

SUMMER- 18 EXAMINATION

Subject Name: PUBLIC HEALTH ENGINEERING Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Subject Code: 17503

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	A)(b)	Enlist types of pipes. State the factors affecting selection of pipe material.	
	Ans	Following are the types of pipes:	
	-		
		i) Cast iron pipe	
		ii) Wrought iron pipe	02 M for
		iii) Steel pipe	any eight
		iv) Concrete pipe	any eight
		v) Asbestos pipe	
		vi) Copper pipe	
		vii) Lead pipe	
		viii) Plastic pipe	
		ix) GI pipe	
		Factor affecting selection of pipe material:	
		i) Carrying capacity of the pipes.	
		ii) Durability of pipe.	02 14 (
		iii) Type of water to be conveyed and its possible corrosive effects on the pipe material.	02 M for
		iv) Availability of funds.	any four
		v) Maintenance cost, repairs etc.	
Q.1	A)(c)	State any four qualities of good trap.	
Q. 1	Ans	i) It should be simple in construction.	
	7 (115	ii) It should be non-absorbent material.	Any four
		iii) It should provide sufficient depth of water seal.	01 M for
		iv) It should be self-cleansing.	each
		v) It should have smooth internal and external surface.	Cach
		vi) It should not obstruct the sewage flow.	
0.1	A \ (al)	vii) It should have provision for means of access.	
Q.1	A)(d)	Write step-by-step procedure of laying of sewers.	
	Ans	Following are the steps of laying of sewer.	
		Procedure of laying of sewer:	
		i) Marking the center line of sewer.	~
		ii) Excavation of trenches.	04 M
		iii) Bracing and dewatering of trenches.	
		iv) Laying of sewer.	
		v) Jointing of sewer.	
		vi) Testing of sewer.	

Ans	Item	Slow Sand Filter	Rapid Sand Filter	
	Pre treatment	Not required except plain sedimentation	Coagulation, Flocculation and Sedimentation	
	Base materials	Gravel base of 30 to 75 cm depth with 3 to 65mm size graded gravel.	Gravel base of 45 to 50 cm depth with gravel size varies from 3 to 50 mm in 4 or 5 layers	
	Filter sand Effective size Uniformity coefficient Thickness of sand bed	 0.25 to 0.35 mm 3 to 5.0 80 to 100 cm 	 0.45 to 0.70 mm 1.2 to 1.7 60 to 75 cm 	
	Under drainage	Open jointed pipes or drains covered with perforated blocks	Perforated pipe laterals discharging into main header	Any Six points 01 M f
	system Size of each unit	50 to 200 sq.m	10 to 100 sq.m	each
	Rate of filtration	100 to 200 Lph/sq.m	4800 to 7200 Lph/sq.m	
	Cost Installation O&M	 High Low 	 Low High 	
	 Efficiency Turbidity of feed water Removal of bacteria 	Low; < 30 NTU 98 to 99%	Any level of turbidity of feed water; (with pre-treatment) 80 to 90%	
	Suitability	For water supply to rural areas and small town	For public water supply to towns and cities	
	Post treatment	Slight disinfection	Complete disinfection is a must	
	Ease of construction	Simple	Complicated;	
	Skilled supervision	Not essential	Essential	
	Loss of head Initial Final	 10c m 80 to 120 cm	30 cm250 to 350 cm	2
	Method of cleaning	 Scrapping and removing Schmutzedecke and 1.5 to 3 cm thick sand layer Laborious 	 Back washing with or without compressed air agitation Simple and easy 	
	Quantity of wash water required	0.2 to 0.5% of total water filtered	1 to 5% of the total water filtered	
	Cleaning Interval	Three to four months	One to two days	

.1	B)(b)	State the permissible limits as per I.S. j (i) Colour (ii) Hardness (iii) pH (iv)	for following parameters of drinking water: Turbidity (v) Chloride (vi) Temperature	
	Ans	Parameters	Permissible	
		a) Color	5 on platinum cobalt scale	
		b) Hardness	75 – 115 ppm (Max 600)	
		c) pH	6.5 to 8.5	01 M for
		d)Turbidity	5 - 10 NTU	each
		e) Chlorides	Less than 250 mg/lit	
		f) Temperature	$10^{\circ}\text{C} - 15.60^{\circ}\text{C}$	
2		Attempt any FOUR of the following:		
	(a) Ans		xplain any one of them with neat sketch.	
		i) Cascade aerator.		
		ii) Spray Nozzles.		02 M
		iii) Air diffusion method.		
		iv) Trickling bed method.		
		i) Cascade aerator.		
		They consist of concrete steps over wh	ich water comes down in thin sheet.	
		Weir may be provided at the edge of ea	ach step.	
		Thin sheet of water which comes down	over steps comes in contact with the	
		atmosphere. Fig. shows aeration by ca	scades.	
			Elevation	
				Any one 02 M
			Plan	
		Each nozzle is 2.5 to 4 cm diameter dis	s with special nozzles to produce a fine spray. charging about 18 to 36 l/h. Nozzle spacing nas aerator area of 0.03 to 0.09 m2 for one hou	r.
		Dis millione		
			R R R R	
		iii) Air diffusion method.		

