

SUMMER-18 EXAMINATION

Subject Name: Data Structure Using 'C'

Model Answer

Subject Code: 17330

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some guestions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q .	Sub	Answers	Marking
No.	Q. N.		Scheme
1.	(A)	Attempt any five :	20 Marks
	a)	State the need of data structure. Write any four operations perform on data structure.	4M
	Ans:	Need of data structure:	(Need:
		 Data structures are an important way of organizing information or data in a computer. It has a different ways of storing & organizing data in a computer. It helps to store data in logical manner. It allows collection of data to grow & shrink dynamically over time & to organize the information so that one can access it using efficient algorithms. Specific data structures are essential ingredients of many efficient algorithms, & they make possible management of huge amount of data, such as large collections of databases. Operations perform on data structure: Insertion 	2marks, Any four application :1/2 mark each)
		• Deletion	
		• Searching	
		• Sorting	
		• Traversing	
		• Merging	

 Subject		R– 18 EXAMINATION Aodel Answer Subject Code: 1	7330
b)	Differentiate between binary search a	nd linear search (Any four points).	4M
 Ans:	{{**Note: any other relevant point sha	all be considered**}}	(Any four points:1
	Linear Search Linear search compares each element with search element, while searching an element in the list. Linear search works on both sorted and unsorted input list Linear search take more time to search as it compares with each element. linear search has complexity O(n) Linear search supports sequential access of elements. Good technique for small set of elements	Binary SearchBinary search computes mid element.It compares mid element with searchelement, while searching element inthe list.Binary search works only on sortedlist.Binary search requires less time tosearch as it compares only midelement with search element. If theyare not equal then it reduces the listfor comparison.Binary search has complexity O(logn)Binary search supports randomaccess of elements.Binary search is recommended whennumber of elements are large	mark each)
c)	Explain four primitive operations on s	stack.	4M

SUMMER- 18 EXAMINATION 17330 Subject Name: Data Structure Using 'C' Subject Code: **Model Answer** Max=3 \mathbf{C} 2 в 1 0 Α -1 5. initialize(): This operation is used to initialize stack top to -1 value. Max=3 2 1 0 -1 Stacktop 4

						• • •			/m -			
d)	Explain queue fu	all and que	eue emp	ty cond	lition v	with sui	table exa	mple.	4M			
Ans:	Queue ful :-A queue is full when its rear pointer points to max -1 position. Max is maximum number of elements in a queue. If rear pointer is not equal to max-1 then a new element can be added to a queue.					(Explanation of each of the second se						
	Example:	:- [0	1	2 3	3			example each:			
			A B	; (C D	•			1mark)			
		-	1									
		F	 Front		 Re	ear						
				•		•						
	Queue empty : A When front point	-			-	-		-				
	Example:	:										
	Lampie											
		-1	1 0	1	2	3						
		t	Ť									
		Front	Rear									
e)	Describe doubly	linked list	with su	itable	examp	le.			4M			
	A doubly linked list is a linked list in which each node contains two links i.e								(Descrip n: 2mar			
Ans:	double links Ea					nointe	double links. Each node in the list contains two pointers that store address of previous node and next node. It can traverse in any direction. It can access both					
Ans:	previous node an	ch node in id next node	the list	contai	ins two	-			-			
Ans:		ch node in id next node	the list	contai	ins two	-			Example marks)			
Ans:	previous node an	ch node in id next node	the list	contai	ins two	-			Example marks)			
Ans:	previous node an the data elements	ch node in id next node	the list e. It can	contai	ins two rse in a	ny direc			-			
Ans:	previous node an the data elements	ch node in ad next node	the list e. It can	contai traver	ins two rse in a	ny direc	etion. It ca		-			
Ans:	previous node an the data elements	ch node in ad next node prev. poir ns three par	the list e. It can nter	contai traver	ins two se in a	ny direc	pointer		-			

