

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Mechanical Operation

Subject code: 17313

Page **1** of **26**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Mechanical Operation

Subject code: 17313

Page **2** of **26**

Q No.	Answer					
1	Attempt any SIX of the following		12			
1A-a	Rittinger's law		1			
	It states that the work required in crushing is pro-	oportional to the new surface created.				
	$\frac{P}{\dot{m}} = K_r \left(\frac{1}{\bar{D}_{sb}} - \frac{1}{\bar{D}_{sa}}\right)$					
	Kick's law:		1			
	Kick's law states that the work required for crus	shing a given mass of material is the	1			
	log of ratio of initial particle size to final particle size.					
	$\frac{P}{\dot{m}} = K_k \ln \frac{D}{d}$					
1A-b	Classification of size reduction equipment		2			
	Size reduction equipment can be classified into					
	1. Crushers					
	2. Grinders					
	3. Ultrafine grinders					
	4.Cutters.					
1A-c	Difference between ideal screen and actual sc	creen:	1 mark			
	Ideal screen	Actual screen	each			
	1. The overflow will contain only	The overflow may also contain	for any			
	particles larger than cut diameter	particles smaller than cut diameter	two			
	2. Underflow will contain only particles	Underflow may also contain	points			
	smaller than cut diameter	particles larger than cut diameter				
	3. Yields sharp separation	Does not yield sharp separation				
	4. Efficiency is 100%	Efficiency is less than 100%				

Subject Title: Mo	echanical Operation Subject code: 17313		Page 3 of	26
1A-d	Screening:			
	Screening is the method of separating solid particles based on size.		1	
	Application (any two):			
	1. mining and mineral processing industry			
	2. Pharmaceutical production		¹ ⁄2 mark	
	3. Agriculture		each	
	4. Food processing			
1A-e	Types of impellers:		2	
	Propellers, paddles and turbines.			
1A-f	Classification:			
	It is the separation of solid particles (from slurry) into several fractions ba	1		
	terminal settling velocities.			
	Types of classifiers (any two):		¹∕₂ mark	
	1 Spiral classifiers		each	
	2.Cone classifiers		• • • • • •	
	3Drag classifiers			
	4Rake classifiers			
	5. Double cone classifiers.			
1A-g	Electrostatic Separation: It is the method of separation of solid particl	les based on	2	
	differential attraction or repulsion of charged particles under the influ	uence of an		
	electric field.			
1A-h	Importance of mixing in process industries: (two points)		1 mark	
	1. To promote a chemical reaction, since intimate contact between reacting	ng phases is	each	
	necessary for reaction.	0 r		
	 To produce simple physical mixtures – of two or more uniformly divid 	led solids.		
	two or more miscible liquids etc.			
	· · · · · · · · · · · · · · · · · · ·			

Subject Title: M	Iechanical Operation	Subject code:	17313		Page 4 of 2
	3. To carry out physical change-	formation of crystals fro	om a supersat	urated	
	solution.				
	4. To accomplish dispersion in w	hich a homogeneous m	aterial is proc	luced from two	
	or more immiscible fluids and fro	om one or more fluids w	ith finely div	vided solids.	
1 B	Attempt any TWO of the follow	wing			8
1B-a	Critical speed of ball mill : Critical speed is the speed at whi	ch centrifuging occurs i	n a ball mill.	When	1
	centrifuging occurs no grinding t	akes place.			
	Formula:				
	$N_{c} = \frac{1}{2\pi} \sqrt{\frac{g}{(R-r)}}$				2
	Where N _c is the critical speed,				
	R is the radius of the ball	mill			
	r is the radius of the ball.				
	Criteria for selecting the opera	ting speed of ball mill	(any one)		
	1. Size of the product				1
	2. Type of lining provided for the	e shell			
1B-b	Jaw crusher:				
	Construction:				
	It has a fixed jaw and a movable	e jaw which is pivoted a	t the top.The	jaws are set to	
	form a V open at the top. The m	ovable jaw which recip	rocates in a h	orizontal plane	
	usually makes an angle of 20 to	30 $^{\rm O}$ with fixed jaw. T	he jaws are u	sually made of	
	manganese steel. The faces of the	he jaw are usually corru	ugated for co	ncentrating the	
	pressure on relatively small are	eas. It also consists of	pitman, tog	gles, flywheel,	2
	eccentric shaft. Eccentric causes	the pitman to oscillate	in a vertical o	lirection & this	
	movement is communicated hori	zontally to movable jaw	by the toggl	es.	
	Toggles act as fuse to the machin	ne.			
L					

