Electrical connection between primary and secondary.	Electrical isolation between primary and secondary windings.	1 Mark for each of any
4	Comparatively lower losses.	Comparatively more losses	valid four
5	Efficiency is more as compared to two winding transformer.	Efficiency is less as compared to autotransformer.	points = 4 Marks
6	Copper required is less, thus copper is saved.	Copper required is more.	
7	Spiral core construction	Core type or shell type core construction	
8	Special applications where variable voltage is required.	Most of the general purpose transformers where fixed voltage is required.	
9	Cost is less	Cost is more	
10	Better voltage regulation	Poor voltage regulation	

Subject Code: 17415 (DMT)

6c) Explain construction and operation of current transformer. Draw a connection diagram for C.T. connection with 1-φ load.

Ans:

Construction and Operation of current transformer: Construction-

- Construction of CT is as shown in above figure.
- C.T. has bar type conductor, which behaves as primary winding.
- The primary of C.T. carries large current *Ip* which is to be measured, so the bar is of large cross sectional area.
- The secondary of C.T.is made up of large number of turns. It is wound on core. The secondary winding is a low current winding. Hence it's cross sectional area is small.
- An ammeter of small range is connected across the secondary as shown in figure given below

Operation of C.T.;

- C.T. is basically a step-up transformer. Hence the secondary is high voltage low current winding.
- The secondary current is given by;

$$Is = Ip \times \frac{N1}{N2}$$
 $N2 \gg N1$

- The current *Is* is measured by the ammeter. So knowing turns ratio it is possible to measure *Ip*.
- The primary current is given by;

$$Ip = Is \times \frac{N2}{N1}$$

Connection diagram for C.T. connection with single phase load:

1 Mark

1 Mark

1 Mark

Subject Code: 17415 (DMT)

6d) Explain construction and working of isolation transformer. **Ans:**

Construction and Working of Isolation Transformer: Construction:

- i) Isolation transformers are specially designed transformers for providing electrical isolation between primary & secondary windings.
- ii) The transformer has primary and secondary windings placed on the common core limbs which have equal number of turns so that the voltage 1 Mark fed to the primary is available at the secondary without any change in its magnitude.
- iii) These are built with special insulation between primary and secondary.

Working:

When supply is given to primary it causes primary current to flow in primary winding and inducing ac fluxes in core. The secondary winding is wound on common magnetic core, hence these ac fluxes are linked with it. Now secondary emf is induced according mutual induction action and secondary current flows through load if connected.

6e) Compare single phase welding transformer with two winding transformer on the basis of construction, winding size.

Ans:

Comparison between Single Phase Welding Transformer with Two winding Transformer:

Parameter	Single phase welding	Single phase two
	transformer	winding transformer

Subject Code: 17415 (DMT)

Construction	 Several taps on secondary side to adjust/control the current to reasonable values. 	• Taps are not always needed but provided if required.	each point = 4 Marks
	 Very highly reactive windings. Separate reactors are used purposely. The transformer is normally large in comparison to other step down transformers as the windings are of a much larger gauge. 	 Less reactive in comparison. No reactors used purposely Comparatively smaller sizes. 	
Winding sizes	 Very thin large number of turns of primary conductors. Secondary conductors very thick due to very high currents (step down). 	 Winding sizes depend on the type of the transformers. Not as thick depends on current rating and type of transformer. 	

6f) List special features (any four) of isolation transformer with any four applications.

Ans:

Special Features of Isolation Transformer:

- i) Number of primary turns are equal to number of secondary turns.
- ii) Disconnect the load equipment from supply:
 - Sometimes it is essential to disconnect the load equipment such as2 Marksthe cathode ray oscilloscope (CRO) from the supply ground.2
- iii) Sensitive and costly equipment need to be disconnected from supply to protect from noisy ground connection.
- iv) Reduction of voltage spikes:

Voltage spikes are short duration high amplitudes pulses which get superimposed on the ac supply. These are dangerous to delicate equipment. Isolation transformer reduces the amplitude of spike .

Applications of isolation transformer:

i) Disconnect the load equipment from supply ground:

- ii) Reduction of voltage spikes
- iii) It acts as a decoupling device.

iv) Protects loads from harmonic distortion.

2 Marks