	Subject	SUMMER– 18 EXAMINATION t Name: Data Structure Using 'C' Model Answer Subject Code: 1	7330
	g)	Define hashing. Explain any one hashing method.	4M
	Ans:	Definition: Hashing is a technique used to compute memory address for performing insertion, deletion and searching of an element using hash function. Hashing methods:- • Division method • Mid square method • Folding method: • In this method hash address is calculated by dividing the key value by a prime number or a number without small divisor. Formula: H(K)=K(mod m) or H(K)=K(mod m)+1 K- Specify unique key value. m- Specify is a prime number or number without small divisors. Example:- H(3205)= 3205 mod 97=4 2. Middle square method: In this method hash address is calculated by taking two digits from middle of square of key value. Formula: H(K)=I I-specify digits after deleting digits from both ends of K ² Example:- H(3205)=(3205) ² =10272015=72 3. Folding method: In this method hash address is calculated by partitioning key into multiple parts and performing addition. Formula: H(K)=K ₁ +K ₂ +K _n Example:- H(3205)=32+05=37	(Definition: 2marks, Explanatio n of any one method: 2marks)
2.		Attempt any four:	16 Marks
	a)	Describe working of merge sort with example.	4M
	Ans:	All the elements from the input list are divided into groups. Each group is sorted independently and merged together in each iteration. These iterations continue performing divide, sort and merge procedure till all elements are placed in one single group. The final group can be sorted with any other sorting method to get a sorted list.	(Descriptio n:2marks, example:2 marks)

Subjec	SUMMER– 18 EXAMINATION ct Name: Data Structure Using 'C' Model Answer Subject Code: 17	7330
	Example:- input list: 10,1,9,11,46,20,15,0,72,2	
	Iteration 1: 10 1 9 11 46 20 15 0 72 2	
	Iteration 2: 1 10 9 11 20 46 0 15 2 72	
	Iteration 3: 1 9 10 11 0 15 20 46 2 72	
	Iteration 4: 0 1 9 10 11 15 20 46 2 72	
	In the above example, input list is divided into group of two elements in iteration 1 and sorted in that group. In iteration 2, two groups from iteration 1 are merged	
	together to form group of four elements. Again each group is sorted and merged together in iteration 3. In iteration 3, two groups of 4 elements are merged together to form group of eight elements. Then they are sorted and merge together to form a group of ten elements in iteration 4. Now all these elements are in a single group so they are sorted together with any other sorting algorithm. Sorted list is: 0,1,2,9,10,11,15,20,46,72.	
b)	 together to form group of four elements. Again each group is sorted and merged together in iteration 3. In iteration 3, two groups of 4 elements are merged together to form group of eight elements. Then they are sorted and merge together to form a group of ten elements in iteration 4. Now all these elements are in a single group so they are sorted together with any other sorting algorithm. Sorted list is: 0,1,2,9,10,11,15,20,46,72. 	4M

Subject	SUMMER- 18 EXAMINATION t Name: Data Structure Using 'C' Model Answer Subject Code: 1	7330
c)	Explain concept of priority queue with example.	4M
Ans:	 A priority Queue is a collection of elements where each element is assigned a priority and the order in which elements are added into the queue. The rules for processing the elements of priority queue are: 1) An element with higher priority is processed before any element of lower priority. 2) Two elements with the same priority are processed according to the order in which they are added to the queue (FCFS). 	(Explanatio n-2marks, Example:2 marks)
	One of the examples of priority queue is a queue used in operating system. The operating system has to handle a large number of jobs. These jobs have to be properly scheduled. The operating system assigns priorities to each type of job. The jobs are placed in a queue and the job with the highest priority will be executed first.	
	Example:	
	(Represent either with array or linked list)	
	Array representation: Array element of priority queue has a structure with data, priority and order. Priority queue with 5 elements is as shown below:-	
	C,1,4 B,3,2 B,3,5 A,4,1 D,5,3	
	In the above diagram, each structure element has three members as information, priority and order in which element is arrived in the list.	
	OR	
	Linked representation:	
	Start $A 1 \cdot B 2 \cdot C 2 \cdot C$ D + F 5 + NULL	
	In the above diagram priority queue with 5 elements is shown. Each node in above priority queue contains three fields: i. Information field INFO ii. A priority number PR No iii. Link Next	

