

SUMMER- 18 EXAMINATION cs Model Answer

Subject Name: Power Electronics

Subject Code:

17444

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	Α	Attempt any SIX:	12- Total Marks
	а	Name any two triggering devices used for triggering SCR.	2M
	Ans:	UJT, PUT, SUS,LASCR	1M each for any two
	b	State any two advantages of IGBT.	2M
	Ans:	 High operating speed Wide RBSOA High voltage control capability Active di/dt control Inherent over-current protection 	1M each for any two
	С	List two applications of TRIAC.	2M
	Ans:	 TRIAC is used as a switching device in the following applications: 1) Fan speed regulator 2) Flasher circuit 3) Temperature controller 4) Lamp dimmer 	1M each for any two

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

		n AC voltage sta Proximity detect				
d	-	e classification of			2M	
Ans:	DC chop	per can be classi	fied as :		2M	
	1.Accord	ling to input/out	put voltage levels			
	a. Step	–Up chopper				
	b. Step -	– Down chopper				
	2. Accord	ding to direction	of output voltage and cur	rent		
	a. Class	A Chopper				
	b. Class	B Chopper				
	c. Class C Chopper					
	d. Class D Chopper					
	e. Class E Chopper					
	3. According to Circuit operation					
	a. First	a. First Quadrant Chopper				
	b. Two d	quadrant Choppe	r			
	c. Four	Quadrant Chopp	er			
	4. According to Commutation method					
	a. Volta					
	b. Curre	b. Current Commuted Chopper				
	c. Load Commuted Chopper					
	d. Impul	se Commuted Cl	nopper			
е	State difference between forced commutation and natural commutation.(any 2 points)			2M		
Ans:	Sr No.	Parameter	Natural commutation	Forced commutation	1M each	
	1	Need of external commutating	Not required	Required	any two points	

SUMMER-18 EXAMINATION Model Answer

Subject Name: Power Electronics

		components			
	2	Types of supply	AC source	DC source	
	3	Cost of commutation circuit	No additional cost for commutation	Commutation circuits are costly	
	4	Power dissipation	Less as no power loss takes place in the commutating components	More as some power loss takes place in the commutating components	
f	List tw	o applications of	Inverter.		2M
Ans:	2) 3) 4) 5)	Battery vehicle d	g ıpply transmission lines	upply	1M each for any two
g	Define	firing angle and o	conduction angle.		2M
Ans:	wave t as α. Condu	o the point at whi	ch the thyristor is "trigge	ro crossing point of the input sine red" or turned ON. It is represented hyristor remain ON before being	1M each
h	Draw I	abelled basic bloo	ck diagram of UPS.		2M
Ans:					2M(waveform optional)

SUMMER-18 EXAMINATION

Subject Name: Power Electronics

Model Answer

	ac Surge ac Suppressor Battery	
В	Attempt any TWO:	8- Total Mar
а	What is poly-phase rectifier? State its need.	4M
Ans:	Poly-phase rectifier: It is a three-phase rectifier which converts three-phase AC voltage at the input to a DC voltage at the output. It has diodes / SCRs connected in each phase which alternatively operates for an equal fraction of an alternating current cycle. Its output voltage varies less than that in an ordinary half-wave or full wave rectifier.	2M
	Need of poly phase rectifier: The capacity of 1Ø rectifiers are limited (normally upto 2 kW only). Moreover a 1Ø rectifier produces relatively high ac ripple voltage at its output. So it requires a large smoothing reactor to smoothen the output voltage. This increases the cost of 1Ø rectifier with more output. As the no. of pulses in the output is more, poly phase rectifier produces a smoother output, reducing the cost of filtering. As number of phases are more the average output of poly phase rectifier is more and hence can be used for higher power applications.	2M
	Compare between step-up and step- down chopper. (any 4 points)	4M
b		