to release fine air bubbles from compressor unit. The tank depth is kept as 3 to 4 m and tank width is within 1.5 times its depth. If depth is more, the diffusers must be placed at 3 to 4 m depth below water surface. Time of aeration is 10 to 30 min and 0.2 to 0.4 litres of air is required for 1 litre of water.	
iv) Mechanical Aerators. Mixing paddles as in flocculation are used. Paddles may be either submerged or at the surface.	
(Note: Students may explain any one of the above)	
Explain purpose of Grit Chamber. State its location. The grit chamber is used to remove grit, consisting of sand, gravel, cinder, or other heavy solids materials that have specific gravity much higher than those of the organic solids in wastewater.	
 i) To protect moving mechanical equipment from abrasion and abnormal wear. ii) Avoid deposition in pipelines, channels, and conduits. iii) To reduce frequency of digester cleaning. 	03 M
Grit chamber is located after screen.	01 M
Explain Grid iron system of water distribution with neat sketch.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 M
	tank width is within 1.5 times its depth. If depth is more, the diffusers must be placed at 3 to 4 m depth below water surface. Time of aeration is 10 to 30 min and 0.2 to 0.4 litres of air is required for 1 litre of water. iv) Mechanical Aerators. Mixing paddles as in flocculation are used. Paddles may be either submerged or at the surface. (Note: Students may explain any one of the above) Explain purpose of Grit Chamber. State its location. The grit chamber is used to remove grit, consisting of sand, gravel, cinder, or other heavy solids materials that have specific gravity much higher than those of the organic solids in wastewater. Purpose: i) To reduce frequency of digester cleaning. Location: Grit chamber is located after screen. Explain Grid iron system of water distribution with neat sketch.

		Grid iron system.	
		This is also called interspaced or reticulation system. In this system, the water mains and	
		branches are laid in rectangles. The sub-mains, mains and branches are interconnected	
		with each other.	
		Advantages:	
		(a) In case of repairs, a very small portion of the distribution system area will be	
		affected.	01 M
		(b) In case of fire, water is available from all directions.	
		(c) As there are no dead ends, water circulates freely.	
		(d) Loss of head is minimum at all points in the system.	
		Disadvantages :	
		(a) The cost of laying of water pipes is more.	01 M
		(b) Exact calculation of pipe sizes is difficult.	OT IVI
		(c) Long pipes are required.	
		(d) More valves are required for operation.	
Q.2	(d)	Enlist different types of sewer according to shape. Explain any one of them.	
Q	Ans	Following are the types of sewer according to shape:	
		i) Rectangular	
		ii) Circular	Any four
		iii) Semi elliptical	1/2 M for
		iv) Horse shoe	each
		v) Egg shaped	
		i) Rectangular	
		This is constructed with RCC which may be precast or cast in situ. This type of section	
		used only for large discharges because for small discharges self-cleansing velocity will	
		not be developed.	
			Any one
			02.14
		- Aller	02 M
		ii) Circular	
		These shape are more common now a days. This section gives the least perimeter for	
		high area.	
		This section is economical , can be easialy manufactured, transported. These pipe may	
		be made of precast asbestos, RCC or steel.	
			<u> </u>

iii) Semi elliptical

This section is suitable for sewer carrying large discharge over long periods. It is structurally more stable, has a good hydraulic properties, it is usually constructed with RCC.

iv) Horse Shoe type

This section has semicircular shape on the top with the side inclined. The invert may be circular or parabolic.

It is constructed with RCC and is used for heavy discharge.

v) Egg shaped :

These type of sewer section are commonly used, because in dry weather self-cleansing velocity is available due to greater depth as compared to other sections. It has good hydraulic properties, even better than circular section.