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title	Mechanical Operation Subject code: 17313	Pag	e 6 of 26
	Overall effectiveness is		
	$E = E_A E_B = (DX_D / FX_F) / (B[1-X_B] / F[1-X_F])$	1	
	But $\frac{B}{F} = \frac{xD - xF}{xD - xB}$ and $\frac{D}{F} = \frac{xF - xB}{xD - xB}$	1	
	$E = E_A E_B = \frac{(x_F - x_B)(x_D - x_F)x_D(1 - x_B)}{(x_D - x_B)^2 (1 - x_F)x_F}$		
2	Attempt any FOUR of the following	16	
2-	Sphericity:		
	Sphericity(ϕ_{s}) is the ratio of surface-volume ratio for a sphere of diameter Dp to the	2	
	surface-volume ratio for the particle whose nominal size is Dp.		
	(OR)		
	It is the ratio of surface area of sphere of same volume as particle to surface area of		
	particle		
	Formula		
	For spherical particle $\varphi_s = 1$		
	And for non-spherical particle $\varphi_s = \frac{6/Dp}{Sp/Vp}$	1	
	whereDp is the normal diameter of the particle,		
	Sp is the surface area of one particle		
	Vp is the volume of one particle.		
	Significance:	1	
	Shape of irregular particles is expressed in terms of sphericity, which is	1	
	independent of particle size.		
L			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: M	echanical Operation	Subject code:	17313		Page 7 of 2
2-b	Comparison of grizz	lies and trammels			1 mark
		Grizzlies	Trommels		each
	1.Screen	Stationary inclined screen.	Revolving	screens.	
	arrangement	Screen is a grid of parallel metal	Screen is	perforated	
		bar	cylinder.		
	2.Openings in screen	large	small		
	3.Size of feed handled	Large size feed	Small size fe	eed	
	4.Capacity	large	small		
	Four arrangements a. One size screen to trommelis kept first. trommel and so on.	ing screens used for separting parties of trommel each trommel. Trommel is arrange The underflow from the first trams	d in such a wa	ay that coarsest d to the second	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

ct Title: M	Iechanical OperationSubject code:17313	Page 10
	velocity (30 m/s). Centrifugal force throws the solid particles out against the wall of	
	the vessel and they drop into a conical section of the cyclone and removed from the	
	bottom opening. The clean gas is taken out through a central outlet at the top.	
	Diagram	
	Dust Iaden gas Tangential inlet Solid dust	2
2-f	Cake filtration:	
	In the Case of cake filtration, the proportion of solids in suspension is large and	
	most of the solid particles are collected in the cake which can subsequently be	
	detached from a filter medium. In cake filtration, during the initial period of flow,	2
	solid particles are trapped within the pores of a medium forming the true filter	
	medium. The liquid passes through the bed of solids and through the filter medium.	
	In the early stage of filtration, the rate of filtration is high.	
	Deep bed filtration:	
	In the case of deep bed filtration, the proportion of solids in suspension is very small	2
	and the particles of the solids being smaller than the pores of a filter medium will	
	penetrate to a considerable depth and ultimately get trapped inside the filter medium	
	and usually no layer of solids will appear on the surface of the medium.	

Title: M	echanical Operation Subject code: 17313	Page
3	Attempt any FOUR of the following	16
3-a	Open circuit grinding: If the feed material is passed only once through the size reduction machine and no attempt is made to return the oversize material to it for further reduction , the process is known as open circuit grinding Closed Circuit grinding: If the partially ground material from the size reduction equipment is sent to the size separation unit, from where undersize material is withdrawn as product and oversize material is returned to the machine for regrinding, the process is known as closed circuit grinding.	2
3-b	 Factors affecting the performance of screen (any four). 1) Method of feeding: Particles should approach the screening surface in a direction parallel to the longitudinal axis (perpendicular) of the screen. Particles should be fed at a slow velocity as possible. 2) Screen slope: As the slope increases, the rate at which the materials travels over the screening 	1 mark each for any 4 points

