

SUMMER-18 EXAMINATION

Subject Name: DESIGN OF STEEL STRUCTURES

Model Answer

Subject Code: 17505

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub Q.	Answers	Marking
No.	Ν.		Scheme
Q.1	(A)	Attempt any three:	(12)
	(a)	State the functions of : i) Transmission tower ii) Steel water tank iii) Roof truss iv) Steel chimney.	
	Ans	Following are the function of :	
		i) Transmission tower: – To support high tension electric cable	
		ii) Steel water tank – Steel tanks are used to store water and other liquids like acids,	01 M for
		alkali, alcohol, gasoline and benzene.	each
		iii) Roof truss – Trusses are used to support purlins and roofing materials	
		 iv) Steel chimney – Steel chimney are used for the emission of flue gases and to reduce pollution. 	
Q.1	(A)(b)	List different types of loads coming on steel structures and explain anyone.	
	Ans	Following are the various types of loads coming on steel structures -	
		i. Dead load	
		ii. Live load (imposed load)	02 M
		iii. Wind load	
		iv. Snow load	
		v. Seismic load	
		i. Dead load: - Dead load in steel structures is gravity loads and are relatively	
		constant over the time. They are permanent known as permanent loads. They	
		are the self-weight of the structural members or materials used for construction.	_
		These include weight of beam, slab, column etc. and elements such as weight of	Any one
		walls, partitions, floors and roofs.	02 M
		ii. Live load: - Live loads are also called as imposed loads or superimposed loads.	
		Those are not permanent and may change in position and magnitude. The loads	
		of furniture, equipment and occupants of the structure etc. are the examples of	
		live load. Live loads on floors and roofs are given in IS:875-1987.	
		iii. Wind load: - The wind load is more significant in case of tall structures. The	

		Take fy= 250 MPa, and fu = 410 MPa.	
		10mm gusset plate with 2 blots in a line with 18mm diameter bolt at a pitch of 50 mm and gauge of 35 mm. Determine the block shear strength of given tension member.	
Q.1	(B)(b)	The double angle $60 \times 60 \times 8$ mm tension member is connected to the both sides of	
		Length of each longitudinal weld = (206 – 60) / 2 = 73 mm.	
		Length of transverse weld = 60 mm. (< 160 mm)	01 M
		Let us provide two longitudinal and one transverse weld.	
		i.e. 16 x 10 = 160 mm.	
		$L = P_{dw} / P_q = 136363.63 / 662.6 = 205.80$ Say 206 mm. In such arrangement the distance between longitudinal weld shall not exceed 16t	01 M
		5. Effective length of weld required: $L = P_{1}$ (P = 126262 62 (662 6 = 205 80, Say 206 mm)	01 14
		$P_q = f_{wd} x t_t = 157.80 x (0.7 x 6) = 662.6 N/mm.$	01 M
		4. Design strength per mm length of weld:	01.04
		$f_{wd} = f_y / SQRT(3) \times 1.50 = 410 / SQRT(3) \times 1.50 = 157.80 \text{ N/mm}^2$	01 M
		3. Design stress for site weld:	
		Provide 6 mm site weld.	
		Maximum site = 10 – 1.5 = 8.5 mm	01 M
		Minimum size = 3 mm	
		2. Size of weld:	
		$P_{dw} = f_y \times A_g / y_{m0} = 250 \times 60 \times 10 / 1.10 = 136363.63 \text{ N}$	01 M
	Ans	1. Design strength of 60 x 10 mm plate:	
		sides. Take fy = 250 MPa, and fu =410 MPa.	
I		plate. Design the joint for full strength of the plate and assume welding on all three	
~.+	(a)	Design a suitable fillet weld to connect plate 60 mmx 10mm to 150 mmx 12mm thick	
Q.1	(B)	Attempt anyone:	(06)
		lags behind the other, this is called as shear lag.	
		distribution becomes uniform over the section away from the connection. Thus one part	
		through one leg by bolts or welds, the connected leg of section (such as angle, channel) may be subjected to more stress than the outstanding leg and finally the stress	04 101
	Ans	Shear lag :- While transferring the tensile force from gusset plate to tension member	04 M
Q.1	(A)(d)	Define and explain shear lag effect.	
0 1	(^) (- !)	iv. T-Section: - T Section are used for various steel structural members	
		steel trusses.	
		iii. Angle sections: - Angle sections are used as tension and compression members for	each
		ii. Channel sections: - Channels sections are used for column in steel structures.	01 M for
		i. I-sections :- I sections are used as a beam and column in steel structure	
	Ans	Following are the steel section :-	
Q.1	(A)(c)	List any four common standard types of steel sections used with their applications.	
		IS: 1893-2002. (Part 1) "Criteria for Earthquake Resistant Design of Structures "	
		earthquake, it responds in vibratory fashion. These loads shall be assumed as per	
		<i>v.</i> Seismic load:- When a structure is subjected to ground motions in an	
		is variable load that may cover entire roof or part of it.	
		considered. It depends upon shape of the roof as well as the roofing material. It	
		iv. Snow load: -In the areas of snow fall, an allowance for snow load is	
		and angle of wind attack. It is considered as per specifications given in IS:875- 1987(Part 3)	
		speed, shape and height of structure, topography of surrounding ground surface	

