

Subject Title: Heat Power Engineering

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	(A)	Attempt any SIX of the following.	12
	(a)	What is an isochoric process? Plot it on P-V diagram	2
		Answer: (Explanation 1 Mark, Figure 1 Mark) Isochoric process, also called a constant-volume process. It is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric thermodynamic process is characterized by constant volume, i.e., $\Delta V = 0$.	1
		Pressure P-V graph for heating at constant volume $P_{f} - \bigvee W = 0$ $P_{i} - \bigvee W = 0$	1
	(1.)	V Volume	
	(b)	Define:i) sensible heatii) Latent heatAnswer:(One mark each)	
		 i)Sensible heat: It is defined as the quantity of heat which can be sensed by the thermometer. OR The amount of heat added up to saturation temperature is called sensible heat. The word "sensible" itself suggest that, it is the heat which can be sensed. 	1

Subject Ti	Title: Heat Power Engineering Subject Code: 17	
	 ii)Latent heat: It is defined as the quantity of heat required for phase change of working substance at saturation temperature. OR The amount of heat added at saturation temperature is called latent heat. Latent heat is usually expressed in kJ/kg. Depending upon the change in state which a substance undergoes, different names have been given to this latent heat. 	1
(c)	Define free air delivered and piston displacement related to air compressor.	2
	Answer: Free Air Delivered (FAD): It is the actual volume of air delivered by the compressor when reduced to NTP. Piston Displacement: This is the volume swept by the piston in moving from T.D.C. to B.D.C. this is also called swept volume If "d" is the cylinder bore and "L" the stroke, the piston displacement V _s is given by $Vs = \frac{\pi}{4}d^2 L$	1
(d)	State the application of compressed air.	2
	 Answer: Application of compressed air: (Any four ¹/₂ Mark each) 1. Operating tools in factories 2. Operating drills and hammers in road building 3. Starting diesel engines 4. Operating brakes on buses, trucks and trains 5. Spray painting 6. Excavating 	2
(e)	Draw dual combustion cycle on P-V and T-S Diagram.	
	Answer: (P-V diagram 1 Mark, T-S diagram 1 Mark) $ \int \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{2$	2
(f)	Define conventional and Non conventional energy sources.	
	Answer: Conventional sources of energy: These sources of energy are also called non renewable sources. These sources of energy are in limited quantity except hydro- electric power. Petrol, Diesel, Kerosene, Oil	1
	Non-conventional sources of energy: Energy generated by using wind, tides, solar, geothermal heat, and biomass including farm and animal waste as well as human	1

le: Heat Power Engineering Subject Code: 17	/40/
excreta is known as non-conventional energy. All these sources are renewable or inexhaustible and do not cause environmental pollution. More over they do not require heavy expenditure.	
Solar energy, Wind energy, Geothermal energy, Tidal energy, Biomass	
Define calorific value of fuel.	2
Answer: Calorific value of fuel It is defined as the amount of heat liberated during complete combustion of 1 kg of fuel. It is expressed in terms of KJ/kg.	2
H.C.V. of Fuel: Higher calorific value of fuel is defined as amount of heat energy obtain by the complete combustion of 1kg of fuel, when the products of its combustion are cooled down to the temperature of supplied air. Unit is (KJ/kg)	
L.C.V. of Fuel: When heat absorbed or carried away by the product of combustion is not recovered & steam is formed during combustion is not condensed. Then the amount of heat obtain per kg of fuel is known as lower calorific value of fuel. Unit is (KJ/kg)	
List the properties of fuel.	2
 High calorific value Moderate ignition temperature Low moisture content Low NOx combustible matter Moderate velocity of combustion Products of combustion not harmful Low cost Easy to transport Combustion should be controllable No spontaneous combustion Low storage cost Should burn in air with efficiency. 	2
	8
Draw Isobaric and Isothermal process on P-V and T-S Diagram. Answer:(2 Marks each process) <u>Isobaric Process:</u> p 1,2 1,2	4
	inexhaustible and do not cause environmental pollution. More over they do not require heavy expenditure. Solar energy, Wind energy, Geothermal energy, Tidal energy,Biomass Define calorific value of fuel. Answer: Calorific value of fuel It is defined as the amount of heat liberated during complete combustion of 1 kg of fuel. It is expressed in terms of KJ/kg. H.C.V. of Fuel: Higher calorific value of fuel is defined as amount of heat energy obtain by the complete combustion of 1 kg of fuel, when the products of its combustion are cooled down to the temperature of supplied air. Unit is (KJ/kg) L.C.V. of Fuel: When heat absorbed or carried away by the product of combustion is not recovered & steam is formed during combustion is not condensed. Then the amount of heat obtain per kg of fuel is known as lower calorific value of fuel. Unit is (KJ/kg) List the properties of fuel. Answer: (½ Mark each property)(any four) 1. High calorific value 2. Moderate ignition temperature 3. Low Nox combustible matter 5. Moderate velocity of combustion 6. Products of combustion not harmful 7. Low cost 8. Easy to transport 9. Combustion should be controllable 10. No spontaneous combustion 11. Low storage cost 12. Should burn in air with efficiency. Attempt any TWO of the following Draw Isobaric and Isothermal process on P-V and T-S Diagram. Answer: (2 Marks each process)

