

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

17320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	а	Attempt any six:	12-Total Marks
	i	Convert (AC) H into binary and octal.	2M
	Ans:	1) $(AC)_{H} = (?)_{2} = (?)_{8}$ =(1010 1100) ₂	1M
		2) $(AC)_{H} = (10 \ 101 \ 100)_{2} = (254)_{8}$ 2 5 4	1M
	ii	Draw symbol, Truth table and logical equation of Ex-OR gate.	2M
	Ans:		½ M
		Symbol	½ M

SUMMER-18 EXAMINATION

SUMMER-18 EXAMINATION **Subject Name: Principles of Digital Techniques** Subject Code: 17320 **Model Answer** J Q J Q С C Q Q ĸ ĸ Specify the function of -2M v 1) IC 74245: 2) IC 74151: 1) IC 74245: Octal Bus Transceiver 1M Ans: (Minimum a) It is octal bidirectional buffer IC One function) b) It is used as a driver for the data bus c) Total 16 bus drivers, 8 for each direction with tristate output d) The direction of data flow is controlled by DIR pin 1M (Minimum

2) IC 74151: 8:1 Multiplexer One a) It has 8 inputs and 1 output function) b) 2^N =8, N=3 select lines, whose bit combination determines which combination is selected at output vi What is Flash memory? 2M Ans: 1. Flash Memory is nonvolatile RAM memory (Any 4 points) 1/2 M each 2. It can be Electrically erased and reprogrammed 3. Flash memory can be written into blocks size rather than byte. It is easy to update. 4. It is faster than EEPROM as EEPROM edit the data at Byte level. 5. As large block of data can be erased at one time (or flash)thus called as flash

SUMMER- 18 EXAMINATION

i	Perform binary subtraction using 2's complement method. $(12)_{10} - (08)_{10}$	4M
b	Attempt any TWO:	08-Tota Marks
	(Relevant advantages should be considered)	
	5. High current sourcing and sinking capabilities.	
	4. TTL is compatible to other logic families.	
	3. No latch ups.	
	2. Power dissipation is independent of Frequency.	
Ans:	1. Low propagation delay, hence TTL circuits are fast.	½ M ead (any 4)
viii	List advantages of TTL logic family.	2M
	(Any suitable relevant application should be considered)	
	4. Acquisition of analog values in automotive, audio and TV application	
	3. Battery operated equipment	
	2. Low power converter for remote data acquisition	
Ans:	1. In Process control system	1 M(Any two)
vii	Write applications of DAC and ADC.	2M
	2. Digital camera's embedded controller.	
	7. Applications: 1. Cellular phone	
	6. Features: High speed, low operating voltage and low power consumption	
	memory.	

SUMMER- 18 EXAMINATION

ubject	Name: Principles of Digital Techniques <u>Mode</u>	I Answer Subject Code:	17320
Ans:	1. Finding equivalent binary for (12) ₁₀ and (08	3)10	1M
	$(12)_{10} = (1100)_2$		
	$(08)_{10} = (1000)_2$		1M
	2. Taking 1's complement of (1000) ₂		
	1's complement of 1000 => 0111		
	+ 1		1M
	2's complement 1000		
	3. Adding $(12)_{10}$ and 2's complement of $(08)_{10}$	10	1M
	1100		
	+ 1000		
	carry 0 1 0 0		
	4. If carry comes discard carry		
	5. Answer is positive and in real form =(0100)) ₂ = (04) ₁₀	
ii	Convert following expression into canonical SOP fo	prm	4M
	Y = A + BC + ABC		
Ans:	Y = A + BC + ABC		1M For each step
	= A.1.1 + BC.1 + ABC	Multiplying each sum by missi	ng term
	$= A(B + \overline{B})(C + \overline{C}) + BC(A + \overline{A}) + ABC$	As (<i>B</i> +	$\overline{B}) = 1$