SUMMER-18 EXAMINATION

Subject Name: Power Electronics

Model Answer

	Sr No.	Parameter	Step-up chopper	Step-down chopper	
	1	Position of chopper switch	In parallel with load	In series with load	
	2	Output voltage	More than input voltage	Less than input voltage	
	3	Expression of output voltage	$V_o = V_{dc} / (1 - \alpha)$ Volts Where, α = Duty Cycle V_{dc} = Input voltage	V _o = V _{dc} . α Volts	
	4	application	Battery charging, voltage booster	Motor speed control	
	Draw the new working.	eat circuit diagram	of fan speed regulator usin	g TRIAC. Describe its	4M
			of fan speed regulator usin	g TRIAC. Describe its	
	working. Circuit diagr	ram:	of fan speed regulator usin	g TRIAC. Describe its	
Ans:	working.	ram:	Fra Motor	TRIAC Mov C2	Diagram:2N
Ans:	working. Circuit diagr	ram:	Frie Motor	shown above works on t	Diagram:2M
Ans:	working. Circuit diagr	ram:	Frie Motor	TRIAC Mov Shown above works on t me constant circuit provid	he Working:2N

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Note: (any other relevant diagram may also be considered)
against voltage transients and surges.
voltage and speed of fan. A 'MOV' is connected parallel to the TRIAC to protect it
R_1 . As R_1 is reduced, the conduction angle of TRIAC increases increasing the output

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR:	16- Total Marks
	а	Draw the single phase full wave bridge type controlled rectifier. Draw the waveforms of input voltage, load voltage and voltage across SCR.	4M
	Ans:	Circuit diagram: I_{dc} $I \Phi AC$ I	Diagram:2M Waveforms:2 M
		Waveforms:	

SUMMER-18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Subject Code:

SUMMER-18 EXAMINATION Model Answer

Subject Name: Power Electronics

	versa. When the gate is made positive a small input current flows between the base and emitter of Q ₂ , producing a large collector current I _{C2} . I _{C2} is the base current of Q ₁ cause a large base current for Q ₂ . Therefore a positive feedback exist between the transistors making them to go into saturation. Equation for the anode current can be derived as	
	$I_a = \frac{\alpha_2 I_g}{1 - (\alpha_1 + \alpha_2)}$	
	Where $\alpha_1 \& \alpha_2$ are the current gains of Q1 & Q2 respectively.	
	if $(\alpha_1 + \alpha_2)=1$, the value of I_a is infinite, or suddenly reaches a very high value and the SCR latches into conduction from an OFF state. This characteristics is known as regenerative action. According to this, the turn ON condition of a SCR is,	
	$(\alpha_1 + \alpha_2) \ge 1$	
е	State different trigger methods and describe R-triggering method for SCR with circuit diagram and waveforms.	4M
Ans:	Different triggering methods of SCR are:	Listing-1M
	1. Forward voltage triggering	
	2. Thermal or temperature triggering	
	3. Radiation or Light triggering	
	4. dv/dt triggering	
	5. Gate triggering	
	i) D.C Gate triggering	Diagram-1M
	ii) Pulse Gate triggering	
	iii) A.C Gate triggering	Description-
	a) R-triggering b) RC-triggering <u>R-triggering:</u>	1M
	Circuit diagram:	
		Waveforms- 1M

SUMMER- 18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

17444

Description: As e_s goes positive, the SCR becomes forward biased and will not conduct until sufficient gate current flows. A positive e_s forward biases diode and SCR's gate-cathode junction causing a gate current. At Ig = Ig(min) SCR turns 'ON'. At point 'P', $e_L = e_s$ and varies till the negative cycle appears. For negative cycle of e_s SCR turns 'OFF' as the load current becomes less than the holding current. The purpose of the diode is to block the negative cycle from appearing at the gate. The load voltage can be controlled by varying the resistance Rv. A lesser Rv will cause more gate current and a fast switching into conduction. R_{min} will limit the gate current within its maximum limit.