Subject Title: Heat Power Engineering

Subject Code: 17407 Explain working principle of Turbojet engine with a neat sketch. (c) Answer:(Figure-02 marks, working- 02 marks) Working: Turbo-jet engine consists of diffuser, compressor, combustion chamber, turbine and nozzle. As engine starts air enters in the diffuser where it slows down and part of kinetic energy is converted into pressure energy. The air enters into the compressor and gets compressed. This compressed air enters into the combustion 2 chamber where it is mixed with the fuel. The combustion takes place at constant pressure. The hot gases enter gas turbine where partial expansion takes place. The power produced is just sufficient to drive the compressor. The hot gases are then expanded in nozzle and very high velocity jet is produced which gives forward motion to the air craft. 2 2 it+1 Fig. Turbo jet engine Attempt any FOUR of the following 2. 16 Represent the diesel cycle on P-V and T-S diagram and write equation for air 4 (a) standard efficiency of the same. Answer: Diesel cycle on P-V and T-S diagram (2 Marks) 1-2: Isentropic compression 2-3: Constant pressure heat addition 3-4: Isentropic expansion 0 4-1: Constant volume heat rejection P. = P₃ T₃ Qin T₄ 2 T₂ 2 т Win Ρ P4 W. Qout P₁ T₁ 1 **V**₂ $V_1 = V_4$ $S_1 = S_2$ $s_3 = s_4$ V. ©2017mechanicalbooster.com S v P-V and T-S Diagram of Diesel Cycle Equation for air standard efficiency of Diesel Cycle (2 Marks)

(b)	 η = 1 - 1/γ r_E^{-γ} - r_C^{-γ} the compression ratio r_C = V₁/V₂ and the expansion ratio r_E = V₁/V₃. Explain different types of modes of heat transfer. Answer: Conduction- It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another without displacement of molecules or due to the vibrations of molecules. Convection: It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another with displacement of molecules or due to the fluid flowing. Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Explain construction and working of three pass packaged boiler. Answer:(Explanation 2 Marks, Figure 2Marks) 	2 4 4
(b)	 Explain different types of modes of heat transfer. Answer: Conduction- It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another without displacement of molecules or due to the vibrations of molecules. Convection: It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another with displacement of molecules or due to thefluid flowing. Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Explain construction and working of three pass packaged boiler. Answer:(Explanation 2 Marks, Figure 2Marks) 	4
(c)	 Answer: Conduction- It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another without displacement of molecules or due to thevibrations of molecules. Convection: It is the mode of heat transfer from one part of substance to another part ofsame substance or one substance to another with displacement of molecules or due to thefluid flowing. Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Explain construction and working of three pass packaged boiler. Answer:(Explanation 2 Marks, Figure 2Marks) 	4
(c)	 another part ofsame substance or one substance to another with displacement of molecules or due to thefluid flowing. 3) Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Explain construction and working of three pass packaged boiler. Answer:(Explanation 2 Marks, Figure 2Marks) 	4
(c)	is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Explain construction and working of three pass packaged boiler. Answer:(Explanation 2 Marks, Figure 2Marks)	
	Answer:(Explanation 2 Marks, Figure 2Marks)	
	Steam at 150°C Chimney	
	Water 350°C 2nd pass (tubes) Burner Burner Steam space 200°C 2nd pass (tubes) Water Water Water Water Water Water Water Water Steam space Steam Steam Stea	2
	Fig. Three pass package boiler Each set of tubes that hot combustion flue gas travels through before making a turn within the boiler, is considered a "pass." A 3-pass firetube boiler design consists of three sets of horizontal tubes, with the stack outlet located on the rear of the boiler. A downdraft design keeps the cooler water from having an effect on the hot surfaces within the boiler. A boiler with more passes provides more opportunities for hot gasses to transfer heat to the water in a boiler and operate more efficiently, however, boiler efficiency is highly affected by tube design, and not simply the number of passes. It	2

