

SUMMER- 18 EXAMINATION

Subject Name: SURVEYING

Model Answer

Subject Code:

17310

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub Q.	Answers	Marking
No.	Ν.		Scheme
Q.1	A)	Attempt any SIX of the following.	
	(a)	Write-four uses of surveying.	
	Ans	Uses of surveying.	
		1. To record relative positions of various points on the surface of earth.	Any four
		Prepare plans and maps required for various works.	1/2 M for
		3. Layout of various engineering works.	each
		4. Compute areas and volumes using survey data required for various purposes.	
		5. To prepare a topographic map	
		6. To prepare military map	
		7. To prepare a archeological map	
Q.1	A)(b)	State the primary classification of survey.	
	Ans	Primary classification of survey.	
		1. Geodetic survey: The survey in which curvature of earth is considered.	01 M for
		2. Plane survey: The survey in which earth surface is assumed as plane.	each
Q.1	A)(c)	Define Ranging. State types of ranging.	
	Ans	Ranging: It is process of locating points on ground along straight line.	01 M
		Types of ranging:	
		1. Direct ranging.	01 M
		2. Indirect ranging	
Q.1	A)(d)	Define: (i) True meridian (ii) Magnetic meridian	
	Ans	i. True meridian : It is line of intersection of plane passing through North Pole,	01 M
		South Pole and point under consideration.	
		ii. Magnetic meridian: Magnetic meridian at point is direction shown by freely	01 M
		suspended magnetic needle at that point.	
Q.1	A)(e)	Define: (i) Long offset (ii) Short offset	
	Ans	i. Long offset: The offset whose length is more than 15 m.	01 M
		ii. Short offset: The offset whose length is less than or equal to 15 m.	01 M

Q.1	A)(f)	Give any fo	our code of signals used to direct assistant in r	ranging.				
	Ans	Sr. No.	Signal	Action				
		1	Rapid sweep with right hand	Move right fast	Any four			
		2	Slow sweep with right hand	Move right slowly	1/2 M for			
		3	Right hand extended	Continue moving to right	each			
		4	Rapid sweep with left hand	Move left fast				
		5	Slow sweep with left hand	Move left slowly				
		6	Left hand extended	Continue moving to left				
		7	Both hands above head and moved down	Correct position				
		8	Both hands forward and brought down	Fix the point				
Q.1	A)(g)	Define Loc	al attraction.					
	Ans	Local attra	ction : Local attraction can be defined as the de	eviation of magnetic needle				
		due to exte	ernal magnetic influence from its original posit	ion.	02 M			
Q.1	A)(h)	List any fo	ur accessories required for plane table survey.					
	Ans	1. Pla	ne table.					
		2. Plu	mbing U-fork.					
		3. Alio			Any four			
		-	rit level.		1/2 M for			
			ugh compass.		each			
			mb bob.					
Q.1	B)		ny TWO of the following:					
	(a)		ell labelled diagram of 30 m metric chain & st	tate the function of swivel joint				
	A	& oval ring	15.					
	Ans	Quercha	alle link 3 connecting	y aval rings				
		Brass handle signat link of 11						
		Stass hardle joint link						
		to sociate if & i Orsmitally						
		Hing I and						
		- 200 - xoo - a integel						
		1000 minute						
			5000					
		Swivel ioin	t : To turn the handle without twisting the chai	in.	01 M			
		-	Fo provide flexibility and fold the chain.		01 M			
Q.1	B)(b)		entional symbol for					
	,, ,	(i)		Cultivated Land				
	Ans	(ii)	(1) Cultivated land (11) Fores	+ Forest (iii)				
				Embankment (iv)				
		Pucca	· ···· · ··· · · · · · · · · · · · · ·	Building				
			······································	Conventional	01 M for			
				symbols:	each			
			a) Embankment (1) Pucca bui	ilding				
		:						
		2						

