

Summer-18 EXAMINATION Model Answer

Subject Title: Chemical process Technology-1

Subject code : 17314

Page **1** of **22**

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based one quivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer-18 EXAMINATION <u>Model Answer</u>

Subject Title: Chemical process Technology-1

Subject code : 17314

F

Page **2** of **22**

Q No.	Answer	Marks
1 A	Attempt any six	12
a)	Uses of sulfuric acid (any four)	1⁄2
	a) For manufacturing of Fertilizers	mark
	b) Oil refining	each
	c) Metal processing	for any
	d) Manufacturing of Rayon	four
	e) In Lead acid batteries	
	f) Detergent manufacturing	
b)	Raw material for sulfuric acid production	2
	1. Air	
	2. Sulfur	
	3. Water	
c)	Sulfuric Acid absorption	2
	If SO ₃ dissolved directly in water, then a large amount of heat is evolved. This	
	heat gives a dense form of minute particles of H_2SO_4 . These particles do not	
	easily condense down. Hence it is absorbed in conc. Sulfuric acid.	
d)	Properties of sulfuric acid: (any 4)	1/2
	Molecular weight: 98	mark
	• Melting point 10.5 °C	each
	• Boiling point 340°C with decomposition	for any
	• Completely miscible with water with large heat of solution	four
	• Formation of oleum with SO ₃	
e)	Merits of contact process	1 mark
	• Yield of sulfuric acid is more	each

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Title: C	Chemical process Technology-1 Subject code : 17314	Page 3 c
	Contact process can produce high concentrated sulfuric acid	for an
	• It reduces emission of SO ₂ .	two
f)	Uses of ammonia(any 4)	1/2
	1. For production of urea	mark
	2. For production of nitric acid	each
	3. For production of ammonium nitrate	for an
	4. For production of ammonium phosphate	four
	5. As refrigerant	
	6. In food industry	
g)	Methods for cement production	1 mar
	1. Dry Process	each
	2. Wet Process	
h)	Cell notation for diaphragm cell Anode Cathode Cathode	2
	Anode: $CI^ e^- \rightarrow \frac{1}{2} CI_2$	
	Cathode: Na ⁺ + H ₂ O + e \rightarrow Na ⁺ + OH ⁻ + $\frac{1}{2}$ H ₂	
	Overall : NaCl + H ₂ O \rightarrow NaOH + $\frac{1}{2}$ H ₂ + $\frac{1}{2}$ Cl ₂	
1B	Attempt any two	8
a)	Synthesis process for HCl (diagram and raw material)	
	Raw material	1
	1. Hydrogen	
	2. Chlorine	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer-18 EXAMINATION Model Answer

Subject code : 17314

Page **8** of **22**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ject Title: (Chemical process Technology-1 Subject code : 17314	Page 13 of 22
	chlorine water. It can be easily liquefied. It oxidizes, bleaches, disinfects.	
	Uses of Chlorine(any 2)	
	1. Pulp and Paper	
	2. PVC	1
	3. Chlorinated paraffin wax	
	4. Pesticides and insecticides	
	5. Water treatment	
	6. Rayon grade wood pulp	
	Properties of caustic soda (any 2)	
	MW : 40, BP : 1390° C, MP : 318° C , Very soluble in water with high	
	exothermic heat of reaction.	1
	Uses of Caustic soda (any 2)	
	1. Textile industry	
	2. Paper and Pulp	
	3. Alumina	1
	4. Soap and detergent	
	5. Dyes	
f)	Use of soda ash	1 mark
	Glass manufacturing	each
	• Soap/detergents	for any
	• Pulp and paper	four
	Desulfurization	
	• Textile processing	
4	Attempt any four	16
a)	Sodium Carbonate: Raw materials: Salt(brine), coal, limestone	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: C	hemical process Technology-1 Subject code : 17314	Page 14 of 22
	Chemical Reactions: Main reaction is	
	$CaCO_3(s) + 2NaCl (aq) = Na_2CO_3 + CaCl_2$	3
	This reaction takes place in a number of steps :	
	(b) $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)};$	
	(c) $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)};$	
	(d) $CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_2 (aq);$	
	(e) $NH_3(g) + H_2O \implies NH_4^+ + OH^-;$	
	(f) $CO_{2}(g) + OH^{-} \iff HCO_{3}^{-}$	
	(g) $CO_{2(g)} + H_2O \implies HCO_3 + H^+$	
	(h) Na ⁺ + Cl ⁻ + NH ₄ ⁺ + HCO ₃ ⁻ \rightarrow NH ₄ ⁺ Cl ⁻ (aq) + NaHCO ₃ \downarrow	
	(i) $2NaHCO_{3}(s) \longrightarrow Na_2CO_{3}(s) + CO_2(g) + H_2O(g);$	
	(j) $2NH_4Cl_{(aq)} + Ca(OH)_{2(s)} \longrightarrow 2NH_{3(g)} + CaCl_{2(aq)} + 2H_2O_{(l)}$	
b)	Conversion of Yellow Phosphorous to Red phosphorous	3
	Yellow phosphorus is converted into red phosphorous in covered retorts	
	containing a reflux condenser to retain any evolved phosphorous vapors. The	
	vessel is gradually heated and the contents melt and slowly change to red	
	phosphorus. This mass is solidified when approximately 70% has been	
	converted. Heat control is required as reaction is exothermic.	
	Reaction	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Chemical process Technology-1 Subject code : 17314	Page 15 o
	P_4 (Yellow) + heating = P_4 (Red)	1
c)	Comparison between dry &wet process	1 mark
	Dry process- 1) Cheaper 2) Accurate control of raw materials is not possible.	for
	3) Raw materials are mixed in dry condition 4) the dry process is used for the	each
	mfg. of cement when the raw material is either cement rock or blast furnace	point
	slag.	
	Wet process- 1) Costlier 2) Accurate control of raw materials possible.	
	3) Raw materials are mixed with water. 4) This process is used for any raw	
	materials.	
d)	Furnace used in Phosphorous manufacturing	4
	Water Phosphorus Slag	
e)	Water Gas (continuous process):	
	Raw materials: Steam, coal, oxygen	
	Reactions:	
	$C + O_2 \longrightarrow CO_2$	
	$C + H_2O \longrightarrow CO + H_2$	4