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques Subject Code: 17320 **Model Answer** $= ABC + A\overline{B}C + AB\overline{C} + ABC + A\overline{B}\overline{C} + \overline{A}BC + ABC$ discarding similar terms (A+A=A) Thus the canonical form of given expression is $Y = ABC + A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}BC$ Draw excitation table for RS Flip-flop and JK flip-flop. 4M iii 2M for Ans: SR Flip-flop JK flip-flop each R Q(t) Q(t+1) S K Q(t+1) Q(t)J table х 0 0 0 0 0 0 х 0 1 1 0 0 1 1 х 1 0 0 1 1 0 1 х 1 х 0 1 1 0 1 х Excitation table for SR Flip Flop Excitation table for JK Flip Flop Sub Ο. Answers Marking No. Q. Scheme N. 2 **Attempt any FOUR:** 16-Total Marks Compare TTL, ECL and CMOS logic family on following points: а 4M (i) **Basic gates** (ii) Component used (iii) Propagation delay (iv) Power dissipation 1M Ans: Parameter TTL ECL CMOS EACH NAND NOR-NAND **Basic gates** OR-NOR Component used Difference Transistors CMOS amplifiers

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

							Truth Table
							Table
. Truth Table							
. Hutti tubic							
Timing Pulse	Serial output	QD	Q _C	Q _B	QA	Serial	
	at Q _D					Input	
Initial value	0	0	0	0	0		
After 1 st	0	0	0	0	1 👞	_ 1	
clock pulse							
After 2 nd	0	0	0	1	_1 ◄	- 1	
clock pulse							
After 3 rd	0	0		1	_ • ◄	0	
clock pulse					1		
After 4 th clock pulse	1 🛶	1 *	1	0	1 🗸	- 1	
After 5 th clock pulse	1 🛶	1	0	1	0	0	
							2M-
After 6 th clock pulse	0 🔶	0	1	0	0	0	wavefor
After 7 th	1 🗲	1	0	0	0	0	m
clock pulse	1 -	1-	0	0	0	0	
CIOCK puise					1	1 1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

synchro nised T, clk, Vcc

SUMMER-18 EXAMINATION

	+ 00110011	
	10010111	

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16-Total Marks
	а	Minimize the following expression using k-map and realize it using basic logic gates. Y= Σ m (1, 3, 4, 5, 6, 7)	4M
	Ans:	AB = BC = AF = AB	2 M – K- map & 2M - Realization

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

40 ~ 1 ~

Subject	SUMMER– 18 EXAMINATION Name: Principles of Digital Techniques <u>Model Answ</u> er Subject Code: 173	20
	 On the other hand when A and B both high, the emitter 1 1 0 diodes of Q1 stop conducting and collector diode goes into forward conduction. This forces Q2 to turn on. In turn Q4 goes on and Q3 turn off, producing a low output as show in truth table. Without Diode D1, Q3 will conduct slightly. 	
d	 (i) Perform BCD addition. (983)₁₀ + (274)₁₀ (ii) State the rules of BCD additions 	4M
Ans:	(i) BCD Addition: Decimal BCD 983 1001 1000 0011 274 + 0010 0111 0100 1011 1111 0111 0110 0110	2M
	 (ii) Rules of BCD Addition: 1. If sum is less than or equal to 9 with carry equal to 0, then the sum is in proper BCD form and requires no correction. 2. If sum is greater than 9 but carry equal to 0, then it's an invalid BCD. Then we have to add decimal 6 or BCD 0110 to get the correct BCD. 3. If sum is less than or equal to 9 but carry equal to 1, then too it's an invalid BCD. Then we have to add decimal 6 or BCD 0110 to get D110 to the sum to get the correct BCD. 	2M
e	Draw and explain working of single slope ADC.	4M

Subject Name: Principles of Digital Techniques

Subject Code:

SUMMER- 18 EXAMINATION

		he meantime the conte hes and are displayed o		conversion are contained nt display.	in the
f	Differentia	te between			4M
	(i)	Static RAM and dyr	namic RAM		
	(ii)) Volatile and Non-V	olatile memory		
Ans:	(i)	Static RAM and dyr	namic RAM		2M eac (Any 2
		Parameter	Static RAM	Dynamic RAM	points)
		Circuit Configuration	Each SRAM cell is	Each cell is one	
			a flip flop	MOSFET & a capacitor	
		Bits stored	In the form of voltage	In the form of charges	
		No. of components per cell	More	Less	
		Storage capacity	Less	More	
	(ii)) Volatile and Non-V Parameter	olatile memory Volatile memory	Non-Volatile memory	
		Definition	Information is if power is turned off	Information is not lost if power is turned off	
		Classification	All RAMs	ROMs, EPROM, magnetic memories	
		Effect of power	Stored information is retained only as long as power is on	on stored	
		Applications	For temporary	For permanent	

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR:	16-Total Marks
	a	 (i) Add binary numbers. (10110.110)₂ + (1001.1)₂ (ii) Multiply (1110)₂ X (101)₂ 	4M
	Ans:	(i) $(10110.110)_2 + (1001.1)_2 = (100000.01)_2$ 10110.11 + 1001.1 100000.01 (ii) $(1110)_2 \times (101)_2 = ()_2$ 1110 $\times 101$ 1110 $\times 101$ 1110 + 0000 - + 1110 1000110	2M 2M
	b	Realize the following expression using only NOR gate. $Y = (ABC + \overline{B} + \overline{C}).C$	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques <u>M</u>

Model Answer

Subject Code:

	Output Trans						1M – Step 3
		nuons					5
	Present	Next		a .			
	State	state	Fli	p-flop inj	puts		
	Q2 Q1 Q0	Q2 Q1 Q0	J2 K2	J1 K1	J0 K0		
	000	001	0 X	0 X	1 X		
	001	010	0 X	1 X	X 1		
	010	011	0 X	X 0	1 X		
	011	100	1 X	X 1	X 1		
	100	101	X 0	0 X	1 X		
	101	110	X 0	1 X	X 1		
	110	111	X 0	X 0	1 X		
	111	000	X 1	X 1	X 1		
	State Table and	Correspondin	g Excitatio	n Table (c	l=don't care	e)	
Step 2:							
Build Karnaug	h Map or Kmap for ea	ach JK inputs:					

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques **Model Answer** Subject Code: 17320 Ans: A1 Q A2 = \overline{Q}_{\pm} Aı Q A2 0 0 1 1 1 0 0 1 A2 **Circuit Diagram Truth Table** Operation: Assume that the output of gate 1 i.e. Q = 1. Hence $A_2 = 1$. As A₂ = 1, output of gate 2 i.e. \overline{Q} = 0 which makes A₁ = 0. Hence Q continues to be equal to 1. Similarly we can demonstrate that if we start with Q = 0, then we obtain Q = 0 and . $\overline{Q}_{=1}$ f Identify function of IC 7481 and IC 2716 and draw its pin diagram. 4M Function of IC 7481 and IC 2716: Ans: IC 7481 - Bipolar RAM In 4 x 4 Matrix IC 2716 – 16 KB EPROM Each A7 🛛 1 24 🛛 VCC A6 🛛 2 23 | A8 X3 14 Function X2 1 A5 🛛 3 22 | A9 1M Write T A4 🛛 4 21 🛛 Vpp 20 h G A3 🛛 5 Pin Sense 'I' A2 🛛 6 19 🛛 A10 Diagram 2716 IC. 18 | EP A1 [] 7 Sense W 11 7481 1M 17 h Q7 8 || 0A GND Q0 | 9 16 🛛 Q6 15 h Q5 Q1 1 10 Write 104 14 🛛 Q4 Q2 [11 12 7 8 Y3 13 Q3 VSS 🛛 12

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

Q. No.	Sub Q. N.	Answers	Marki	ng Scheme
5		Attempt any FOUR:	16-To	tal Marks
	а	Compare single slope ADC and dual slope ADC (any four points).	4M	

Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Subject Code:

Ans:				(any
	Sr.	Single slope ADC	dual slope ADC	four points-
	No.			1 Mk
	1	Single-slope ADCs are appropriate for very high accuracy of high-resolution measurements where the input signal bandwidth is relatively low	Dual slope ADCs provides increased range, the increased accuracy and resolution.	for each Point).
	2	Less cost	Costly	
	3	The name implies that single-slope ADC use only one ramp cycle to measure each input signal	Dual-Slope ADC operate on the principle of integrating the unknown input and then comparing the integration times with a reference cycle.	
			Conversion result is insensitive to errors in the component values	
	5	Poor noise immunity	Good noise immunity	
	6	Speed more	Speed less	
	7	Simple circuitry	Complicated circuitry	
b	How	are memories classified ? Expla ories.	in any two types of	4M
Ans:	·			Classification 2N
	Mer √	v v v uential Read and Read	<u>↓</u> ↓	Explanation (an 2-1 Mk each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)	
SUMMER- 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code: 17	320
 1) RAM :	
 Random access memory is also called as read-write memory. In this type of memories, the memory locations are argenized in such a way. 	
• In this type of memories, the memory locations are organized in such a way that the	
access time required for any location is same.	
• Data stored at any location can be changed during the operation of the system.	
2) Static RAM	
 This type of memory can be implemented by bipolar as well as MOS technology. 	
• It is possible to store data as long as power is applied to the chip.	
The basic cell in SRAM is a flip-flop	
3) Dynamic RAM	
• In dynamic RAM, the data is stored in the form of charge on the capacitor.	
 Its formed using MOSFET and capacitor. 	
 It needs to be refreshed after every few milliseconds. 	
4) Flash Memory:-	
• Flash memory is non-volatile RAM memory that can be electrically erased and reprogrammed.	

- Flash memory can be written to in block size rather than byte, it is easier to update it.
- Due to this, the flash memories are faster than EEPROMS which erase and

	write new data of byte level.	
	• This type of memory has been named as 'flash memory' because a large	
	block of memory could be erased at one time, i.e. in a single action or 'flash'.	
	• Important features are high speed, low operating voltages, low power	
	consumption.	
	• Typical application areas are digital camera's embedded controllers, cellular	
	phones etc.	
	5) Programmable Read Only Memories (PROM):-	
	• PROM is electrically programmable i.e. the data pattern is defined after final	
	packaging rather than when the device is fabricated.	
	• The programming is done with an equipment referred to as PROM	
	programmer.	
	• The PROM are one time programmable. Once programmed, the information	
	stored is permanent.	
	6) Erasable Programmable Read Only Memories (EPROM):-	
	In these memories, data can be written in any number of times i.e. they are	
	reprogrammable.	
	Reprogrammable ROMs are possible only in MOS technology. For erasing the	
	contents of the memory, one of the following two methods are employed:	
	a) Exposing the chip to ultraviolet radiation for about 30minutes (UVEPROM)	
	b) Erasing electrically by applying voltage of proper polarity & amplitude.	
	Electricity erasable Prom is also referred to as E ² PROM or EEPROM or EAROM	
	(Electrically alterable ROM)	
с		4M
	Why NAND and NOR gates are called as universal gates. Derive	
	basic gates using NOR gates only.	

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques <u>Model Answ</u>er

Subject Code:

	Vcc 4:1 Y R RS F/F Q ND. A B select inputs <u>Fig. No. 2</u>							
Ans:						Correct Trut		
	Α	B=S	Y=R	Q	Q	table (4 Mks		
	0	0	I ₀ =1	0	1			
	0	1	I ₁ =0	1	0			
	1	0	I ₂ =1	0	1			
	1	1	I ₃ =0	1	0			
е	Dra	w bin	nary to	o gra	ау сос	4M		

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code: 17320

В	inary	ı Inp	ut	Gray Output				
B ₃	B ₂	B ₁	B ₀	G3	G ₂	G1	G ₀	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	
K-	MAP	FOF	R G3:					