Subject Title: N	lechanical Operation	Subject code:	17313		Page	13 of 2
	magnet arc covers approximately16	65° towards the discha	rge side of th	ne drum.		
	The feed (mixture of magnetic & n	l at the top & is	2			
	allowed to fall on the rotating drum. The non-magnetic material is discharged in a					
	normal manner. The magnetic ma	terial adheres to the	drum & fall	s off underside		
	when the drum loses the contact of	the magnet assembly				
3-d	Classification of filter					
	i)based on Driving force:					
	1) Gravity filters					
	2) Vacuum filters					
	3) Pressure filters				2	
	4) Centrifugal filters					
	ii) Based on mode of filtration:					
	 Batch filters Continuous filters 				2	
3-е	Rotary drum vacuum filter:				4	
	Working:					
	Filter drum is immersed in slurry, v	acuum applied to filt	er medium ca	uses cake to		
	deposit on outer surface of drum. C	ake is washed by spra	aying wash li	quid; wash		
	liquid is collected in a separate tank	x. Then cake enters in	to drying zor	e as drum		
	rotates where cake is partially dried	by sucking air throu	gh cake of so	lids. Then		
	vacuum is cut off & cake removed	with a doctor's knife.	Air is blown	for removal of		
	cake.					

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

E.

bubject Title: M	lechanical Operation	Subject code:	17313		Page	e 16 of 26
	(iv) Mechanically vibrated:				1	
4-b	Ball –Norton separator:					
	Explanation: It consists of two horizontally so the other. A hopper is provided for magnet assembly is incorporated The material to be separated is for conveyed under the second belte magnetic material is discharged adheres to the lower side of the the discharge point of nonmagnet separate compartment when the	for feeding the feed to the d in the upper belt conve- fed to the lower belt in the t where it is subjected to in the normal manner, we upper belt & thus carrie etic materials. It ultimate	the lower belt a syor near the o the form of a o a magnetic hereas the ma ed some dista ly drops-off t	and a stationary discharge end. thin sheet & is field.The non- agnetic material ance away from he belt in to the	2	
	Feed		agnetics		2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

4-c	Vacuum filter:	1 mark
	Advantages:	each
	1) Low labour requirement	for any
	2) Filtering surface is accessible for inspection and repair as it is open to	two
	atmosphere.	points
	3) Low maintenance cost	
	Disadvantages:	1 mark
	1) Vacuum system is difficult to maintain	each
	2) Not suitable for filtering hot liquids.	for any
	3) Cannot be employed for materials forming relatively impermeable cakes or	two
	cakes that cannot be easily removed from cloth	points
4-d	Significance of cake resistance:	1
	If the resistance offered by the cake is more, the rate of filtration decreases.	
	It is denoted by $\alpha = \frac{\Delta P_{CA}}{\mu U M_C}$	
	Where ΔP_{CA} is the pressure drop over the cake.	
	A is the area of filter medium.	2
	μ is the viscosity of the filtrate.	2
	M_C is the total mass of solids deposited in the cake.	
	Method of reducing cake resistance: (any one)	1
	1) Back-flushing of cake deposited on filter medium	1
	2) Use of filter aids (like diatomaceous earth, ,skeletons asbestos fibers)	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

·	lechanical	1	Subject coo			Page 1
4-e	Differer	ice between filtr	ation and sedimentation	(4 points).		1 mark
	Sr.No	Basis	Filtration	Sedimentation		each
	· 1	Principle	Separation of solids	Removal of solid	ds by	
		1 morpro	from suspension using	settling under gr	•	
			a porous medium	-	-	
			which retains solids &			
			allows liquid to pass.			
	2	Driving force	Pressure difference	Gravitational for	rce	
			across filter medium			
	3)	Use of filter	Required	Not required		
		medium				
	4)	Concentration	Very large quantities of	Low concentration	on of	
		of solids	solids in cake filtration	solids		
	5)	Product	Wet cake of solids on	Clear liquid at the	-	
			the filter medium and	thickened sludge	e at the	
			clear liquid on the downstream side of the	DOUIOIII		
			filter medium			
	6)	Equipment	Filter press, rotary	Sedimentation		
			drum filter	basins,thickeners	S	
	<u> </u>	I		<u> </u>]	
4-f	Free set	tling:				
		8	ling of the particle unaff	ected by other p	particle and the	
		-	iner. Practically free se			
	concent	ration of the parti	cles in suspension is less th	han 1% wt.by soli	d.	