	SUMMER- 18 EXAMINATION	17000
Subject	Name: Data Structure Using 'C' Model Answer Subject Code:	17330
d)	Explain insertion at the beginning and at end operations on linked list with example.	4M
Ans:	Inserting node at the beginning: Create a New Node with two fields as "Data" and "Next". Store information (data) into "Data Field". Store address from start node (first node address) in its "Next field". Make the new node as first node by storing its address start pointer. Inserting node at the end: Create a New Node with two fields as "Data" and "Next". Inserting node at the end: Create a New Node with two fields as "Data" and "Next". Store information (data) into "Data Field". Store information (data) into "Data Field". Store information (data) into "Data Field". Store NULL value in "Next field". Store address of New Node inside "Next" field of temp node to make the New Node last node in the list. Before Insertion:- Image: Insertion:- Image: Insertion:- Image: Ima	(Explanatio n with example of each: 2marks)
e)	Construct Binary Search Tree: 1, 22, 27, 14, 31, 40, 43, 44, 10, 20, 35.	4M
Ans:	Binery search tree	(Correct construction : 4marks)

	Subject	SUMMER– 18 EXAMINATION t Name: Data Structure Using 'C' Model Answer Subject Code:	17330
		$ \begin{array}{c} 1 \\ 22 \\ 14 \\ 27 \\ 10 \\ 20 \\ 31 \\ 40 \\ 35 \\ 43 \\ 44 \\ 44 \end{array} $	
	f)	Write algorithm for breadth first search.	4M
	Ans:	 Algorithm for BFS: Step 1. Initialize all nodes to ready state. Step 2. Insert starting node in a queue and change its state to waiting state. Step 3. Repeat steps 4 to 6 till the queue becomes empty. Step 4. Remove front node N from queue and change its status to be visited. Add this node N to list of reachable nodes and add its origin to origin list. Step 5. Insert all adjacent nodes of N at the rear end of the queue and change their status to waiting state. Step 6. From the origin find path from source node to destination node or from th queue element list find all nodes that are reachable. Step 7. Stop. 	
3.		Attempt any two:	16 Marks
	a)	Sort number in ascending order using bubble sort. 19, 2, 27, 3, 7, 5, 31.	8M
	Ans:	<pre>{**Note : Pass 4 onwards optional**}} Pass 1: 2,19,27,3,7,5,31 2,19,27,3,7,5,31 2,19,3,7,27,5,31 2,19,3,7,5,27,31 Pass 1 Completed Pass 2:</pre>	(Correct Sort: 8 marks, Stepwise marks shall be given)

		9	SUMMER– 18	EXAMINATION		7
Subje	ect Name: Data	Structure Using 'C'	Model	Answer Subje	ct Code: 17330	
	2,19,3,7, 2,3,19,7, 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,7,5,1 2,3,5,7,1 Pass 3 C Pass 4: 2,3,5,7,1 Pass 4 C Pass 5: 2,3,5,7,1 Pass 5 C Pass 6: 2,3,5,7,1	5,27,31 5,27,31 9,27,31 9,27,31 9,27,31 9,27,31 9,27,31 9,27,31 9,27,31 9,27,31 Completed 9,27,31 Completed 9,27,31 Completed 9,27,31 Completed		Answer		
b		given infix express (a * b + c/d) * (e + f		fix expression. Write a	all steps for 8M	
Ans			<u>, 8).</u>		(Correc	et
	Sr	No Symbol Scanned	Stack	Postfix Expression	n Express :8 ma	sion arks,
	1	((Stepwis	
	2	(((marks s be given	
	3	a	((a		
	4	*	((*	a		
	5	b	((*	ab		
	6	+	((+	ab*		
	7	с	((+	ab*c		
	8	/	((+/	ab*c		
	9	d	((+/	ab*cd		
	10)	(ab*cd/+		
		,				