Subject Tit	le: Heat Power Engineering Subject Code: 1	7407
	Advantages of 3 pass firetube boilers offer:Maximized heat transfer.Minimal refractory.High steam/water storage.Effective handling of wide load demands.	
(d)	Draw labelled diagram of La-monentBolier.	
	Answer:	4
	header Fig. La-monent Bolier	
(e)	Define following: Capacity of compressor iii)Isothermal efficiency Volumetric efficiency iv) Brake power	4
	 Answer (Each terms 1 Mark) i)Capacity of compressor: It is the quantity of free air actually delivered by the compressor and expressed in m³/min or m³/s. (ii) Volumetric efficiency: It is the ratio of free air delivered per stroke to the swept volume of the piston. iii)Compressor Efficiency: It is the ratio of isothermal work (or power) required to drive compress to the actual work required to drive compressor for the same pressure ration. Mathematically compressor efficiency is given as the ratio of isothermal power to shaft or brake power. iv) Brake power :The power supplied by electric motor at the crankshaft or power 	4
(f)	required to drive the compressor is known as brake power. Identify and write the application of gas turbine in aviation industry.	
	 Answer: Gas turbines are used to power aircraft, trains, ships, electrical generators, pumps, gas compressors and tanks. Applications of gas turbine: 1. Supercharging of I.C. engine 	1
	 For locomotive Propulsion Ship Propulsion Industrial application Air craft engine Electric power generation 	3

Subj	ject T	itle: Heat Power Engineering Subject Code: 1	7407
	-	 7. Turbo-jet engine 8. Turbo-prop engine 9. Ram-jet engine 10. Pulse-jet engine 	
		Attempt any FOUR of the following	16
	a)	Explain construction and working of Axial flow compressor.	04
		Axial flow compressor: The basic components of an axial flow compressor are a rotor and stator, the former carrying the moving blades and the latter the stationary rows of blades. The stationary blades convert the kinetic energy of the fluid into pressure energy, and also redirect the flow into an angle suitable for entry to the next row of moving blades. Each stage will consist of one rotor row followed by a stator row, but it is usual to provide a row of so called inlet guide vanes. This is an additional stator row upstream of the first stage in the compressor and serves to direct the axially approaching flow correctly into the first row of rotating blades. For a compressor, a row of rotor blades followed by a row of stator blades is called a stage. In an axial compressor, the flow rate tends to be high and pressure rise per stage is low. It also maintains fairly high efficiency.	02
		(Variable) stator vanes (Variable) stator vanes Inter guide vanes Fig. Axial Flow Compressor	
l	b)	Fig. Axial Flow Compressor Explain Brayton Cycle with PV and TS diagram. Also write equation of thermal efficiency for the same.	04
		P q in q in	02