	B)(c)	Explain in brief linear measurements using:	
		{i) Chaining (ii) Digital Tape	
	Ans	i. Chaining:	
		a. Linear measurement with chain carried out by two chainmen-Leader and follower.	
		b. The follower keeps the chain handle at starting station point, holds firmly it and	
		directs the leader along the line.	
		c. Leader holds ranging rod at end of chain, facing the follower for instructions for	
		ranging.	02 M
		d. Putting the chain in ranged direction, the leader inserts arrow at the end of chain.	
		e. The process of ranging, bringing chain in line and inserting arrow is repeated. Along	
		forward direction till the end station.	
		f. The last part of line, less than chain length is measured by reading tally and number	
		of links.	
		ii. Linear measurement by digital tape:	
		a. Place the digital tape at one end of line and then direct the laser beam so that it	
		obstructs the object at the other end.	
		b. If there is no wall or pole at the other end, put the target there to hit the laser	02 M
		beam.	
		c. Once laser is at right spot, press the button and tape measures, calculates and	
ļ		displays distance on screen.	
Q.2		Attempt any FOUR of the following:	
	(a)	Explain the process of chaining on sloping ground by stepping method with neat	
		sketch.	
	Ans	The procedure to measure horizontal distance between the points A and B on sloping	
		ground is as follows.	
		1. Two persons-leader and follower are required for chaining.	
		2. The follower holds the end of chain at A. The leader goes along the line with	1/2 M for
		selected length of chain and ranging rod and faces the follower.	each
		3. The selected chain length is such that it can be held truly horizontal. Once the	
		chain is held horizontal, the point M' of end of selected chain length is	
		transferred to ground at M by plumb bob or dropping stone.	
		4. The process is repeated starting at M to get points N, O, P, Q till the end B is	
		reached.	
		Total horizontal distance between A and b	
		L = AM, + MN' + NO' + OP' + PQ' + QB'	
		\mathbf{e}	
		n'	02.14
		h	02 M
		m	
		0	
		PB	
		d.	
		ß	
Q.2	(b)	A 20 m chain was found to be 10 cm too short after chaining 1000 m It was found to be	

		20 and too short after chaining 1900 m If the chain was connect before comment	
		20 cm too short after chaining 1800 m. If the chain was correct before commencement	
	A	of the work find the true distance.	
	Ans	Average error in chain for 1000 m length = $(0 + 10) / 2 = 5$ cm = 0.05 m too short	02.14
		True length up to $1000 \text{ m} = (20 - 0.05) \times 1000 / 20 = 997.5 \text{ m}.$	02 M
		Average error in chain from 1000 m to 1800 m length = $(10 + 20) / 2 = 15$ cm = 0.15 m	
		too short	
		True length from 1000 m to 1800 m length = $(20 - 0.15) \times 800 / 20 = 794.0 \text{ m}$.	02 M
		True distance = 997.5 + 794 = 1791.5 m .	
Q.2	(c)	State the points to be considered while selecting survey stations.	
	Ans	Points to be considered while selecting survey stations.	
		1. Stations shall be inter visible.	
		2. Stations shall be so selected that well conditional triangles should be formed.	01 M for
		3. Stations shall be so selected that there is least difficulty in ranging and chaining.	each
		4. Stations shall be so selected that they run as close to details to be established as	
		possible and only short offsets are needed.	
Q.2	(d)	Draw the sketch of chain triangulation and label different lines.	
	Ans	A P	
		Check /	
		line /	
		X	Showing
		A Baseline B	each line
		A Baseline B Tieline b line	properly –
		Tie line 6 line	01 M for
		a Tie line 6 line Survey line	each
		50.	
		\sim	
		E	
		AB – Base line	
		AC, CD, DE, AE, EB - main survey lines	
		DD' – Check line.	
		ab – Tie line.	
Q.2	(e)	Explain principle of optical square with neat sketch.	
	Ans		
		Eyehole Ry (object along	
		/H homizentel	
			02.14
			02 M
		R2 (Object at sight anyb)	
		or index and	
		I – Index glass H – Horizon glass	
			$\frac{1}{16}$