 Subject	t Name: Data Struc			EXAMINATION Answer Subject	Code: 1	7330
	12	((*(ab*cd/+		
	13	e	(*(ab*cd/+e		
	14	+	(*(+	ab*cd/+e		
	15	f	(*(+	ab*cd/+ef		
	16	1	(*(+↑	ab*cd/+ef		
	17	g	(*(+↑	ab*cd/+efg		
	18)	(*	ab*cd/+efg↑+		
	19)	nil	ab*cd/+efg↑+*		
				following tree in Inorde		8M
Ans:	Preorder and Po 10	23	40 36	85 95 64 72 siting each node in a tree	such as a	(Defination
Alls:	binary tree or binary	ary search tree, 6 al: 10,15,23,36,	exactly once. 40,64,72,85,9	95	, such as a	:1 mark, Inorder:3 marks, Preorder:2
	Preorder Traver Postorder Trave					mark, Postorder: 2 marks)

SUMMER-18 EXAMINATION 17330 Subject Name: Data Structure Using 'C' Subject Code: Model Answer 4. Attempt any four: 16 Marks a) Define algorithm. How it is analysed? **4M** a) Ans: {{**Note: Any other relevant answer shall be considered**}} (Definitionmark, 1 Description **Algorithm:** of algorithm An algorithm is a step by step set of instructions designed to perform a specific analysis - 3 task marks) There are different types of time complexities which can be analyzed for an algorithm: **Best Case Time Complexity:** It is measure of minimum time that algorithm will require for input of size "n". Running time of many algorithms varies not only for inputs of different sizes but also input of same size. For example in running time of some sorting algorithms, sorting will depend on ordering of input data. Therefore if input data of "n" items is presented in sorted order, operations performed by algorithm will take least time Worst Case Time Complexity: It is measure of maximum time that algorithm will require for input of size "n" Therefore if various algorithms for sorting are taken into account & say "n" input data items are supplied in reverse order for any sorting algorithm, then algorithm will require n^2 operations to perform sort which will correspond to worst case time complexity of algorithm. **Average Case Time Complexity:** The time that an algorithm will require to execute typical input data of size "n" is known as average case time complexity. We can say that value that is obtained by averaging running time of an algorithm for all possible inputs of size "n" can determine average case time complexity. Computation of exact time taken by algorithm for its execution is very difficult. Thus work done by algorithm for execution of input of size "n" defines time analysis as function f(n) of input data items. Find the position of element '29' using binary search method. Show all steps. **4M** b) A= {11,5,21,3,29,17,2,43}. (Correct Ans: position Pre-condition for Binary search is array elements must be sorted in ascending with all order. correct In given example array elements are not sorted. Applying Bubble sort we steps: sort the elements of array. 4 marks,

Subject	SU Name: Data Structure Using 'C'	MMER- 18 EXAMINATION Model Answer	Subject Code: 1	7330
	Sorted array $A = \{2, 3, 5, 1\}$ Step 1) Low=0, high=7, k=29 Mid= (0+7)/2 = 3 A[mid] =a [3] =11 29>11 k>a [mid] Step 2) Low=mid+1 High=7 Mid= (4+7)/2=5 A[mid] =a [5] =21 29>21 k>a [mid] Step 3) Low=mid+1 Mid= (6+7)/2=6 A[mid] =a Therefore key element is found a	a [6] =29 A[mid] =k	arison required = 3.	Stepwise marks shall be considered)
c)	Search is successful Explain the concept of dequeue v	with example.		4 M
Ans:	 A double-ended queue or d implements a queue for which from the front (head) or back (ta It is also often called a head-tail Dequeue is a special type of da will be done either at the front The operations that can be perfor a. Insert an item from front er Insert an item from rear ender Delete an item from rear ender Delete an item from rear ender Display the contents of que 	equeue is an abstract da h elements can only be add ail). linked list. ata structure in which insert end or at the rear end of the ormed on dequeues are ad d nd	ded to or removed	(Explanati on: 3 marks, Diagram:1 mark)
	Front		Rear	