	Ans	Design strength by block shear:	
		Diameter of bolt hole dn = 18 + 2 = 20 mm	
		e = 40 mm	
		A_{vg} = Minimum gross area in shear along bolt line	1/2 14
		$= (50 + 40) \times 8 = 720 \text{ mm}^2$	1/2 M
		A_{vn} = Minimum net area in shear along bolt line	
		$= (50 + 40 - 1.5 \times 20) = 60 \text{ mm}^2$	1/2 M
		A_{tg} = Minimum gross area in tension from bolt hole to toe of angle perpendicular to line	
		of force.	
		$= 35 \times 8 = 280 \text{ mm}^2$	1/2 M
		A _{tn} = Minimum net area in tension from bolt hole to toe of angle perpendicular to line of	
		force.	
		$= (35 - 0.5 \times 20) \times 8 = 200 \text{ mm}^2$	1/2 M
		$T_{db1} = \{(A_{vg} \times f_{y}) / [SQRT(3) \times y_{m0}]\} + [(0.9 \times A_{tn} \times f_{u}) / y_{m1}]$	
		= {(720 x 250) / [SQRT(3) x 1.1]} + [(0.9 x 200 x 410) / 1.25]	
		= 68948 N	01 M
		$T_{db2} = [(A_{tg} \times f_y) / \gamma_{m0}] + \{(0.9 \times A_{vn} \times f_u) / [SQRT(3) \times \gamma_{m1}]\}$	
		= [(280 x 250) / 1.1] + {(0.9 x 720 x 410) / [SQRT(3) x 1.25]}	
		= 147105 N	01 M
		T_{db} = Minimum of T_{db1} and T_{db2} = 68948	01 M
		For two angles, T _{db} = 2 x 68948 = 137896 N i.e. 137.896 kN	01 M
		Design shear strength of double angle section is 137.896 kN.	
Q.2		Attempt any two :	(16)
	(a)	Design suitable bolted connection for a single angle strut made up of ISA 100 x 100 x	
		10mm using 12mm gusset plate for a factored compressive load of 175 kN .Assume 20	
		mm bolts of grade 4.6. Draw connection details.	
	Ans	Data: - ISA 100 x 100 x 10 mm; 12 mm gusset plate; factored load = 175 kN; 20 mm bolt.	
		Assume Fe410 grade of angle; fy = 410 mPa.	
		For bolts of grade 4.6, fub = 400 mPa.	
		For 20 mm bolt Anb = 245 mm2	
		Diameter of hole dn and do = 22 mm.	
		$y_{mb} = y_{m0}$ = partial safety factor for bolt and angle = 1.25	
		Shear strength of bolt:-	
		$V_{dsb} = V_{nsb} / y_{mb} = [f_{ub} / SQRT(3)] x [(n_n x A_{nb} + n_s x A_{sb}) / 1.25]$	
		= [400 / SQRT(3)] x [(1 x 245 + 0) / 1.25]	
		45264 N = 45.26 kN	01 M
		Bearing strength of plate: -	
		$V_{dpb} = V_{npb} / V_{nb} = 2.5 \times k_b \times d \times t \times (f_{ub} / y_{mb})$	01 M
		Assume P = 3d = 3 x 20 = 60 mm.	
		e = 2d = 2 x 20 = 40 mm.	
		k_o is least of [e/3d _o ; (P/3d _o)-0.25; f _{ub} /f _y ; 1.0]	
		i.e.{40/(3 x 22); [60/(3 x 22)] - 0.25; 400/410; 1.0}	
		[0.60; 0.65; 0.97; 1.0]	
		Hence k _o = 0.60	01 M
		Vdpb = 2.5 x 0.60 x 22 x 12 x 400/1.25	
		= 126720 N = 126.72 kN	01 M
		Least bolt value B_v = Least of V_{dsb} or V_{dpb}	
		B _v = 45.26 kN	01 M