Subject Title: Mechanical OperationSubject code:17313	Page 19 of 26
Hindered settling:	
Hindered settling is the settling of particles affected by other particles and by the	
boundary of the container. When the concentration of the solid particles is large(2
> 1% by wt.),the particles are so close to each other that the surrounding particles	
will interfere with the motion of other particles.	
5 Attempt any TWO of the following	16
5-a Expression relating size of crushing roll, size of feed ,size of product	
(Derivation)	
Consider a feed particle B caught between the rolls as shown in figure	
Let A and A'be the centre of the 2 rolls. C and C' are the points where the particle	
is in contact with left hand roll and right hand roll respectively. Let the angle	
between line AB and AA' be α . Line OD and OE are tangents to the rolls.	
$\frac{1}{1 \cos \alpha}$	
Neglecting the force of gravity, the two forces acting at the point C are vertical	
component of tangential force and vertical component of radial force.	
Vertical component of tangential force = $T \cos \alpha$	
Vertical component of radial force = Nsin α .	
The vertical components of forces T and N are opposed. Force Nsina tends to	3
expel the particle from the rolls and force $T\cos\alpha$ tends to draw the particle between	
the rolls. If the particle is to be drawn between the rolls and crushed,	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Mechanical OperationSubject code:17313	Page 20 of 2
$T\cos\alpha \geq N\sin\alpha$	
T and N are related through $T = \mu N$	
$\mu N \cos \alpha \geq N \sin \alpha$	
$\mu \geq tan\alpha$	
Let R be the radius of the feed particle, r the radius of the roll and 2d the distance	
between the rolls. Then in triangle ABO, the angle BAO is α ,AO is r+d and AB is	
r+R. Then, from the simple geometry of figure	
$\cos \alpha = \frac{r+d}{r+R}$	2
Where, α = half of angle of nip	
Problem:	
r = 100 / 2 = 50 cm	
2d = 1.4cm $d=0.7 cm$	
$2\alpha = 32^{\circ} \alpha = 16^{\circ}$	
R= ?	
$\cos \alpha = \frac{r+d}{r+R} \cos 16 = \frac{50+0.7}{50+R}$ R = 2.7411cm	2
$\frac{r+R}{\text{Maximum permissible size of feed}} = 5.482 \text{cm}$	1
5-b Froth flotation:	<u> </u>
Floatation refers to an operation in which one solid is separated from another by	2
floating one of them at or on the liquid surfaces. Separation of a mixture of solids	
using froth flotation methods depends on the difference in surface properties of the	
materials involved.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION **Model Answer**

Subject Title: Mechanical Operation

SUMMER-18 EXAMINATION Model Answer

Subject Ti

Title: M	echanical Operation	Subject code:	17313		Page 22 of 2
5-c	Dorr thickener:				
	Diagram:				
	Arm Shaft	well - Overflow Blades			3
	Dorr Thickener consist of a flat continuous type thickener. It is p a central shaft for removing the s depth of 0.3m to 1m below the s The clarified liquid is continuou the top edge of the tank and the outlet at the bottom. The slowly of the bottom for discharge and sludge layer. Thus the solids are to the sludge outlet whereas the outwards.	provided with slow movi sludge. The slurry is fed surface of the liquid, with asly removed from an ove thickened liquor is contin revolving rakes scrape the remove water from the size continuously moving do	ing radial rake at the center h a very little erflow which nuously with he sludge tow sludge as it sti	es driven from of tank at a disturbance. runs around drawn from the ward the centre ir only the d then inwards	5
6	Attempt any FOUR of the follo	owing			16
6-a	Factors affecting the rate of fil	ltration:			1 mark
	1) Viscosity of filtrate: Rate of the	filtration is inversely prc	portional to [,]	viscosity of	each
	filtrate.		-		for any
	2) Area of filter medium: Rate o	of filtration is directly pro	oportional to	area of filter	4 points
	surface.				