(Note : Students may explain any one type sewer)

			1
Q.2	(e)	Draw a neat labelled sketch of 'Q' and 'S' trap.	
	Ans		
		Water Seal Q- Trap	02 m for each
Q.2	(f)	State the importance of building sanitation.	Any four
	Ans	Building sanitation is important because of following reasons:	01 M for
		1) It helps in preventing the occurrence of diseases such as typhoid, malaria, smallpox,	each
		chickenpox etc.	
		2) It helps in collecting and disposing off the waste of the community in systematic way.3) It helps in preventing the pollution of natural streams and rivers.	
		4) It helps in protecting water supplies from pollution.	
		5) It helps in maintaining good environments for the health of the public.	
		6) It helps in development of city.	
		7) It helps in removing rain water from a town	
Q.3		Attempt any FOUR of the following:	
	(a)	Enlist different types of Intakes. Explain anyone with neat sketch.	
	Ans	Following are the different types of intake structures:	
		i) Canal intake	
		ii) Reservoir Intake iii) River Intake	01 M
		iv) Lake Intake	
		i)Canal Intake:	
		A canal intake consists of pipe placed in brick masonry chamber constructed	
		partially in canal bank. On the one side of the chamber, an opening is provided with	
		coarse screen for the entrance of water. The end of the pipe inside the chamber is	
		provided with bell mouth fitted with fine screen. The outlet pipe carries the water to	
		the other side of canal bank, from where it is taken to water treatment plant.	
			Any one
			02 M for
			fig. and
			_

		Simple plumbing system. Difficult in construction.	
		economical Costly as compare to one pipe system	
Q.3	(c) Ans	Explain construction and working of Standard rate trickling filter. Also state its advantages & disadvantages. A trickling filter is an artificial bed of stone or broken brick material, over which waste water is distributed and applied in drops as shown in fig. Mosquito-proof dome Vent shaft Vent shaft Seal	02 M
		A slim layer is formed on the surface media, in which bacteria are there to consume th organic matter Advantages:	e
		 i) Simple in construction. ii) Reduce BOD to the extent of 75%. iii) Flexible in operation. iv) Give highly nitrified and stabilized effluent. v) Do not require skilled supervision. Disadvantages: 	01 M
		 i) High construction cost. ii) Bad smell and fly nuisance. iii) Require primary treatment. iv) Require larger area. 	01 M
Q.3	(d) Ans	State any four factors affecting demand of water.factors affecting demand of wateri) Size of city: Demand of water α Size of city.ii) Habits of people: Demand of water α Living standard.iii) Climatic conditions: Summer – More, Winter – Less, Rainy – Very less.iv) Cost of water: Demand of water α (1/Cost).v) Commerce and industry: Increases Demand of water.vi) Quality of water: Increases Demand of water.vii) Efficiency of water supply system:viii) System of sanitation: Demand of water α System of sanitation.ix) System of supply: Continuous and intermitant.	Any four 01 M for each
Q.3	(e) Ans	 x) Metering of supply: Reduces demand of water. What is water conservation? State the necessity of ground water recharging Water conservation: Water conservation includes all the policies, strategies and 	

		 activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand. Necessity of ground water recharging i) No space is required for building reservoir ii) Cost of building reservoir by recharging aquifer is considerably less. iii) Quality of water obtained from underground reservoir is good as compared to surface reservoir. iv) Loss of water due to evaporation is much less than the water lost from surface reservoir. 	02 M 02 M
Q.4	(A) (a) Ans	Attempt any THREE of the following: Draw a neat sketch of clariflocculator. ENVIRON HIGH TORQUE CENTRE DRIVE PLATFORM INTAKE WELL FOCCULATOR IMPELLER CENTRAL SHAFT SCRAPER ARMS CENTRAL SCRAPER	Neat sketch 02 M Labeling 02 M
Q.4	(A)(b) Ans	 Enlist flushing cisterns. Explain any one of them. 1. Low-Level Cistern: A cistern intended to operate at a height not exceeding 30 cm between the top of the pan and the underside of the cistern. 2. Coupled Cistern: cistern intended to operate sitting on flat surface provided at the back portion of wash down water-closets. 3. Dual-Flush Cistern: A construction that enables the user to cause a short flush of partial discharge when only urine needs to be flushed away instead of the customary full flush. 	Enlist 03 M Explain any one 01 M
Q.4	(A)(c) Ans	 State systems of sewerage and describe any one. The sewerage system can be of following three types: Combined system: Separate System: Partially separate system: Combined system: Combined system: Combined system: Model of system: In combined system along with domestic sewage, the run-off resulting from storms is carried through the same conduit of sewerage system. In countries like India where actual rainy days are very few, this system will face the problem of maintaining self-cleansing velocity in the sewers during dry season, as the sewage discharge may be far 	03 M