d)		
	Describe advantage of circular linked list over linear linked list with example.	4M
Ans:	In Circular Linked List last node does not contain NULL pointer. Instead the last node contains a pointer that has the address of first node and thus points back to the first node. Example: It is shown below:	(Any 2 advantage : 2 marks, example: marks)
	START Node 1000 A 2000 B 3000 C 1000 C 1000 3000 INFO Field LINK or NEXT Field	
	 Advantages: The entire list can be traversed starting from any end which is not possible in single linked list In singly linked list to delete desired node, it is necessary to give the address of first node of the list. This necessity results from the fact that in order to delete desired node. The predecessor of this node has to be found. Maximum utilization of space allotted to linked list. 	
e)	Describe weight balanced tree and height balanced tree with example.	4M
Ans:	Weight balanced trees: Weight-balanced tree is a binary tree which is balanced based on knowledge of the probabilities of searching for each individual node. Within each subtree, the node with the highest weight appears at the root.	(Weight Balanced Tree:2 marks, Height Balanced Tree:2 marks)

Example:

SU	IMMER- 18 EXAMINATION		
Subject Name: Data Structure Using 'C'	Model Answer	Subject Code:	17330

0

In the diagram to the right, the letters represent node values and the numbers represent node weights. Values are used to order the tree, as in a general binary search tree. The weight may be thought of as a probability or activity count associated with the node. In the diagram, the root is G because its weight is the greatest in the tree. The left subtree begins with A because, out of all nodes with values that come before G, A has the highest weight. Similarly, N is the highestweighted node that comes after G.

Height balanced trees

AVL trees are binary search trees, which have the balance propriety. The balance property is true for any node and it states: "the height of the left subtree of any node differs from the height of the right subtree by 1".

The binary tree is balanced when all the balancing factors of all the nodes are -1,0,+1.

Formally, we can translate this to this: $|hd - hs| \le 1$, node X being any node in the tree, where hs andhd represent the heights of the left and the right subtrees. **Example:**

SUMMER- 18 EXAMINATION 17330 Subject Name: Data Structure Using 'C' Subject Code: Model Answer Define following terms w.r.t graph-indegree of node, directed graph, **4M** f) weighted graph, predecessor. **In-degree of a node:** (In-degree Ans: of a node: 1 Total number of edges coming towards a node is said to be in-degree of that node. mark. directed graph: 1 mark, weighted graph: 1 mark, predecesso r: 1 mark) For the above graph, in-degree of A is 0 and B is 1 Directed Graphs A graph whose edges are directed (i.e. have a direction) is called as directed graph. It is also called digraph Edge drawn as arrow Edge can only be traversed in direction of arrow Example: $E = \{(A,B), (A,C), (A,D), (B,C), (D,C)\}$ Weighted graph A graph whose edges are assigned a non-negative numerical values is called as weighted graph. The weight of an edge can represent: Cost or distance = the amount of effort needed to travel from one place to another Capacity = the maximum amount of flow that can be transported from one place to another **Example:** Predecessor Predecessor of a node is the node which is connected to it with an incoming edge. Predecessor of node B is A and Predecessor of C is A and D