Waveforms:

SUMMER-18 EXAMINATION Model Answer

Subject Name: Power Electronics

```
Subject Code: 17444
```

	f	Define distortion factor and lowest order harmonics with respect to inverter.	4M				
		· · · · · · · · · · · · · · · · · · ·	2M each				
	Ans:	Ins: Distortion Factor (DF): Distortion factor indicates the amount of harmonics that remain in the output voltage waveform, after the voltage waveform has been subjected to second order attenuation. $DF = \sqrt{\frac{\sum_{n=2,3}^{\infty} \left\{ \frac{V_{n(rms)}}{n^2} \right\}^2}{V_{1(rms)}}}$					
		Lowest Order Harmonics(LOH): The lowest frequency harmonic, with a magnitude greater than or equal to 3% of the magnitude of the fundamental component of the output voltage is known as lowest order harmonic.					
Q.	Sub	Answers	Marking				
No.	Q. N.		Scheme				
3		Attempt any FOUR:	16- Total Marks				
	а	Differentiate SCR and TRIAC with respect to (i) symbol, (ii) layered diagram, (iii) operating quadrant, (iv) application.	4M				
	Ans:		1M each				
		Parame SCR TRIAC					

SUMMER- 18 EXAMINATION

Subject Name: Power Electronics

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

	emergency	v lighting system, static	switches.	
	circuit brea	aker, flasher.		
b	Compare controlled ar	nd uncontrolled rectifiers. (a	any 4 points)	4M
Ans:				1M each fo
	Parameter	Controlled Rectifier	Uncontrolled Rectifier	any 4 point
	Device used	SCR and Diodes	Only Diodes.	-
	Control of Load	Load voltage can be	Load voltage cannot	
	Voltage	controlled.	be controlled.	
	Direction of Power Flow	Source to load and sometimes load to source.	Source to load only.	
	Free Wheeling diode	Required if inductive load.	Not necessary.	
	Triggering circuit	Required.	Not required.	-
	Application	DC motor controller,	Power supply.	
		Battery chargers.		
c	Draw constructional d	Battery chargers. iagram of GTO and state its	operating principle.	 4M
c Ans:	Draw constructional d			4M 2M
	Draw constructional d		operating principle. aare aarode $\frac{1}{33}$ 51.	

SUMMER- 18 EXAMINATION cs <u>Model Answer</u>

Subject Name: Power Electronics

Subject Code:

SUMMER- 18 EXAMINATION s <u>Model Answer</u>

Subject Name: Power Electronics

Subjec

```
Subject Code: 17444
```

Ans:		4M
	collection control ic Quasi control solution solution I_{00}	
e	Describe the effect of freewheeling diode in controlled rectifier.	4M
e Ans:	Describe the effect of freewheeling diode in controlled rectifier. Effects of freewheeling diode :	4M
	Effects of freewheeling diode :	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180 [°] (a problem with RL load). During	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180 [°] (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180° (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the inductor. This energy is dissipated in the load resistance through the freewheeling	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180° (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the inductor. This energy is dissipated in the load resistance through the freewheeling diode. Hence at 180° , current through the SCR is cut-off and a reverse voltage	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180° (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the inductor. This energy is dissipated in the load resistance through the freewheeling diode. Hence at 180° , current through the SCR is cut-off and a reverse voltage appears across the SCR turns it OFF instantly. Its effects in the circuit can be,	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180° (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the inductor. This energy is dissipated in the load resistance through the freewheeling diode. Hence at 180° , current through the SCR is cut-off and a reverse voltage appears across the SCR turns it OFF instantly. Its effects in the circuit can be, (i) The load voltage does not become negative and hence gives more average d.c.	
	Effects of freewheeling diode : With a freewheeling diode connected in a controlled rectifier with RL load, the thyristor will not be able to conduct beyond 180° (a problem with RL load). During negative half-cycle as the current changes its direction, emf is induced in the inductor. This energy is dissipated in the load resistance through the freewheeling diode. Hence at 180° , current through the SCR is cut-off and a reverse voltage appears across the SCR turns it OFF instantly. Its effects in the circuit can be, (i) The load voltage does not become negative and hence gives more average d.c. output voltage than without freewheeling diode.	