		Dringinla, According to the principle of reflecting conference the second batter of the	
		Principle: According to the principle of reflecting surfaces, the angle between the first Incident ray and last reflected ray is twice the angle between the mirrors/reflecting surfaces. In optical square the angle between horizon sight and index sight will be 90°.	02 M
Q.2	(f)	Explain temporary adjustment of plane table survey.	
	Ans	 Setting over the station: The plane table is fixed on tripod and adjust the table in such a way that table is approximately level. Leveling the table: The tubular or spirit level is placed in two perpendicular directions and tripod legs are adjusted to bring the bubble in center. Centering the table: Place the plumb bob with upper leg of U-fork on sheet and its pointed end over the station mark. If it is not over the station mark, adjust the legs of tripod to bring plumb bob exactly over the station mark. 	01 M for each step
		 4. Orientating the plane table: It is to be carried out if table is to be set up at more than one station. The table can be oriented in two ways. i. Using trough compass. ii. By back sighting. 	
Q.3	(a) Ans	Attempt any FOUR of the following: Prepare a page of field book showing chain line with following details :' (i) Length of base line 120 m. (ii) The coconut tree is 30 m perpendicular from chainage 40 m at left. (iii) The corners of building are 35 m and 50 m from chainage 80 m and 100 m to the right of chain. Free Receiver and the second	04 M
Q.3	(b) Ans	Convert the following R.B. to W.C.B. (i) N 60° 30' W (ii) S 59° 30' E (iii) N 45° 0' E (iv) S 43° 30' W i)R.B= N 60°30 ['] W W.C.B = 360°-60°30 ['] = 299°30 [']	
		ii) R.B= S 59°30 [′] E W.C.B= 180°-59°30 [′] = 120°30 ′	01 M for each

		A' A E B	B' B D' D c' C	C' C D	e' E	a'	01 M
		 Procedure: 1. Plot the traverse e.g. A'BCDEA direction of closing error. 2. Draw a straight line A'BCDEA to of traverse lines. 3. Mark on this straight line, close 4. Join A' with a' as shown in fig. 	to suitable o some sui ing error A	scale and obtain table scale represe A' as Aa' but to sca	magnitude enting the ale of trave	total length erse.	02 M
		 5. Draw lines parallel to Aa' through 6. Bb', Cc', Dd' and Ee' directly gi Mark the corrections in same direction of station points to give correct traver 	ves correct n of AA' at	ion at stations B,C plotted points and	,D and E r	espectively.	
Q.3	(f)	Explain the terms magnetic declination					
	Ans	Magnetic Declination: The horizontal meridian is known as magnetic declin When the north end of magnetic need the position is termed Declination We is pointed towards east side of true m (θE).	ation. dle is pointe est (θW). W neridian, the	ed towards west s hen the north end e position is terme	ide of true d of magne ed Declinat	meridian, tic needle ion East	02 M
		Dip of needle . If the needle is perfect remain in the balanced position after influence of the earth. The needle is f inclination of needle with the horizon The amount of deep of needle is not of northern hemisphere north end of the hemisphere south end of the needle i	it is magne ound to be tal is known constants b e needle is	tized .This is due t inclined towards n as deep of need ut it varies from p deflected downwa	to the mag the pole. T le. lace to pla	netic his ce, in	02 M
Q.4	(a)	Attempt any FOUR of the following: The following bearings were taken in compass at a place where local attra suspect local attraction? Find the cor	ction was s	uspected. At wha	-		
		-	Bearing	Back Bearing	1		
			4 ⁰ 30'	226 ⁰ 30'			
			4 ⁰ 30'	303 ⁰ 15'			
			21 ⁰ 00'	1 ⁰ 0'			
	Ans		2 9⁰ 30'	108⁰ 45'		° Honco	
	/ 115	The difference of fore bearing and based attraction C & D are free from local attra	-	•	•		
	L		cuon. At st			3	