		1			<u>(, ,)</u>		<u> </u>		1
		lower as compa	red to the des	sign discharge a	atter incl	udings	storm water.		
		storm water ru water body sin provided. When discharged into Separate system 3. Partially In this system p courtyards of the residences and	em, separate in-off. The st ce the run-of eas, the sewa the water is advantage separate sys art of the stor buildings is institutions, e	orm water col f is not as fou ge collected fro body or used ous and econo tem: m water espec admitted in the tc. The storm w	lected of as sev om the of for irrig mical fo ially coll e same of vater fro	can be vage a city is t gation r big to ected f frain al	directly disch nd no treatm reated adequa to meet des owns. From roofs and ong with sewa	age from	Any one 01 M
0.1	() ()	separately using							
Q.4	(A)(d) Ans	Differentiate be			process	•]	
	All3	points	Α.	erobic process			Anaerobic	process	
		How it Works	that requi circulated treatment bacteria tl	rocesses use ba re oxygen, so a throughout the tank. These ae nen break down hin the wastew	ir is e erobic n the	live ir no ox matte bioga amou carbo		ewater into s large ne gas and	01 M for each point
		Why it is Usec	d communit sewage sy	ral areas or sm ies where cent stems would b mpractical to t.	ral	genei	r input require rates much les ess) than aerc		
		Maintenance Issues		and Mechanica gular inspectio nce.	-	anaeı depei	nal operation robic treatmen ndent upon w eratures that	nt systems is armer	
		Costs and Concerns Associated wit Use	h are more	eatment units expensive to op al septic systen	berate	sludg syste	ire lower costs e than aerobio ms. more:		
Q.4	(B)	Attempt any Ol		-	_	_			
	(a)	The following is		-					
								ation at the end	
		of year 2041 by			-	calcula			
			1971 39701	1981 50157	1991 68107		2001 93351	2011 115307	
	Ans	population after			00101		33331	113307	
			in uccaue is						

	T					1
		$P_n = P + n^*X + \{$				01 M
		,	pulation after n th decade			
		X = Average inc				
		Y = Incrementa		· · · · ·		
		Year	Population	Avg. increase (X)	Incr. increase(Y)	
		1971	39701			
		1981	50157	10456		02 M
		1991	68107	17950	+7494	
		2001	93351	25244	+7294	
		2011	115307	21956	-3288	
			TOTAL	75606	11500	
			AVERAGE	18901	3833	
		Population in y	ear 2021 is, P2021 =1153	07+(18901X1)+ {(1 (1+1))	/2}X3833=1,38,041	02 M
		Population in y	ear 2031 is, P2031 =1153	07+(18901X2)+ {(2 (2+1))	/2}X3833=1,64,608	
		Population in y	ear 2041 is, P2041 =1153	07+(18901X3)+ {(3 (3+1))	/2}X3833= 1,95,008	01.14
				: 195008 = 2,63,26,080 lit	er	01 M
		Total demand o	of water. = 270 X 195008	= 5,26,52,160 liter		
Q.4	(B)(b)	Explain workin	g of septic tank with nea	t sketch.		
	Ans		1. 11 11 11 11 11 11	1 1 11 11 11 11 11 11 11		
		Inlet Cham	Baffle	1 4		
				W Scum Baffle	Outlet	
		1				
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		02 M
		-		r ³⁰⁰ ¹⁵⁰ ≩	H150 Outlet	
			TWL			
				1500 Opening 1503	Deflector	
				Penstock		
			Slope 1 in 10			
		Working of sep	tic tank : Septic tanks car	be made from concrete,	masonry or fiberglass.	
		Prior two are o	f rectangular shape and la	ater is generally of circula	r shape. The inlet and	
			-	atter and grease will be re		
				tank, where the organic f	•	02 M
		-		iction of biogas may inter		
		sedimentation	of the solids. Every septic	tank should be provided	with the ventilation	
				th suitable mosquito pro	•	
				above the highest buildi	ng height present in	
		the vicinity of 2	0 m from the septic tank			
Q.5		Attempt any FO	OUR of the following:			
	(a)	-	process of water softeni	-		
	Ans		-	or ion-exchange process	•	
		compounds of	aluminium, silica and sod	a .they have got the exce	llent property of	
		interchanging b	ase.			
		The most comm	non artificial zeolite is the	e permutit.it is manufactu	red from feldspar,	
		kaolin clay and	soda. These chemicals ar	e mixed in the required p	proportion and then the	
	1	mixture is fused	l in a furnace .it is allowe	d to cool after attaining o	certain degree of fusing.	