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

а	State the need of Inverter. List four applications of Inverters.	4M
Ans:		2M
	In most of the industrial applications, inverter is a part of a DC link converter. Its first	
	stage is a AC to DC rectifier and second DC to AC inverter. In this system the AC	
	power at line frequency is rectified and filtered and then inverted into AC at an	
	adjustable voltage and frequency which is required in UPS, low power portable	
	electronics systems, AC motor speed control etc. so inverter is an essential part of a	
	two stage static frequency converter.	
	Applications	
	Variable speed a c motor drivers	2M
	Induction heating	2101
	Aircraft power supplies	
	Uninterrupted power supplies (UPS)	
	High voltage d c transmission lines	
	Battery vehicles drives	
	 Regulated voltage and frequency power supplies 	
b	Draw symbol and characteristics of DIAC and SUS.	4M
Ans:		1M
	VI characteristics of DIAC	
	$I \\ A \\ B \\ Conduction state for positive half cycle$	
	V_{B0_2} I_{B0} A	
	$V_{B01} + V$	
	Blocking state	
	Conduction	
	state for negative half cycle	

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Subject Code: 17444

SUMMER- 18 EXAMINATION s Model Answer

Subject Name: Power Electronics

Subject Code:

17444

Low power dc flasher:

Above figure shows low power flasher circuit. Here UJT operates as a relaxation oscillator & produces a train of trigger pulses to the thyristor gates through resistor R_1 .

When thyristor T_2 is triggered, the lamp load glows. when the next pulse trigger thyristor T_1 , thyristor T_2 is turned off by the commutating capacitor C_1 . Since the commutating pulses have a longer duration than the trigger pulses, thyristor T_2 cannot be re-triggered at this time.

Thyristor T_2 can again be retriggered by the next pulse. At a time anyone thyristor should be triggered if both thyristor conduct together the flash circuit fails. This can be prevented by making thyristor T_1 turned off independently from the commutating capacitor. This can be done by using resistor R_2 of very large value so that thyristor T_2 is unable to remain on, except to discharge the capacitor C_1 . During reminder of the cycle T_1 is off & capacitor C_1 is always able to develop a commutating voltage for T_2 .

The flash rate can be changed by varying the value of variable resistance R₃.

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

d	ain dv/dt turn on method of SCR. 4M	
Ans:	dv/dt triggering : In construction of SCR there are four layers and three junctions J_1 , $J_2 & J_3$. Under forward bias condition junction $J_1 & J_3$ are forward biased whereas junction J_2 is reverse biased. This reverse biased junction J_2 behaves as a capacitor. Now if the forward voltage is applied suddenly a charging current will flow through capacitor. Thus device turns on.	4M
e	$\mathbf{T} C_j = junction J_2$ If V = voltage applied across the device $C_j = junction capacitance$ Then the instantaneous current i_c due to suddenly applied voltage is $i_c = C_j \frac{dv}{dt}$ If $\frac{dv}{dt}$ is large the device may turn-on or trigger on, even when the voltage across the device is small. Draw the circuit diagram of light dimmer using DIAC and TRIAC and sketch the input and output voltage waveforms.	4M
Ans:	230V1 SoH2,10 ac supply	2M

SUMMER-18 EXAMINATION Model Answer

Subject Name: Power Electronics

f	Draw circuit diagram of single phase half bridge inverter. Explain its working with	4M
	light is less. Thus by controlling α we can control the intensity of light using TRIAC.	
	Thus if firing angle is less intensity of light is more & if firing angle is more intensity of	
	be controlled.	2M
	capacitor C can be changed by varying the resistance R & hence the firing angle can	
	be applied when the DIAC breaks down in the reverse direction. The charging rate of	
	A similar operation takes place in the negative half cycle & a negative gate pulse will	
	TRIAC turns ON. So current starts flowing through load.	
	discharge through the TRIAC gate i.e. positive gate signal is given to the TRIAC & thus	
	capacitor is above the breakdown voltage of the DIAC. DIAC turns ON & the capacitor	
	signal for turning it ON. This is provided by the capacitor C. When the voltage across	
	During the positive half cycle (when P is positive) the TRIAC requires a positive gate	
	In the above circuit DIAC is used to trigger TRIAC.	
	«. light intensity is less.	
	Tex " " average load voltage is loss	
	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} \\ \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array}$	
	VL 2 : light intensity is more	
	t voltage is more	
	VL d'is less : B is make	
	t to the termination of termina	
	Vin the second s	