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

								Dago 22 / 12
f	Drav	w 4 -	bit	twist	ted r	ing c	ounter and explain working with truth table and	4M
_								
			<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	1	1	1	1	0	0		
	1	1	0	1	0	1		
	1	0	1	1	1	1		
	1	0	0	1	1	0		
	0	1	1	0	1	0		

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

→ 0 1	0	0	4230						
1		U	0	0					
	1	0	0	0					
2	1	1	0	0					Truth Table
	1	1	1	0					
	1	1	1	1					
5	0	1		1					
				1					
匚7	0	0	0	1					
Q. 0	•				0	0	0	0	
	0	0	1	1		0	 0	0	
Q ₁	i	1		1	1	1	 0	0	
Q,	•	0			i	1	Ļ		Waveform:
-	1			l	1	1	1		travelor
Q:3	0	•				1			
					-				
	2 3 4 5 6 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Subject Name: Principles of Digital Techniques

Model Answer Subject Code:

SUMMER- 18 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6		Attempt any FOUR:	16-Total
			Marks
	A	Draw the pinout configuration for	4M
		(i) IC 7402	
		(ii) C 7404	
	Ans:	Pin Diagram of IC 7402	2M
		Vcc 14 13 12 11 10 9 8 10 10 10 10 10 10 10 10 10 10	
		Pin Diagram of IC 7404	2M
	В	Implement 1:16 Demux using 1:4 Demux write a truth table.	4M

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code: 17320

Ans:	Pin diagram					Pin
			SYMBOL	PIN	DESCRIPTION	diagram:
			AINO	1	analog inputs (A/D converter)	
			AIN1	2		2M
		1	AIN2	3	-	(consider
	AIN0 1	16 V _{DD}	AIN3	4		(0011010101
	AIN1 2	15 AOUT	A0 A1	5	hardware address	even if
	AIN2 3	14 V _{REF}	A2	7		
		13 AGND	V _{SS}	8	negative supply voltage	description
	AIN3 4 PCF8591		SDA	9	I ² C-bus data input/output	not given)
	A0 5	12 EXT	SCL	10	I ² C-bus clock input	not given/
	A1 6	11 OSC	OSC	11	oscillator input/output	
	A2 7	10 SCL	EXT	12	external/internal switch for oscillator input	
			AGND	13	analog ground	
	V _{SS} 8	9 SDA	V _{REF}	14	voltage reference input	
		-	AOUT	15	analog output (D/A converter)	
	Pin diagram (DI	P16).	V _{DD}	16	positive supply voltage	
	 Single power supply Operating supply Low standby currer Serial input/output Address by 3 hard Sampling rate give 4 analog inputs pr differential inputs Auto-incremented Analog voltage rational supply voltage rational successive and 8-bit successive and Multiplying DAC 	voltage 2.5 V ent it via I ² C-bus ware address en by I ² C-bus ogrammable I channel sele ange from VS d hold circuit	s pins speed as single-e ection S to VDD	versio		Any 4 features ½ M each

SUMMER- 18 EXAMINATION

d	Design and draw MOD-6 counter using IC 7490.										
Ans:	Clock is counter and QB Truth ta	Design 2 M diagram 2N									
	Clock		Outpu	ut							
		Q _C	Q _B	Q _A							
	0	0	0	0							
	1	0	0	1							
	2	0	1	0							
	3	0	1	1							
	4	1	0	0							
	5	1	0	1							
	6	0	0	0							
	$R_{9(1)} R_{9(2)}$ $R_{0(1)}$ $R_{0(2)}$ $R_{0(2)}$ $R_{0(2)}$ $R_{0(2)}$ $R_{0(2)}$										
e	Draw b	LSB	diagra		LU 74181 and explain.	4M					

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

 Note :- Mark should be given even if MSB resistor is taken as R and calculated using formula, $V_o = V_D + \frac{V_C}{2} + \frac{V_B}{4} + \frac{V_A}{8}$	