Subject Title: M	echanical Operation Subject code: 17313	Page 23 o
	3) Porosity of cake: Porosity of cake increases the rate of filtration.	
	4) Pressure drop across the filter medium: If pressure drop across the feed inlet & far	
	side of the filter medium is more, filtration rate is more.	
	5) Resistance of cake: As resistance of cake increases, rate of filtration decreases.	
	6) Resistance of filter medium: As resistance of cake increases, rate of filtration	
	decreases.	
6-b	Swirling and Vortexing:	
	If low viscosity liquid is stirred in an unbaffled tank by a centrally mounted agitator,	2
	there is a tendency for nearly pure rotary flow pattern to be developed and lighter	
	liquid, ie air is usually drawn in to form a vortex and the degree of agitation is very	
	much reduced. This phenomenon which takes place in an unbaffled tank regardless	
	of the type of impeller is known as vortexing.	
	Prevention of swirling and Vortex Formation:	
	There are four methods of prevention of swirling and vortex formation	1 mark
	a) Off-center mounting of the impeller.	each
	b) Use of Baffles	for any
	c) Use of diffuser ring with turbines	two
	d) Angular entry of agitators.	points
6-с	Mixing:	
	It is the process of taking at least two different materials and causing them to	2
	distribute randomly through one another.	
	Or	
	Mixing is a process in which at least two separate materials which may be present in	
	the same or different phases are taken and forced them to be randomly distributed	
	through one another by some mechanical means.	
	Homogeneous mixture	
	A mixture which is uniform throughout in physical state and chemical composition	

ect Title: M	echanical OperationSubject code:17313		Page 24
	is called homogeneous mixture.		1
	Example: A liquid mixture of methanol and water.		
	Heterogeneous mixture:		
	A mixture which is not uniform throughout in physical state and che	emical	1
	composition is called heterogeneous mixture.		
	Example: A liquid mixture of benzene and water forms a heterogene	eous mixture	
	made up of two immiscible liquid phase.		
6-d	Sigma Mixer:		
	Construction:		
	Gear wheels Trough Sigma blade		
	It consists of a short rectangular trough with saddle shaped bottom. rotating heavy blades are incorporated in the trough. Blades are so p shaped that the material turned up by one blade is immediately turned	placed and so	2
	adjacent one. The edges of the blades may be serrated to give a shre		
	blades are driven by a gear mechanism provided at either ends. The		
	open or closed and may be jacketed for heating or cooling. The mac		
	emptied through a bottom valve.		
	Working: The material to be kneaded is dropped into the trough. T		
	towards each other at the top, drawing the mass downward, then she	C	2
	the wall and blades of the trough. It is mixed for about 5 to 20 minu	tes or longer.	
	The trough is then unloaded by tilting it.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code: 17313

Page **25** of **26**

	subject code. 17515	Page
6-e	Muller mixer:	
	Construction and Working:	
	Outer plow Cylindrical casing inner plow	2
	It consists of a pan incorporating muller wheels. In some designs, pan is stationary	
	& wheels rotate, while in other designs, pan is rotated & axis of wheels is held stationary. In stationary pan muller mixer, central vertical shaft is driven, causing	
	the muller wheels to roll in a circular path over a layer of solids on pan floor. Plows guide the solids under muller wheels during mixing or to an opening in pan floor for	2
	discharge of mixer at the end of cycle. The rubbing action results from the slip of the wheels on the solids.	
6-f	Data :	
	Da = Impeller diameter = 60 cm = 0.6m	
	$\mu = Viscosity = 10 Cp = 0.10 poise = 0.01 Pa.s$	
	$\rho = 1.45 \text{ g/cm}^3 = 1.45 \text{X} \ 10^3 \text{ kg/m}^3$	
	N = Revolution per second	
	Speed in rpm 90	
	= $=$ $=$ 1.5 r.p.s. 60 60	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code: 17313

Page **26** of **26**

Reynolds number = NRe =		
$= \frac{1.5 \times 0.6^2 \times 1.45 \times 10^3}{0.01} = 78300$	2	
$Np = Power number = 1.05 \text{ for } N_{Re} > 300$ $P = NpDa^5 N^3\rho$		
$P = 1.05 \times 0.6^{5} \times 1.5^{3} \times 1.45 \times 10^{3}$ $P = 399.6 \text{ watts}$	2	