SUMMER- 18 EXAMINATION s Model Answer

Subject Name: Power Electronics

17444

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

		 Diodes D1 and D2 which are connected parallel carry negative current for inductive loads Simply by controlling the time periods of the on time of thyristor S1 & S2, the frequency can be varied. 				
Q. No.	Sub Q. N.	Answers	Marking Scheme			
5		Attempt any FOUR:	16- Total Marks			
	а	Draw labelled circuit diagram of battery charger using SCR.	4M			
	Ans: b	circuit diagram (Any relevant diagram can be considered) $\begin{array}{c} \hline \\ \downarrow \\$	4M 4M			
	Ans:	layer diagram of PUT	1М 11/2 м			

SUMMER-18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Power Electronics

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

	Operation: (give marks for correct brief explanation)			
	Mode 1: (0 to α) (+ve half cycle)			
	SCR anode is a positive w.r.t. cathode but gate pulse is not applied therefore SCR is in			
	off state though it is in forward biased therefore load current is zero therefore load			
	voltage is 0.			
	Mode 2: (α to π) (+ve half cycle + gate signal is applied)			
	SCR is forward bias and gate signal is applied therefore SCR turns on at $\alpha.$ When SCR			
	is triggered the load current will increase in a finite time through the inductive load.			
	The supplier voltage from this instant appears across the load. Due to the inductive			
	load the increase in current is gradual, energy is stored in inductor during α to π .			
	Mode3: (π to 2 π) (negative half cycle) During negative half cycle, current continues			
	to flow till the energy stored in the inductance is dissipated in the load-register and a	ł		
	part of the energy is feedback to the source, Hence due to energy stored in inductor,			
	current continues to flow up to instant t1.at a capital at instant t1 is load current is			
	zero and due to negative supply voltage SCR turns off. At instant 2 π + α , when again			
	pulse is applied the above cycle repeats. Hence the effect of the inductive load is			
	increase.in the conduction period.			
d	Describe the working of class B commutation with neat circuit diagram.	4M		
Ans:	circuit diagram	Circuit diagrar :2M		
	$= E_{dc}$ $I_L \downarrow \leq R_L$	Working:2M		

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Subject Code:

SUMMER- 18 EXAMINATION s <u>Model Answer</u>

Subject Name: Power Electronics

Subject Code:

SUMMER-18 EXAMINATION

SUMMER-18 EXAMINATION Model Answer

Subject Name: Power Electronics

Subject Code: 17444

Q. No.	Sub Q. N.	Answers	Marking Scheme
6		Attempt any FOUR:	16- Total Marks
	а	Draw circuit diagram and explain the working of emergency light system using SCR.	4M
	Ans:	Diagram:-	2 marks for circuit diagram
		$\begin{array}{c} D_{3} \\ R_{1} \\ \hline \\ SCR_{1} \\ \hline \\ D_{1} \\ SUpply \\ \hline \\ Supply \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
		WorkingFig. shows simple emergency lighting circuit .	Working:02 marks
		• The 230V ac supply is applied as input. This supply is stepped down by tapped	marks
		transformer. Diodes $D_1 \& D_2$ form full wave rectifier & convert ac voltage to dc volt.	
		• When ac supply is available, 6V dc supply appears across lamp and it glows.	
		• Pulsating current also flows through D_3 , R_1 to charge the battery. Thus battery charging	
		is carried out.	
		• The capacitor C gets charged with upper plate +ve to some voltage less than secondary	
		voltage of transformer. Due to capacitor voltage, gate cathode junction of SCR1 gets	
		reverse biased. The anode is at battery voltage & cathode is at rectifier output voltage,	
		which is slightly higher, hence SCR1 is reverse biased & cannot conduct. The lamp glows	
		due to rectifier output dc voltage.	