Subj	SUMMER– 18 EXAMINATION ect Name: Data Structure Using 'C' Model Answer Subject Code: 1	7330
5.	Attempt any four :	16 Marks
2) Describe with example classification of data structure.	4M
	 Data Structure Primitive Graph Tree Data structure (ds) is classified into two categories – primitive data structure and non-primitive data structure. Primitive data structure: All basic data types of any language are called as primitive data structure. Primitive data structure: All basic data types of any language are called as primitive data structure. Example: int, char, float Non-primitive data structure: All the data structures derived from primitive data structure and structures are called as non-primitive data structure. Example: array, list, files. Non-primitive data structure in this type of data structure, all the data elements are stored in a particular sequence. Example: stack, queue (2) Non-Linear data structure: In this type of data structure, all the data elements are stored in a particular sequence. Example: graph and tree. 	(Correct classificatio n: 2 marks, Example of each: 2marks)
) Describe working of radix sort along with example.	4M
Ans	Radix Sorting : - In this method, ten buckets (0-9) are used to sort elements of an input list. All the elements are sorted according to their digit position from each	(Radix sort Explanatio
	input list. All the elements are solved according to their digit position from each	Explanatio
	element. In pass one each element is placed inside the bucket with respect its unit position digit. After placing all elements inside the buckets, read those from 0th	n: 2 marks, Any

t Name:	Data S	Structu	re Usi	ng 'C			- 18 EX/ del Ans			Subje	ct Code:	17330
arrange from b for sor from th	e all the uckets ting is ne inpu	e eleme and gi equal at list.	ents in ven as to ma Last p	n buc s inpu aximu	ket. A it to th im nu	At the he nex	end of at pass. of digi	each pa Total n ts prese	ass elen number ent in t	nents a of pas he larg	onsidered are colled ses requi gest num nts from	cted mark ired iber
bucket Examp Pas	ole: 18,	,253, 1	000,2			ement	accord	ing to ι	ınit pla	ce.		
		0	1	2	3	4	5	6	7	8	9	
18					252					18		
25	000	1000			253							
2				2								
80		80										
58							75			58		
Our Pass 2:		`1 st pas s pass a 1			elem			to tens	place.	8	9]
1000	1000	0										
80	2									80		-
253							253					-
									75			-
75												
		18										

SUMMER- 18 EXAMINATION Subject Name: Data Structure Using 'C' Subject Code: **Model Answer** Pass 3: In this pass arrange the element according to hundred's place. Output of 3rd pass: 1000, 2, 18, 58, 75, 80,253 Pass 4: In this pass arrange the element according to thousand's place. Output of 4th pass: 2,18,58,75,80,253,1000 Elements in ascending orders: 2,18,58,75,80,253,1000

Subject		R– 18 EXAMINATION lodel Answer Subject Code:	17330
c)	Describe how recursion is used in reve	rsal of list.	4M
Ans:	A simple application of stack is reversal list are pushed onto the stack one by or Once all elements are pushed on the stace element last pushed in comes out first, I following example where a list contains operator will push an element on top of can pop all elements and save it which re 2, 1}.	the as the element read from first to lack they are popped one by one. Since hence reversal of string occurs. Considered elements as $\{1, 2, 3, 4, 5, 6\}$. Every prostack. Once all elements are pushed of esults in to reversing of list as $\{6, 5, 4\}$	ast. Explanatio the n: 4 marks) der ush one
d)	Distinguish between stack and queue (A	Any four points).	4M
Ans:	Stack1. In Stack insertion and deletion operations are performed at same end.2.In stack the element which is inserted last is first to delete so it is called Last In First Out3.In stack only one pointer is used called as Top4.In Stack Memory is not wasted	Queue1. In Queue insertion and deletion operations are performed a different end.2. In Queue the element which inserted first is first to delete so it called First In First Out3. In Queue two pointers are use called as front and rear4. In Queue memory can be wasted unusable in case of linear queue.	at is is ed