	Model Answer	
Subject Title: Heat Power Engineering Subject Code: 17		
	The Brayton cycle is a theoretical cycle for simple gas turbine. This cycle consists of two isentropic and two constant pressure processes. Above Fig. Shows the Brayton cycle on p-v and T-s coordinates. The cycle is similar to the Diesel cycle in compression and heat addition. The isentropic expansion of the Diesel cycle is further extended followed by constant pressure heat rejection. The thermal efficiency is given by	
	by,	01
	$\begin{aligned} \boldsymbol{\eta}_{\text{th}} &= \frac{\text{Heat Added} - \text{Heat Rejected}}{\text{Heat Added}} \\ \eta_{\text{th}} &= \frac{mC_p(T_3 - T_2) - mC_p(T_4 - T_1)}{mC_p(T_3 - T_2)} = 1 - \frac{(T_4 - T_1)}{(T_3 - T_2)} \\ \mathbf{OR} \end{aligned}$	
	$\eta_{\rm th} = 1 - \frac{1}{(r_p)^{\frac{(\gamma-1)}{\gamma}}}$	
c)	Explain working of nuclear power plant with simple diagram.	04
Ans:	(sketch-02 marks and Working -02Marks) Working of Nuclear Power Plant: The basic components of Nuclear Power Plant are shown in the fig. Steam is generated in the nuclear reactor of Nuclear Power Plant by using heat generated by nuclear reaction. The steam generated is passed through steam turbine where part of its thermal energy is converted into mechanical energy which is further used for generating electric power. The steam coming out of steam turbine is condensed in condenser and condensate is supplied back to the nuclear reactor with the help of feed pump and cycle is repeated.	02
	Fig. Nuclear Power Plant	02
d)	List parameters for the site selection of nuclear power plant.	04
Ans:	 Factors to be considered while selecting the site for nuclear power plant: (any Eight) Availability of fuel: Fuel source should be available on mass scale and near to the power plant. Availability of water: Water source should be available on mass scale and near to the power plant. Transportation facilities: Power plant should have transportation facilities like road or rail nearby. 	04
	4. Land: The Conventional power station should be located at a place where land is	
	Page No.	9/20