						°00' – 1°00'= action	= 180°			
		Line	F.B	B.B	Differen	Correctio	Corre	ected	Remark	
					се	n	F.B	B.B		Identificati on of
		AB	44° 30'	226°30′	182°	0°45 [′] at A	45°15 [′]	225°15 [′]		stations 01
		BC	124° 15′	303° 15′	179°	-1°15 [′] at B	123°15 [′]	303° 15′	Station C and D are	M, sample calculation
		CD	181° 00′	1°00′	180°	0° At C	181° 00′	1°00′	free from local	01 M, Corrected
		DA	289° 30'	108°45′	180°45 [′]	0° At D	289° 30'	109°30 [′]	attraction	FB And BB 02 M
		Correcte = 289° 3 Correcti = 109°30 Correcte = 44°30' Correcte Correcte Correcte Correcte O.K. Che	0' - $180^{\circ} = 1$ on at A =Co D'- $108^{\circ}45' =$ ed FB of AB + $0^{\circ}45' = 4$ ed BB of AB on at B = 22 ed FB of BC ed BB of BC ck is Verifie	ring Of DA .09°30' orrected Bac = 0° 45' = Obs. FB c .5°15' = 45° 15' + 25°15'- 226 = 124°30' - = 123° 15' d	ck bearing o of AB + corr 180°= 225° ° 30' = -1°1 1°15' = 123 + 180°= 303	°15′ 5′ 3° 15′ 3°15′ = Obse	erved Back		DA	
Q.4	(b) Ans	The follo 1) The b 2) The ta 3) The ta 4) The o 5) The a 6) The ra 7) Inacco	oard not be able not be able not be bjects not b lidade not b	ne sources eing horizor ing accurat ing Correct peing sited peing corre ng accurate itting	of errors in ntal ely centere ly oriented accurately ctly centere ly drawn th	plane tablin d ed on the sta rough the st	ition point (er	Any four 01 M for each
Q.4	(c) Ans	State fo Advanta 1. It is th 2. There problem 3. Plotte are prop 4. There 5. There 6. Irregu 7. It is su	ur advanta ages :- ne most rap is no need of mistake ed work can perly repres is no possi is no possi is no possi lar objects uitable in m	id method for a field l in booking be comparented. bility of ove bility of ove may be rep agnetic are	of surveyin book as plo field notes red with act erlooking ar erlooking ar presented a cas.	ntages of plo g. tting is done does not ar tual object r ny importan ny measurer	e along with ise. egardless o t object. nent as plo	the field w f whether o tting is don	vork. So, the or not they e in the field.	Any four 1/2 M for each

		0. Encore in management and platting can be detected by check lines						
		9. Errors in measurement and plotting can be detected by check lines.						
		10. Inaccessible points can be easily located by intersection.						
		Disadvantages :-						
		1. The plane table is not suitable for accurate work as the fitting arrangement is not						
		perfect.						
		2. Plane table surveying is not suitable in wet climate, in the rainy season, on foggy	Any four					
		mornings and in windy weather.	1/2 M for					
		3. The number of accessories required in such survey is large, and they are likely to be	each					
		lost.						
		4. The instrument is very heavy and difficult to carry.						
		5. The map cannot be re-plotted to a different scale as there is no field book.						
Q.4	(d)	What is meant by orientation? Explain orientation by back sighting method.						
	Ans	Orientation:	04.84					
		The method of setting up the plane table at each of the successive stations parallel to the	01 M					
		position it occupied at the starting station is known as orientation.						
		Orientation by back sighting: Procedure- Ref Fig. bellow						
		a) Suppose A and B are two stations. The plane table is set up over A. the table is leveled						
		by spirit level and centered by U-fork so that point 'a' is just over station A. The north line						
		is marked on the right hand top corner of the sheet by trough compass.						
		b) With the alidade touching 'a', the ranging rod at B is bisected and a ray is drawn. The						
		distance AB is measured and plotted to any suitable scale. So the point 'b' represents						
		station B.	03 M					
		c) The table is shifted and set up over B. It is leveled and centered so that 'b' just over B.	00 111					
		Now the alidade is placed along the line 'ba', and the ranging rod at A is bisected by						
		turning the table clockwise or anticlockwise. When the centering, leveling and bisection						
		of the ranging rod at A are perfect, then the orientation is said to be perfect.						
		TROUGH						
		COMPASS						
		a b						
		Å						
		TROUGH						
		COMPASS						
		a b						
		;						
Q.4	(e)	Explain intersection method of plane survey.						
+.,∠	Ans	Intersection method of plane tabling-						
		1. Lay out a base line AB and measure it and Plot a distance 'ab' on sheet using any						