Subjec		ER- 18 EXAMINATION Model Answer Subject Code: 1	7330
	5. Stack of books is an example of stack	5. Students standing in a line at fees counter is an example of queue	
	6.Application:Recursion,Polish notation	6. Application: In computer system for organizing processes. In mobile	
		device for sending receiving	
		messages.	
e)	Write algorithm for 'search' operation	on in an unsorted linked list.	4M
Ans:	{{**Note: Any set of correct steps sh	all be considered**}}	(Correct Algorithm: 4 marks)
	Algorithm SEARCH (INFO, LINK, ST LIST is a linked list in memory. This al node where ITEM first appears in LIST 1) Set PTR := START 2) Repeat Step 3 while PTR !=NULL 3) If ITEM = INFO[PTR], then Set LOC: = PTR, and exit; Else Set PTR: = LINK [PTR]. (PTR now po [End of if loop] 4) [Search is unsuccessful.] set LOC:= 1 5) Exit.	gorithm finds the location LOC of the or sets LOC =NULL.	4 mar ks <i>j</i>
f)	State any four applications of graph.	Describe any one in detail.	4M
Ans:	Applications of graph:1. To represent road map2. To represent circuit or networks3. To represent program flow analy4. To represent transport network5. To represent social network6. Neural networks		(Any four application : ½ mark Each, Any one application : 2 marks)
	 knows whom, who communicates relationships in social structures. follows whom. These can be used topics become hot, how communit match for who, or is that whom. Transportation networks: In roa edges are the road segments betweet networks vertices are stops and networks are used by many map p 	or not to tweet. Graphs that represent who with whom, who influences whom or other An example is the twitter graph of who to determine how information flows, how ies develop, or even who might be a good ad networks vertices are intersections and ween them, and for public transportation edges are the links between them. Such rograms such as Google maps, Bing maps 1 perhaps without the public transport) to	

SUMMER-18 EXAMINATION Subject Code: 17330 Subject Name: Data Structure Using 'C' Model Answer find the best routes between locations. They are also used for studying traffic patterns, traffic light timings, and many aspects of transportation. 3. Neural networks: Vertices represent neurons and edges the synapses between them. Neural networks are used to understand how our brain works and how connections change when we learn. The human brain has about 1011 neurons and close to 1015 synapses. 4. Utility graphs: The power grid, the Internet, and the water network are all examples of graphs where vertices represent connection points, and edges the wires or pipes between them. Analysing properties of these graphs is very important in understanding the reliability of such utilities under failure or attack, or in minimizing the costs to build infrastructure that matches required demands. 5. Network packet traffic graphs: Vertices are IP (Internet protocol) addresses and edges are the packets that flow between them. Such graphs are used for analysing network security, studying the spread of worms, and tracking criminal or non-criminal activity. 6. Graphs in compilers: Graphs are used extensively in compilers. They can be used for type inference, for so called data flow analysis, register allocation and many other purposes. 16 Marks 6. Attempt any two : Define recursion. Write any two advantages of recursion. Write 'C' program **8M** a) to calculate the factorial of number using recursion. **Definition:** Recursion is the process of calling function by itself. A recursive (Definition: Ans: function body contains function call statement that calls itself repeatedly. 2 marks, any two Advantages: advantages : 1 mark The main benefit of a recursive approach to algorithm design is that it • each. allows programmers to take advantage of the repetitive structure present in many problems. Factorial Complex case analysis and nested loops can be avoided. program: 4 Recursion can lead to more readable and efficient algorithm descriptions. marks) Recursion is also a useful way for defining objects that have a repeated • similar structural form. ٠ Using recursion, the length of the program can be reduced. **Program:** #include<stdio.h> #include<conio.h> int fact(int n); void main() { int n; clrscr(): printf("\nThe factorial of % is = %d",n,fact(n)); getch();

	SUMMER- 18 EXAMINATION	7220
Subjec	t Name: Data Structure Using 'C' Model Answer Subject Code: 1	7330
	<pre>} int fact(int n) { if(n==1) return 1; else return(n*fact(n-1)); } </pre>	
b)	Define expression tree. Draw tree structure for following expression: $(11a^2+7b^3+5c)^4+(3a^{3+}4b^2+8c)^3$	8M
Ans:	Definition: Expression trees are a special kind of binary tree used to evaluate certain expressions.	(Definition: 1mark, Correct expression tree: 7 Marks)
c)	For following graph give i) adjacency matrix representation ii) adjacency list representation. A B B C D D	8M