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER- 18 EXAMINATION

bject	Title: Heat Power Engineering Subject Code: 17	407
	 cheap and further extension, if necessary, is possible. Moreover, the bearing capacity of the ground should be adequate so that heavy equipment could be installed. 5. Nearness to load centers: In order to reduce the transmission cost, the plant should be located near the centre of the load. 6. Location: Power plant should be located away from populated area. 7. Cost- Cost should be low. 8. Availability of labor 9. There must be sufficient space near the plant site for the storage of radio-active waste for short time during the working of plant. 	
		0.4
e)	State four properties of fuel.	04
	Properties of fuel:	
	1. High calorific value	
	2. Moderate ignition temperature	
	3. Low moisture content	
	4. Low NO _n combustible matter	
	5. Moderate velocity of combustion	
	6. Products of combustion not harmful	
	7. Low cost	
	8. Easy to transport	
	9. Combustion should be controllable	
	10. No spontaneous combustion	
	11. Low storage cost	
	12. Should burn in air with efficiency.	
	A coal has the following combination by mass $C = 90\%$, $H_2 = 3\%$, $S = 1\%$, $O2 = 2\%$,	04
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.	
f)		
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = N = 2% = 0.02 Sulphur = S = 1% = 0.01Dulong's formula:	02
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel. Given Data: Given Data: Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = $N = 2\% = 0.02$ Sulphur = $S = 1\% = 0.01$ Dulong's formula: H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg	02
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel. Given Data: Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = $N = 2\% = 0.02$ Sulphur = $S = 1\% = 0.01$ Dulong's formula: H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg =33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01	02
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = N = 2% = 0.02 Sulphur = S = 1% = 0.01Dulong's formula:H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg= 33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01= 30420+3973.75+93	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel. Given Data: Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = $N = 2\% = 0.02$ Sulphur = $S = 1\% = 0.01$ Dulong's formula: H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg =33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01	02 02
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen = $H_2 = 3\% = 0.03$ Oxygen = $O_2 = 2\% = 0.02$ Nitrogen = N = 2% = 0.02 Sulphur = S = 1% = 0.01Dulong's formula:H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg= 33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01= 30420+3973.75+93	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula:H.C.V. of coal $= 33800 \text{ C} + 144500 (H2 - O2/8) + 9300 \text{ S} \text{ KJ / Kg}$ $= 34486.75 \text{ KJ / Kg}$ L.C.V. of coal $= H.C.V 9H2 \times 2442 \text{ KJ / Kg}$	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula:H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg= 33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01= 30420+3973.75+93= 34486.75 KJ / KgL.C.V. of coal = H.C.V 9H2 x 2442 KJ / Kg= 34486.75 - (9 x 0.03) x 2442	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula:H.C.V. of coal $= 33800 \text{ C} + 144500 (H2 - O2/8) + 9300 \text{ S} \text{ KJ / Kg}$ $= 34486.75 \text{ KJ / Kg}$ L.C.V. of coal $= H.C.V 9H2 \times 2442 \text{ KJ / Kg}$	
f)	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula:H.C.V. of coal $= 33800 \text{ C} + 144500 (H2 - O2/8) + 9300 \text{ S KJ / Kg}$ $= 33800 \text{ x} 0.9 + 144500 (0.03 - 0.02/8) + 9300 \text{ x} 0.01$ $= 30420+3973.75+93$ $= 34486.75 \text{ KJ / Kg}$ L.C.V. of coal $= \text{H.C.V 9H2 x} 2442 \text{ KJ / Kg}$ $= 33827.41 \text{ KJ / Kg}$ Attempt any TWO of the Following:	02
f) a)	N2=2% and remaining is ash. Find HCV and LCV of the fuel. Given Data: Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula: H.C.V. of coal = 33800 C + 144500 (H2 - O2/8) + 9300 S KJ / Kg = 33800 x 0.9 + 144500 (0.03 - 0.02/8) + 9300 x 0.01 = 30420+3973.75+93 = 34486.75 KJ / Kg L.C.V. of coal = H.C.V 9H2 x 2442 KJ / Kg = 34486.75 - (9 x 0.03) x 2442 = 33827.41 KJ / Kg	02
	N2=2% and remaining is ash. Find HCV and LCV of the fuel.Given Data:Carbon $C = 90\% = 0.9$, Hydrogen $= H_2 = 3\% = 0.03$ Oxygen $= O_2 = 2\% = 0.02$ Nitrogen $= N = 2\% = 0.02$ Sulphur $= S = 1\% = 0.01$ Dulong's formula:H.C.V. of coal $= 33800 \text{ C} + 144500 (H2 - O2/8) + 9300 \text{ S KJ / Kg}$ $= 33800 \text{ x} 0.9 + 144500 (0.03 - 0.02/8) + 9300 \text{ x} 0.01$ $= 30420+3973.75+93$ $= 34486.75 \text{ KJ / Kg}$ L.C.V. of coal $= \text{H.C.V 9H2 x} 2442 \text{ KJ / Kg}$ $= 33827.41 \text{ KJ / Kg}$ Attempt any TWO of the Following:	02

lower calorific value and heat carried away by combustible proc	
i lower calorine value and near carried away by combustible proc	uct is not
away by combustible product considered.	
To obtain HCV we have to condense the No need to condense the e	xhaust steam 04
steam in exhaust to obtain LCV	
Complex calculation required to obtain HCVSimple calculation required LCV	
Only bom calorimeter is not sufficient to calculate HCVOnly bom calorimeter is s calculate LCV	
HCV= Gross Value of heat contain in the fuelLCV = Net Value of heat fuel	
LCV is used in calculation because, In actual use of any vapour and moisture, etc. are not condensed and it escaped, so calculation purpose	LCV isused for
c) Derive the relationship between P, V and T during adiabatic proce	
Answer: Pressure (P), Volume (V) & Temperature (T) relation	for adiabatic
process:	
For adiabatic Process,	
$PV^{\nu} = C$	
$P_1 v_1^{\gamma} = P_2 v_2^{\gamma}$	
$\frac{P_2}{P_1} = (\frac{V_1}{V_2})^{\gamma}$ (1)	02
P_1 V_2 From general gas equation,	
PV	
$\frac{T}{T} = C$	
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	
T_1 T_2 T_2	
$\frac{T_2}{T_1} = \frac{P_2 V_2}{P_1 V_1} \dots \dots$	02
From (1)	
$\frac{\frac{V_2}{V_2}}{\frac{V_1}{V_1}} = \left(\frac{p_1}{p_2}\right)^{1/\gamma}(3)$	
$V_1 = (P_2)^{\prime}$ (5)	03
Put equation (3) into equation (2)	02
$\frac{T_2}{T_1} = \frac{P_2}{P_1} \left(\frac{P_1}{P_2}\right)^{1/\gamma}$	
	02
$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$	
$\frac{P_2}{P_1} = (\frac{T_2}{T_1})^{\frac{\gamma}{\gamma-1}}$ (4)	
From equation (1) & (4) $P_{22} = V_{2} = T_{22} = \frac{\gamma}{\gamma}$	
$\frac{r_2}{P_1} = \frac{(r_1)}{V_2} \gamma = \frac{(r_2)}{T_1} \gamma^{-1}$	
$\frac{\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}{\left[\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}\right]}$	