		(ISO/IEC - 27001 - 2013 Certified)	
		scale. 2.Set up instrument at 'A' with 'a' over 'A' 3.Orient the table by placing alidade 'ab' and turn table until ranging rod at 'B' is bisected and clamp it. 4. With alidade touching point 'a' draw rays ab, ad, ag, af, ac of indefinite length as shown in figure below. 5. The table is then moved to station 'B' orient by back sighting on 'A' say ray ba. Draw rays towards points previously sighted rays bd, bg, bf, bc are drawn to determine points intersection, d, g, f, c. $ \frac{BLOG}{F} + \frac{BLOG}{F}$	03 M 01 M
Q.4	(f) Ans	Define the following terms: (i) Level surface {ii} Datum line (iii) Reduced level (iv) Axis of telescope i)Level Surface : Any surface is parallel to mean spheroidal surface of earth is said to be a level surface. The water surface of still lake is also considered to be level surface. ii) Datum line: This is an imaginary line from which the vertical distances of different points (above or below the line)are measured. iii) Reduce Level: The vertical distance of point above or below the datum line is known as reduce level (RL)of that point. IV) Axis Of Telescope: This axis is an imaginary line passing through the optical Centre of object glass and optical Centre of the eye piece.	01 M for each
Q.5	(a) Ans	Attempt any FOUR of the following: State the important points kept in mind while recording the readings in level pages with respect first reading, intermediate readings, last reading, and change point, carry forward from one page to next page - Remarks. The following points should be kept in mind while recording the reading in level pages.	

		1.	The first reading s	hould be always noted as back	sight (B.S.)		
		2.	All the intermedia	te readings should be recorded	d as intermediate sight (I.S.)		
		3.	The last reading w	ith any set up of level should b	e recorded as fore sight (F.S.).		
		4. On a change point two readings are taken, first one is recorded as F.S. taken					
		from previous set up and the second one is to be noted as B.S. taken from next				04 M	
			set up.	•			
		5.	•	ading in a level page book is int	ermediate sight then it has to		
		5.			he page and recorded as I.S. and		
				v of following page.			
		6		imn information of Bench mark	Change point or last point		
		0.	should be entered		c, change point of last point		
		7					
			-	ne represents only one station			
0 5	(1-)			station should be in one line or	-		
Q.5	(b)			.I. method' and 'Rise and Fall i	method [®] with respect to time,		
			s, application and s		1		
	Ans.	Sr.	Point of	H.I. method	Rise and fall method		
		No.	difference				
		1.	Time	Less time required for	More time is required for		
				calculations of RLs.	calculations of RLs.		
				Arithmetic check performed			
				is	Arithmetic check performed		
				ΣBS - ΣFS = Last RL – 1^{st} RL.	is		
				Gives check only of	Σ BS - Σ FS = Last RL – 1 st RL =		
		2.	Check	corrections of starting point		01 M for	
				and last point.	Σ Rise – Σ Fall.	each point	
				Correction of RL of	RLs of all points are checked		
				intermediate points is not	in this method.		
				checked.			
				H.I method is applied for	Rise and fall method is		
		3.	Application	profile leveling, road	applied for check leveling, fly		
				survey, canal survey, etc.	leveling, etc.		
				More simple, rapid	Involves several calculations		
		4.	Simplicity	involving less calculation.	hence more laborious and		
		7.	Simplicity		time consuming.		
Q.5	(c)	Define	the following:		time consuming.		
Q.5	(C)	-	ght of instrument	(i) Back sight (iii) Fore sig	ht (iv) Axis of bubble tube		
	Anc	•••					
	Ans.	-		t is the reduced level of line of	_		
				veled. It is obtained by adding t	_		
			• •	which the staff reading was tak			
			-		up of the instrument after the		
				ly done. It is always taken on a	point of known RL i.e. on bench	01 M for	
			or change point.			each	
				t staff reading in any set up of i	instrument and indicates the		
			-	d of the leveling work.			
		iv. Axi	s of bubble tube: It	is an imaginary line tangential	to the longitudinal curve of the		
	bubble tube when the bubble is at the center of its run i.e. at middle point of the tube.						