SUMMER- 18 EXAMINATION s <u>Model Answer</u>

Subject Name: Power Electronics

Subject Code:

SUMMER- 18 EXAMINATION s <u>Model Answer</u>

Subject Name: Power Electronics

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

d	State two applications each for (i) SCR and (ii) PUT.	4M
Ans:	Applications of SCR:	2Marks for
	1. Controlled rectifier	any two
	2. Choppers	application
	3. Inverters	
	4. High voltage DC transmission system	
	5. Battery charger circuit	
	6. Dc drivers	
	7. Subway cars	
	8. SMPS	
	9. UPS	
	10. Emergency lighting system	
	11. Electronic timer	
	12. Temperature controller	
	Applications of PUT:	
	1. Time delay circuit	2Marks for any two
	2. Logic circuit	application
	3. SCR trigger circuit	
е	Explain the secondary breakdown in power BJT and how it can be avoided?	4M
Anci	Second Breakdown in Power BJT:	
Ans:		
	In the active region the ratio of collector current to base current (DC current gain (β))	2Marks fo
	remains fairly constant up to certain value of the collector current after which it falls of	secondary
	rapidly. At still higher levels of collector currents the allowable active region is further restricted by a potential failure mode call "the second breakdown". It appears on the o/p	breakdow in power
	characteristics of the BJT as a precipitous drop in the collector emitter voltage at large	BJT
	collector currents. The collector voltage drop is often accompanied by significant rise in	
	the collector current & a substantial increase in the power dissipation. Most importantly	
	this dissipation is not uniformly spread over the entire volume of the device but is	
	concentrated in highly localized regions. This localized heating is a combined effect of the	
	intrinsic non uniformity of the collector current density distribution across the cross section	
	of the device & the negative temperature coefficient of resistivity of minority carrier device	
	which leads to the formation of "current filaments" (localized across of very high current	

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

Subject Code:

17444

density) by a positive feedback mechanism.

Once current filaments are formed, localized "thermal runaway" quickly takes the junction temperature beyond the safe limit & the device is destroyed.

How to avoid secondary breakdown:

FBSOA(logarithmic scale)

Secondary breakdown can be avoided by using power transistor in safe operating area.

The safe operating area (SOA) of a power transistor specifies the safe operating limit of collector current I_C verses collector emitter voltage V_{CE} . For reliable operation of the transistor the collector current & voltage must always lie within this area.

Boundary AB is the maximum limit for dc & continuous current for V_{CE} less than about 80 V. For V_{CE} more than 80V, collector current has to be reduced to BC so as to limit the junction temperature to safe values. For still higher V_{CE} current should further be reduced so as to avoid secondary breakdown limit.

CD defines this secondary breakdown limit

DE gives the maximum voltage capability for this particular transistor.

SUMMER-18 EXAMINATION

Subject Name: Power Electronics Model Answer

f	Compare R-triggering and RC-triggering of SCR on the basis of (i) circuit diagram, (ii) firing angle, (iii) cost, (iv) average output voltage.			4M	
Ans:					One mark
	Sr. No.	Parameter	R-triggering of SCR	RC-triggering of SCR	for each comparisor
	1	circuit diagram	A.C Source T G R	$\begin{array}{c c} & Load \\ + & v_0 \\ + & v_0 \\ \hline \\ & & & \\ & & $	
	2	firing angle	Can vary From 0 to 90 ⁰	Can vary From 0 to 180 ⁰	-
	3	cost	Less	more	
	4	average output voltage	Can be controlled from 100% (for $\alpha=0^{0}$)down to 50% (for $\alpha=90^{0}$)	Can be controlled from 100% (for $\alpha = 0^{0}$)down to 0% (for $\alpha = 180^{0}$)	