Model Answer

a)i)	Attempt any TWO of the following	16
a)i)		10
	What are the various sources of air leakage into a steam condenser? How does it	04
	affect the performance of the condensing plant?	
Ans:	Sources of air leakage in condenser: (2marks)	
	1. Air leak through joints and packing.	02
	2. Air also comes in condenser with the steam.	
	3. In jet condensers dissolved air in the cooling water enters the condenser.	
	Effects: (2marks)	
	1. Lowered the thermal efficiency.	
	2. Increased requirement of cooling water.	02
	3. Reduced heat transfer.	
	4. Increased Corrosion.	
	OR	
	Sources of air leakages: (2 Marks)	02
	The main sources of air leakages in condenser are given below,	02
	a) The air leaks through the joints, packing and glands into the condenser as the	
	b) The feed water contains air in dissolved condition. The dissolved air gets	
	liberated when steam is formed and it is carried with the exhaust steam into the	
	condenser.	03
	c) In case of jet condenser, dissolved air with the cooling water enters into	02
	condenser.	
	Effects of air leakages in a condenser: (2Marks)	
	a) It increases the back pressure of the prime mover and reduces the work done per	
	kg of steam.	
	b) The partial pressure of steam and its corresponding temperature decreases due	
	to pressure of air.	
	c) Because of poor thermal conductivity of air the rate of heat transfer from the	
	vapour is reduced.	
a) ii)	Explain function and location of condenser in steam power plant.	04
	· ·	
		03
		05
		01
		01
b)		8
0)		o
	(ii) Power required to drive the compressor	
1	(iii) Isothermal efficiency	
	a) ii) b)	 2. Air also comes in condenser with the steam. 3. In jet condensers dissolved air in the cooling water enters the condenser. Effects: (2marks) Lowered the thermal efficiency. Increased requirement of cooling water. Reduced heat transfer. Increased Corrosion. OR Sources of air leakages: (2 Marks) The main sources of air leakages in condenser are given below, The air leaks through the joints, packing and glands into the condenser as the pressure inside are below the atmospheric pressure. The feed water contains air in dissolved condition. The dissolved air gets liberated when steam is formed and it is carried with the exhaust steam into the condenser. In case of jet condenser, dissolved air with the cooling water enters into condenser. Effects of air leakages in a condenser: (2Marks) a) It increases the back pressure of the prime mover and reduces the work done per kg of steam. b) The partial pressure of steam and its corresponding temperature decreases due to pressure of air. c) Because of poor thermal conductivity of air the rate of heat transfer from the vapour is reduced. a) ii) Explain function and location of condenser in steam power plant. Function: It maintains very low back pressure thus more work can be obtained. Temperature of condenses steam by heat release from steam with help of water 2) It maintains very low back pressure thus more work can be obtained. Temperature of condenses is more than of feed water so amount of heat supplied per kg of steam is reduced.