Q.5	(d)	Explain in	nportance of	Bench m	ark in levelir	ng and state	e the types	of Bench m	nark.	
	Ans.	Bench ma	rks are fixed	points or	marks of kn	own RL dete	ermined w	ith reference	e to the	
			e. These are v	•						02 M
			v points or fo	• •	•			•	-	
		railways e	•			00000000000	p. ejeete		,	
		-	bench mark:							
			'S bench mar	k						02 M
			rmanent ben							02 101
			bitrary bench							
			•							
0.5	(-)		mporary ben		1					
Q.5	(e)	-	advantages	-	level.					
	Ans.	-	es of auto lev							
			ore precise/a		-		-			
			e telescope o			•				Any four
			pod and ther	n the com	pensating de	evice autom	atically pro	ovides horiz	ontal line	01 M for
		of	sight.							each
		3. Le [,]	veling work c	an be sp	eedily carried	l out using t	these level	s.		
		4. Du	e to simplicit	ty in leve	ling of instru	ment it redu	uces opera	tional fatigu	e.	
		5. Cle	ear and erect	image.						
		6. Lig	ht weight an	d compa	ct.					
Q.5	(f)	The follow	ving consecu	tive read	lings were ta	ken by a du	ımpy level	and a level	ing staff.	
		-	- 53, 3.906, 4.		-	-				
			ed after 4th a	-			-	-		
		-	L. 100.000 m			-		-	-	
		-	R.L. of all sta							
	Ans.	Station	-			R.L. of coll				
		point	B.S.	I.S.	F.S.	line (R.L.	Remark	
		1	1.904			101.9	-	100.00	B.M.	01 M for
		2	1.504	2.653		101.5		99.251	D.IVI.	table
		3		3.906				97.998		02 M for
			1.004	3.900	4.020	00.8	40		CD	correct
		4	1.964	1 700	4.026	99.8	42	97.878	CP ₁	calculation
		5		1.702				98.140		01 M for
		6	1.261		1.592	99.5	11	98.250	CP ₂	check
		7		2.542				96.969		CHECK
		8		2.006				97.505		
		9			3.145			96.366	Last Pt.	
			ΣBS=5.129		ΣFS=8.763					
		Arithmeti	c check : ΣBS	– ΣFS = 5	.129 – 8.763	= - 3.634				
			Last	RL – Firs	t RL = 96.366	– 100.00 =	- 3.634			
			ΣBS -	- ΣFS = La	st RL – First I	RL = - 3.634				
		Hence che	ecked and fou							
					C	<u>R</u>				
		By rise an	d fall method	ł						<u>OR</u>
		Station				Rise (+)	Fall (-)	R.L.	Remark	
		point	B.S.	I.S.	F.S.				I CHINK	
			1.904					100.00	B.M.	
			1.904	2652					D.IVI.	
		2		2.653			0.749	99.251		01 M for

Page No. 12/16

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

					- 2013 Ceru					
		3		3.906			1.253	97.998		table
		4	1.964		4.026		0.12	97.878	CP ₁	02 M for
		5		1.702		0.262		98.140		correct
		6	1.261		1.592	0.110		98.250	CP ₂	calculation
		7		2.542			1.281	96.969		01 M for
		8		2.006		0.536		97.505		check
		9			3.145		1.139	96.366	Last Pt.	
			ΣBS=		ΣFS=	ΣRise=	ΣFall=			
			5.129		8.763	0.908	4.542			
		Arithmet	ic check : ΣBS	– ΣFS = 5.1	29 – 8.763	5 = - 3.634				
			ΣRis	e – Σfall = 0	.908 - 4.54	42 = - 3.634	ŀ			
				RL – First R						
					e – Σfall =	Last RL – Fi	rst RL = - 3.6	534		
		Hence ch	ecked and for	und O.K.						
Q.6			any TWO of t	•	-					
	(a)	-	wing bearing			-	-	-		
			e back bearing	gs and inclu	ided angle	es in a close	ed traverse	PQRSP.		
		Apply us	ual check.		_	1				
					ine	F.I				
					PQ	124 ⁰				
				-	QR	68 ⁰				
					RS	3100				
	Ans.				SP	200 ⁰	15'			
	AIIS.									02 M for
		Line	F.B.	B.B.	,		Included an	-	,	correct BB
		PQ	124 ⁰ 30'	304 ⁰ 30 ⁴				$PQ = 104^{0}15$		02 M for
		QR	68 ⁰ 15'	248 ⁰ 15	, (-		236 ⁰ 15'>18	0°	correct
		- DC	24.00 204	1200 200	,		$\frac{0}{2} - 236^{0}15 =$			included
		RS	310 ⁰ 30'	$130^{\circ} 30^{\circ}$			$\frac{0^{0}30'-248^{0}}{0^{0}45'}$			angles
		SP	200 ⁰ 15'	20 ⁰ 15'		<s 200<="" =="" td=""><td>$10^{0}15' - 130^{0}3$</td><td>30 = 69 45</td><td></td><td>0.00</td></s>	$10^{0}15' - 130^{0}3$	30 = 69 45		0.00
		Check on	sum of incluo d angles, <p +<="" td=""><td>angles.</td><td>·C 104⁰1</td><td>г/, 122⁰4г</td><td></td><td></td><td>_0</td><td></td></p>	angles.	·C 104 ⁰ 1	г/, 1 2 2 ⁰ 4г			_ 0	
			- 4) x 9o = (2 >			5 + 123 45	+ 62 15 +	69 45 = 360	J	02 M
		Calculatio	•	(4 – 4) X 90	- 500					
			B of PQ = FB c	$f D \cap \pm 180^{(}$	$^{)} = 124^{0} 20$	$1' \pm 120^0 = 3$	204 ⁰ 20'			
			B of QR = FB c							
			B of RS = FB o	-						
		-	B of SP = FB o							
			cluded angles		- 200 15	100 - 20	15			02 M for
			P = BB of SP –							calculation
		1. 1	$= 20^{\circ} 15' - 12$	•	4 ⁰ 15'					steps
		ii. <0	= BB of PQ - I		. 10					
			= 304 ⁰ 30'- 68		⁰ 15'>180 ⁰	–Exterior a	ngle			
			= 360 ⁰ - 236 ⁰ 1							
			= BB of QR – F							
			$= 248^{\circ} 15' - 310$		15'					
			= BB of RS – F		-					