t Title: C	Chemical process Technology-1Subject code : 17314	Page 16 of 2
	Process description:	
	This process was invented in 1940 by Germans. This process is based on use	
	of tonnage or low purity grade oxygen made by air separation procedure.	
	The correct ratio of steam, oxygen and coal is added to the reactor to yield a	
	self-sustaining reaction of approximately zero heat release. Subsequent	
	innovations allow for ash content >30% so Indian coal can be used in this	
	process.	
	Or	
	Water Gas (regenerative process):	
	The plant is provided with two generators one operates on blow period which	4
	heats carbon and the other on a run period where exothermic reactions accur.	
	During the steam run water gas is produced. This is come out through an exit	
	near the top and collected.	
	During the air run warming up process when air is blown in the products of	
	combustion mainly Nitrogen,CO ₂ ,CO are allowed to pass into the atmosphere	
f)	Uses of hydrogen (any four)	1 mark
	• For the production of ammonia	each for any
	• For the production of inorganic acids	four
	• As a fuel in rocket	
	• As a coolant in generator	
	• For the hydrogenation of vegetable oil	
	• For enhancement of plasma welding	
	It is used as automobile fuels	
5	Attempt any two	16
a)	Ammonium Nitrate	

Summer-18 EXAMINATION Model Answer

bject Title: Chemical process Technology-1 Subject code : 17314	Page 18 of 22
2100 °C . Molten CaC ₂ is solidified and cooled and ground under nitrogen	
In the wet process the pulverized carbide is fed through a gas tight hopped	r to a
C2H2 generator in which the quality of water used is sufficient to disch	harge
$Ca(OH)_2$. The carbide is fed to water at a measured rate until exhausted.	
Calcium hydroxide slurry containing 90% water is discharged. The g	as is
passes through a scrubber to remove impurities like NH ₃ , sulphides, phos	sgene
and finally through a purifier containing iron oxide and alumina or silica	a gel.
The temperature in the gas generator is kept below 90°C and a pressure	e of 2
atm.	
In a dry process equal weights of the quantities H ₂ O and CaC ₂ are used i	n the
generator to eliminate waste disposal problem of lime slurry. The here	at of
reaction is largely dissipated by water vaporization leaving by product lin	ne in
dry state.	
The dry process is more dangerous because of the temperature control i	n the
generator. Acetylene polymerizes at 250°C and above and decomp	poses
violently at 650°C. Hence temperature is maintained below 150°C and 3	0 cm
of water pressure.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	effects like acidity will not be there. Usually mixed fertilizer are prepared to	
	suit a group of crops and soils	11
6	Attempt any four	16
a)	Block dihram of CO ₂ production (from flue gas)	4
	the family (or	Marks
	the trips 1	can be
	Fine Flue das - Hand + Absorber - Striver - be + Comp - Coz	given
	gas science house house highware rese	for any
	fartitus + poo	method
b)	Plaster of Paris, quick-setting gypsum plaster consisting of a fine white	2
	powder (calcium sulfate hemihydrate), which hardens when moistened and	
	allowed to dry. Known since ancient times, plaster of paris is so called because	
	of its preparation from the abundant gypsum found near Paris.	
	Uses:	
	passive fire protection, as fireproofing products	
	Insulation	
	Filler in fertilizer	2
	Decorative purpose	
c)	Biurete	
	It is the result of condensation of two molecules of urea and is a problematic	2
	impurity in urea-based fertilizers.	
	$2 \text{ CO}(\text{NH}_2)_2 \rightarrow \text{H}_2\text{N-CO-NH-CO-NH}_2 + \text{NH}_3$	1 mark
	Uses of Urea	each
	1. As a fertilizer	for any
	 Cattle feed For production of urea formaldehyde 	two
	4. As a flame retreading agent	uses