4 7 4 6 7

Subject Title:	Heat Power Engineering	Subject Code: 17407
Та	ke R=0.287 Kj/Kg degree K for air	
]	Given: $M_a=5 \text{ Kg/min} = 5/60 = 0.0833 \text{ Kg/sec}$ $P_1 = 1 \text{ bar}$ $T_1 = 15 ^{0}\text{C} = 15 + 273 = 288 ^{0}\text{k}$ $P_3 = 15 \text{ bar}$ n = 1.3 $R = 0.287 \text{ KJ / Kg} ^{0}\text{k}$ (i) Intermediate stage pressure $P_2 = ?$ For perfect intercooling, the ideal intermediate pressure P_2	
-	P_1 $P_2=3.87$ barAns	2
	(ii) Power required to drive the compressor Actual Power = $\frac{n}{n \ln P_1 V_1} P_1 V_1$	
	$= \frac{n}{n^{\frac{n}{100}}} \operatorname{MRT} 1 \underbrace{\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	4
1.	$\frac{1.3}{3 \text{ fm}} \ge 0.083 \ge 0.287 \ge 288 \ge 10^{-33} = 1$.Ans 2
(ii	i) Isothermal efficiency = $\frac{\text{IsothermalPower}}{\text{ActualPower}} \times 100$	
	othermal Power = MRT ₁ ln (P ₃ / P ₁) = 0.0833 x 0.287 x 288 x (15 / 1) = 18.57 Kw othermal efficiency = $\frac{18.57}{21.86}$ x 100	
(i)	Isother mal efficiency = 0.8498 X 100 = 84.98 % Ans splain with schematic diagram, working of, open cycle gas turbine) closed cycle gas turbine	08

Fig. Open Cycle Gas Turbine

C

Air from

atmosphere

Working:

Fig. shows open cycle gas turbine which consists of compressor, combustion chamber, turbine, generator. The compressor and turbine are mounted on same shaft. Combustion chamber is placed in between compressor and turbine for combustion of fuel. Generator is coupled with turbine shaft for generation of power. Fresh air enters the compressor at ambient temperature at point 1 and it is compressed to point 2 where its pressure and temperature are increased. The high pressure air enters the combustion chamber where the fuel is burned at constant pressure. Heat is added by directing burning the fuel into combustion chamber at constant pressure during process 2 to 3. The high temperature (and pressure) gas enters the turbine where it expands during process 3 to 4 to ambient pressure and produces work. Finally exhausted to atmosphere.

Burned gases

to otmosphere

(ii) Closed cycle gas turbine:

02

02

02

02

	MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 18 EXAMINATION <u>Model Answer</u>	
Subject	Title: Heat Power Engineering Subject Code: 1	7407
6 a)	Subject Code: A subject Code:	
	$V_1 = V_c + V_s = 0.002 + 6.81 \times 10^{-3} = 0.00881 \text{ m}^3$	

S	ubject	Title: Heat Power Engineering Subject Code: 1	
		Compression ratio (r) = $(V_1/V_2) = (0.00881/0.002) = 4.405$	01
		$\begin{aligned} &\eta_{\text{cycle}} = (1 - 1 / r^{\gamma - 1}) X 100 \\ &= (1 - 1 / (4.405)^{1.4 - 1}) X 100 \\ &= 44.73 \%. \end{aligned}$	02
)1	b)	Steam enters in engine at a pressure of 12bar with a 67° C of superheat. It is exhausted at a pressure of 0.15bar and 0.95 dry. Find drop in enthalpy of the steam.	04
		Answer: From Steam Table:	
		At 12 bar	
		Cp=2.1 kj/kgk	
		hg = 2275.4 kj/kgk	
		$(\mathrm{T}_{\mathrm{Sup}} - \mathrm{T}_{\mathrm{sat}}) = 67^{0} C$	
		$h_1 = hg + c_p (T_{Sup} - T_{sat})$	01
		$= 2775.4 + 2.1 \times 67$	
		= 2916.1 Kj/Kg	
		At 0.15 bar	01
		hf = 226 kj/kgk	UI
		hfg = 2373.2 kj/kgk	
		$\mathbf{h}_2 = \mathbf{h}_{\mathbf{f}} + \mathbf{X} \mathbf{h}_{\mathbf{f}} \mathbf{g}$	
		$h_2 = 226 + 0.95 \times 2373.2$	
		$h_2 = 2480.5 \text{KJ/kg}$	
		Change in enthalpy = $\Delta H = h_2 - h_1$	
		$\Delta H = 2916.1 - 2480.5$	02
		$\Delta H = 435.56 \text{ KJ/kg}$	
		Explain construction and working of Rock drill using compressed air.	04
	c)	Handle	04
		Air in Valve Air out Pile driver	01
		Drill bit	
		Fig. Rock Drill	
		Construction: It consist of air tube system, valves pile driver , handle and	