		Cross sta	iff surve	y area ta	ble:							04
		Fig	Fig	chaine	yes	Base	offsel	ż	Mean	Area	(m ²)	
		1 1	B	0 &	12	12	0 8 2	.5	12.5	150-		
		2 4		128 -	15	33	258	35	30	990		
		3	B	45 &	85	40	3580	0	17.5	700-	1	
		<u> </u>	1P	628	85	23	48&	0	24	552	-	02 1
		4 Ē	e e	308	62	32	28 4	48	38	1216	-	
		5 2 F	F	08		30	08	28	14	420	-	
		6	A	104					1.2	4029	z Sq.m.	-
		1 Sq m =	(1 / 100	00) 5 a 1	Joctor	~						
		Area in H	•									
Q.6	(c)						ving few s	taff r	readings	missing. Fin	d out the	
		missing r	reading	and rew	vrite tl	he page. I	Apply usua	l che	cks.			
		Stati	on			Reading			Н.І.	R.L.	Remark	
		Stati	0.11	р с	1							
				B.S.		l.S.	F.S.					
		1	2	в.з. 2.650			F.S.		X	100.000	B.M.	
		1 2	2			X	F.S.			100.000 98.910		
			2	2.650					<i>X</i>	100.000 98.910 98.820	B.M.	
			2		3.	X 830	F.S. X			100.000 98.910 98.820 98.380		
				2.650 4.640	3.	X	X		x x	100.000 98.910 98.820 98.380 X	В.М. СР ₁	
				2.650	3. 0.	X 830 380			<i>X</i>	100.000 98.910 98.820 98.380 X 102.060	B.M.	
				2.650 4.640	3. 0.	X 830	Х Х	10	X X 3.700	100.000 98.910 98.820 98.380 X 102.060 100.860	B.M. CP ₁ CP ₂	
				2.650 1.640 1.640	3. 0.	X 830 380	X	10	x x	100.000 98.910 98.820 98.380 X 102.060	В.М. СР ₁	
	And			2.650 1.640 1.640	3. 0.	X 830 380	X X 3.480	10	X X 3.700	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220	B.M. CP ₁ CP ₂ CP ₃	
	Ans.			2.650 1.640 1.640 X	3. 0. 2. Staff	X 830 380 840 Reading	X X 3.480 X	10	X X 93.700 94.900	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700	B.M. CP ₁ CP ₂ CP ₃ End St ⁿ .	
	Ans.	2	on	2.650 1.640 1.640 X B.S.	3. 0. 2. Staff	X 830 380 840 1	X X 3.480	10	X X 3.700 4.900 H.I.	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L.	B.M. CP ₁ CP ₂ CP ₃ End St ⁿ . Remark	
	Ans.	2	on	2.650 1.640 1.640 X	3. 0. 2. Staff	X 830 380 840 Reading I.S.	X X 3.480 X	10	X X 93.700 94.900	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L.	B.M. CP ₁ CP ₂ CP ₃ End St ⁿ .	
	Ans.	2 	on	2.650 1.640 1.640 X B.S.	3. 0. 2. Staff	X 830 380 840 Reading I.S. X ₂	X X 3.480 X	10	X X 3.700 4.900 H.I.	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L. 100.000 98.910	B.M. CP ₁ CP ₂ CP ₃ End St ⁿ . Remark	