		The material thus formed is then crushed to form particles of diameter varying from 0.25 mm to 0.50 mm.it is then washed to remove all alkalies and impurities. The permutit is white in colour and its chemical formula is 2SiO2Al2O3.Na2O.the chemical composition is as follows. Alumina22% Silica18.4% Sodium oxide13.6% The exchange value of permutit is 35000gm to 41000gm of hardness per m3 of zeolite .the chemical reaction involved in the process when permutit is used. 2SiO ₂ Al ₂ O ₃ .Na ₂ O+Ca(HCO ₃)2 \rightarrow 2SiO ₂ Al ₂ O ₃ CaO+2 Na HCO ₃ 2SiO ₂ Al ₂ O ₃ .Na ₂ O+Ca(HCO ₃)2 \rightarrow 2SiO ₂ Al ₂ O ₃ CaO+2 Na HCO ₃ 2SiO ₂ Al ₂ O ₃ .Na ₂ O+CaCl ₂ \rightarrow 2SiO ₂ Al ₂ O ₃ CaO+2 NaCl Thus hard water comes into contact with zeolite the calcium and magnesium are removed is given in exchange. Thus the hard water is softened and its sodium content is increased as indicated by the above process. After some process, the sodium present in zeolite is exhausted as the entire sodium zeolite has here converted to calcium and magnesium are lite. This is	04 M
		zeolite has been converted to calcium zeolite and magnesium zeolite. This is	
Q.5	(b)	regenerated by passing a solution of salt through the zeolite. State the location and function of the following pipe fittings:	
	Ans.	 (i) Air Valve (ii) Reflux Valve (iii) Scour Valve (iv) Sluice Valve (i) Air Valve : Function: some quantity of air is contained in the flowing water and this tries to accumulate at high points and this air tries to accumulate at high points along the water pipe.in order to provide an exit for such accumulated air the air valve are provided at summit along the water pipe. Location: the air valves should be located at points which are close to or above the hydraulics gradient. ii) Reflux valve: Function: a reflux valve is an automatic device which allows water to go in one direction. Location: the reflux valve is invariably placed in water pipe which contains water 	01 M for each (1/2 M for function and 1/2 M for location)
		 directly from pump. iii) Scour valve: Function: they are operated to remove sand or silt deposited in the water pipe. Location: they are located at dead ends and depressions or lowest points in main. iv) Sluice valves: Function: these valves control the flow of water and are helpful in dividing the water mains in to suitable section. Location: these are placed at a distance of about 150m to 200m and at all junctions. 	

Q.5	(c)	Draw sectional elevation of 'Drop Manhole'. Label the parts & state its location.	
	Ans.	- ACTUAL BENCH CONDITIONS	
		VILL VARY WITH ACTUAL PIPE IN DUILET CONFIDURATION TOPF LAND OUTLET CONFIDURATION TYPE & MANHOLE TYPE & MANHOLE TYPE & MANHOLE TYPE & MANHOLE TYPE & MANHOLE TYPE & MANHOLE TYPE & MANHOLE CONCRETE BENCH SHAPED TO DRAIN CONCRETE BENCH SHAPED TO DRAIN SHAPED TO DRAIN SHAPED TO DRAIN SHAPED TO DRAIN SHAPED TO DRAIN SHAPED	02 M
		Drop manhole is used to indicate the manhole on sewer line which is constructed to provide a connection between the high level branch sewer to extent of about 500mm to 600mm above the main sewer to the low-level main sewer with a minimum amount of disturbance.	02 M
Q.5	(d) Ans.	Define B.O.D. State its significance in sewage treatment. Definition: The amount of oxygen required for microbes to carry out the biological decomposition of dissolved solids or organic matter in sewage under aerobic condition at slandered temperature is known as the B.O.D. Significance:	02 M
		 i) B.O.D. is the principal test, which gives an idea of the biodegradability of any sample and strength of the waste. ii) B.O.D.is an important parameters in the design of treatment plant to determine the size of certain units particularly trickling filters and activated sludge process. iii) B.O.D.is useful to estimate the population equivalent of any industrial waste, which is useful to collect cess from industrialist for purification of industrial waste in municipal sewage treatment plants. iv) B.O.D.is used in studies to measure the self-purification capacity of streams and serves as a means of check to regulatory authorities on the quality of effluents discharged. v) From B.O.D. of the effluent and effluent discharged, the efficiency of treatment plant can be judge. 	02 M
Q.5	(e) Ans.	 Enlist methods of distribution of water. Explain any one of them Methods of distribution of water 1.Gravity System 2. Gravity And Pumping System. 2. Rumping System 	01 M
		 3. Pumping System. 1. Gravity System: In this system, the water is conveyed through pipes by gravity only. This gravity system is the most reliable method off distribution. But it is useful only when the source of water supply is situated at higher level than that 	