	Model Allswei	
Subject ⁻	Title: Heat Power Engineering Subject Code: 1 7	7407
	drill bit. Inside the pneumatic drill is a series of air tubes that connect to	
	the pile driver, and then to the drill bit at the bottom.	01
	Working :	
	The compressed air, delivered from the diesel-powered compressor,	
	enters the drill and moves through the air tube circuit system. The	
	movement of the air pushes the pile driver down onto the drill bit, causing	
	the drill bit to pound into the surface of the road, sidewalk or pavement	
	being drilled. The downward movement of the drill, in combination with	02
	the vibration of the drill pounding into the surface, causes a valve inside	
	the air tubing to invert. This valve's inversion causes the air to circulate in	
	the opposite direction; the new flow of air causes the drill to bounce back	
	away from the earth. The valve then flips again, and the air flow, combined	
	with the power of gravity, forces and pulls the drill bit back to the surface.	
	All of this happens very rapidly. The drill bit smashes into the surface at	
	an average of 25 times per second, 1500 times a minute. You can easily	
	see how this would be more effective than a man (or woman) swinging a	
	sledge hammer only 5 or 10 times in a minute.	
	The air that powers a rock drill is delivered to the drill from a	
	compressor. The compressor resembles an electric generator on wheels,	
	and can be run by electric power, but more often, is run by a diesel	
	engine. The compressor machine delivers the air at high pressure through	
	a thick cord-like tube that connects to the pneumatic drill.	
d)	Explain working principle of Turboprop engine, with a neat sketch .	04
	(Sketc-02marks, working principle-02marks)	
	← Direction of	
	Jet nozzle	02
		02
	D Diffuser C- Compressor	
	T - Turbine	
	C.C. – Combustion chamber	
	Figure: Turbo- Prop Engine	
	Construction and working:	
	It consist of diffuser, compressor, combustion chamber, turbine, nozzle and propeller.	02
	Figure shows a turboprop system employed in aircrafts. Here the expansion of gases	
	takes place partly in turbine 80% and partly 20% in the nozzle. The power developed by the turbine is consumed in running the compressor and the propeller. The propeller	
	and jet produced by the nozzle give forward motion to the aircraft. The overall	
	and jet produced of the holze give forward motion to the uncruit. The overall	

Subject Title: Heat Power Engineering

Subject Code: 17407

ubject n	tie. heat Power Engineering Subject Code.	/ 40/
	efficiency of the turbo prop is improved by providing the diffuser before the compressor as shown. The pressure rise takes place in the diffuser. This pressure rise take due to conversion of kinetic energy of the incoming air (equal to aircraft velocity) into pressure energy by diffuser.	
e)	Compare: Ultimate analysis and proximate analysis.	04
	(any two point-04 marks)	••
	Sr. Ultimate Analysis Proximate Analysis No. Proximate Analysis	
	1Ultimate analysis of coal is complete breakdown of coal into chemical constituents.Proximate analysis of coal is complete breakdown of coal into physical constituents.	
	2 This analysis gives percentage of carbon, hydrogen, oxygen, sulpher and ash. This analysis gives percentage of moisture, volatile matter, fixed carbon and ash.	04
f)	Explain the working principle of tidal power plant with neat sketch.	04
	Working of Tidal power plant: During high tide the water flow from sea into the tidal basin through water turbine as the level of water in sea is more than tidal basin. This operates the turbine and generator and power is produced. Potential energy of sea water converted into mechanical energy by turbine and it converts into electrical by generators. During low tide water flow from tidal basin into sea as water level in the sea is lower than basin level in both cases generation of power is same. Only difference in that rotation of turbine blade is opposite.	02
	Sea Tidal basin	
	Power house Dam Dam Tidal basin Tidal basin Tide going out	01