	Ans.	2 	on	2.650 4.640 1.640 X B.S. 2.650	3. 0. 2. Staff	X 830 380 840 Reading I.S.	X X 3.480 X F.S.	10	X X 3.700 4.900 H.I. X ₁	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L. 100.000 98.910 98.920	<i>B.M.</i> <i>CP</i> ₁ <i>CP</i> ₂ <i>CP</i> ₃ <i>End Stⁿ.</i> Remark B.M.	
	Ans.	2 	on	2.650 1.640 1.640 X B.S.	3. 0. 2. Staff	X 830 380 380 840 Reading I.S. X2 830	X X 3.480 X	10	X X 3.700 4.900 H.I.	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L. 100.000 98.910 98.820 98.380	B.M. CP ₁ CP ₂ CP ₃ End St ⁿ . Remark	
	Ans.	2 	on	2.650 4.640 1.640 8.S. 2.650 4.640	3. 0. 2. Staff	X 830 380 840 Reading I.S. X ₂	X X 3.480 X F.S.		X X 3.700 4.900 H.I. X ₁ X ₄	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L. 100.000 98.910 98.910 98.820 98.380 X5	<i>B.M.</i> <i>CP</i> ₁ <i>CP</i> ₂ <i>CP</i> ₃ <i>End Stⁿ.</i> Remark B.M.	
	Ans.	2 	on	2.650 4.640 1.640 X B.S. 2.650	3. 0. 2. Staff 3. 3.	X	X X 3.480 X F.S.		X X 3.700 4.900 H.I. X ₁	100.000 98.910 98.820 98.380 X 102.060 100.220 100.220 102.700 R.L. 100.000 98.910 98.910 98.820 98.380 X5 102.060	<i>B.M.</i> <i>CP</i> ₁ <i>CP</i> ₂ <i>CP</i> ₃ <i>End Stⁿ.</i> Remark B.M.	
	Ans.	2 	on	2.650 4.640 1.640 8.S. 2.650 4.640	3. 0. 2. Staff 3. 3.	X 830 380 380 840 Reading I.S. X2 830	X X 3.480 X F.S.		X X 3.700 4.900 H.I. X ₁ X ₄	100.000 98.910 98.820 98.380 X 102.060 100.860 100.220 102.700 R.L. 100.000 98.910 98.910 98.820 98.380 X5	<i>B.M.</i> <i>CP</i> ₁ <i>CP</i> ₂ <i>CP</i> ₃ <i>End Stⁿ.</i> Remark B.M.	

2. X2= X1 3. X3=X1-	98.380=		102.650-9	98.910 = 98.380 =	4.270		
4. X4=98.3	REFERENCE NOT THE			4.640=			
5. X5=X4-	and the second sec			98.380=	102.640		
			103.020-1		0.960		
7. X7=104	.900-100.2	220=	104.900-1	100.220=	4.680		
8. X8=104	.900-102.3	700=	104.900-1	102.700=	2.200		
	C.	off Deed			-	1444	
Station Pt	Staff Readin		ngs FS	н	RL	Remark	
1	2.650		10	102.650	100.000	BM	
2		3.740			98.910		
3		3.830			98.820		
4	4.640	Contraction of	4.270	103.020	98.380	CP1	
5		0.380			102.640		
6	1.640		0.960	103.700	102.060	CP2	
7		2.840			100.860		
8	4.680	200245-6	3.480	104.900	100.220	CP3	
9			2.200		102.700	End Point	
	- 12 61	10.91 = 2.7					
Check: ΣBS – ΣFS			102.700 – 1	aa aa =			