Any one 03 M

2. Gravity And Pumping System.

This is also known as combined gravity and pumping system. The pump is connected to the mains as well as to an elevated reservoir. In the beginning when demand is small the water is stored in the elevated reservoir, but when demand increases the rate of pumping, the flow in the distribution system comes from both the pumping station as well as elevated reservoir.

As in this system water comes from two sources one from reservoir and second from pumping station, it is called dual system. This system is more reliable and economical, because it requires uniform rate of pumping but meets low as well as maximum demand. The water stored in elevated reservoir meets the requirements of demand during breakdown of pumps and for fire fighting.

Fig. shows this system with hydraulic gradient lines for minimum and maximum draft. This system is usually adopted everywhere.

3. Pumping System.

In this system water is directly pumped in the mains. Since the pumps have to work at different rates in a day, the maintenance cost increases. It is preferred to have number of pumps and only the required numbers may work at various times to meet the varying demand, in place of providing pump of variable speed. High lift pumps are required and their operations are continuously watched.

If the power fails, the whole supply of the town will be stopped. Therefore, it is better to

		change of diameter.	
Q.6	(c)	Explain working of oxidation pond with neat sketch.	
	Ans.	AXIMUM WATER LEVEL BED LEVEL GL. (SECTION VY) COLLECTION INLET CHAMBER FLAGSTONE BELL MOUTH BELL MOUTH UTLET, CHAMBER BELL MOUTH WELL (PLAN)	02 M
		 The oxidation pond purify sewage by dual action of aerobic and algae. The sewage is stored under climatic condition which is favorable for the growth of algae, namely sunshine and warmth. Aerobic bacteria use oxygen of the atmosphere, whereas the algae are active in the sunlight. 	
		 Due to the dual process of photosynthesis acting on the sewage, it breaks up the carbon dioxide produced during the carbon cycle from the carbohydrates present in the sewage. This carbon is used in producing more carbohydrates and released oxygen keeps the dissolved oxygen content of water at high level. 	02 M
Q.6	(d) Ans.	State the preventive measures to avoid pollution of bores & wells.1. Vulnerability assessments.	
	,	 Hazard surveys. Proper siting of wells and hazards. Performance criteria for hazards. Monitoring of well water quality. Assessments of water quality data. Well construction and sanitary protection. Disinfection. Public awareness. 	Any four 01 M for each
Q.6	(e)	State significance of rain water harvesting. Explain anyone method of it.	
	Ans.	Significance:- i. To overcome the inadequacy of surface water to meet our demands.	

ii. To arrest decline in ground water levels.	
iii. To enhance availability of ground water at specific place and time and utilize rain	
water for sustainable development.	
iv. To increase infiltration of rain water in the subsoil this has decreased drastically in	03 M
urban areas due to paving of open area.	
v. To improve ground water quality by dilution.	
vi. To increase agriculture production.	
vii. To improve ecology of the area by increase in vegetation cover etc.	
(i) Storage or Recharge - Based on the type of usage, structures can either be used to	
store the collected water for direct use or to recharge groundwater.	Any one
(ii) The Urban-Rural Difference - Urbanization has resulted in the shrinking of open	01 M
spaces as well as unpaved areas. This has resulted not only in flooding of cities but has	
also caused water scarcity due to groundwater depletion in general and saline intrusion	
in coastal cities. While rural harvesting is mostly traditional and is carried out in surface	
storage bodies like rivers, tanks, ponds, lakes etc., urban harvesting, due to lack of open	
space for capturing the runoff, is mostly in sub-soil storage as groundwater recharge.	
(iii) Rooftop and Drive-Way Harvesting - This greatly restricts the scope of rainwater	
harvesting as a considerable amount of water that falls around the built up area is let	
 out of the building as run-off. Driveway run-off water should not be move away.	