	1	No of bo	lto no quin		175 / 45 20				
			its require		175 / 45.26 ay 4 Nos				01 M
		Minimum	nitch - 7		,				
			•	$.5d = 2.5 \times 2$					01 M
		Euge dist.	ance = 22	x 1.5 = 33 n	552 33				
			2		00	- ISA 100 x 100	ox Ic		01 M
Q.2	(b)	A discontinuous	strut 3.2n	n long of a i	roof truss coi	nsists of a do	ouble angle s	ection 90x	
		90x 8mm connec	ted to 10	mm thick g	usset plate b	y welding. C	alculate load	l carrying	
		capacity. Assum	e - Proper	ties of ISA S	90 x 90 x 8 m	m; fy = 250 ľ	N/mm2 Area	= 1380mm²,	
		Cxx= Cyy = 25.1 i	mm rxx= I	ryy = 27.5m	m rvv = 17.5ı	nm lxx= lyy	$= 104 \times 10^4 m$	m.	
		KL/r	80	90	100	110	120	130	
		Fcd (N/mm ²)	136	121	107	94.6	83.7	74.4	
	Ans	Data: - ISA 90 x 9	0 x 8 mm						
		A = 1380 mm2; r	$r_{xx} = r_{yy} = 2$	27.5 mm					
		L = 3200 mm; C _{xx}	$= C_{yy} = 25$	5.1 mm					
		$I_{xx} = I_{yy} = 104 \times 10^{-10}$	$0^4 \mathrm{mm}^4$						
		r _{xx} for dou	uble angle	e section = r	_{xx} for single a	ngle section	= 27.5 mm.		
		$I_{yy} = 2(I_y +$	• .		_				
				.380 x (25.1	+ 5) ²]				
		= 4.58	x 10 ⁶ mm	4					
		r _{yy} = SQR		_					
				· ·	30)] = 40.73 r				
					r _{xx} = 27.5 mr				01 M
					nm. (for dis				01 M
				240 / 27.5 =	81.45				02 M
		From give	,						
					- 80)] x (81.45				01 M
									01 M
		Design co	mpressiv	-	f _{cd} x A _g				01 M
					33.825 x 2 x 1				01 M
Q.2	(c)	A simply support		•		-			
		Check whether IS		-	-				
		of ISLB 600 are b							
		mm. Zp = 2798.5		m° , Ixx= 725	8 x 10°mm' (Ignore self-v	veight of bed	ım).	
	Ans	Span of beam = 5							
		Load on beam = 1							01.04
		Factored load = $\$							01 M
		Factored S. F. = V		2 = 52.5 / 2 =	= 26.25 KN				01 M
		Check for shear:		T(2)]					01.14
		$V_{dr} = f_y x t_w x h / $							01 M
		H = 600 and tw =							
		V _{dr} = 250 x 10.5 x	ι ουυ / [1.	1 X SUKI(3)					01 14
			25 / 020	66 - 0.022		≥ v _d (26.25	kN)		01 M
		Also $V_d / V_{dr} = 26$ Hence shear che	-						01 M
		Check for deflect		ieu					

		y _{allowable} = L / 300 = 5000 / 300 = 16.67 mm	01 M
		$y_{max} = W \times L^3 / (48 \times EI)$	02
		$= 35 \times 5000^{3} / (48 \times 2 \times 10^{5} \times 728 \times 10^{6}) = 0.000626 \text{ mm.}$	01 M
		As y _{max} < y _{allowable} Deflection check is satisfied	01 M
Q.3		Attempt any four:	(16)
	(a)	Define: i) Pitch ii) Gauge distance	
		iii) Edge distance iv) End distance in bolted connections.	
	Ans	i) Pitch: it is the centre to centre distance of the bolts in a row, measured along the	
		direction of load.	01 M for
		ii) Gauge distance: it is the distance between the two consecutive bolts of adjacent rows	each
		and is measured at right angles to the direction of load.	
		iii) Edge distance: it is the distance from centre of bolt hole to the nearest edge of plate	
		measured perpendicular to the direction of load.	
		iv) End distance: It is the distance from the center of bolt hole to the edge of a plate	
		measured parallel to the direction of load.	
Q.3	(b)	Enlist with sketch types of joints	
	Ans	i)Lap joint:	
		l	
			02 M
		Single bolted lap joint Double bolted lap joint	
		ii) But joint	
		Bolt joint	
		main plate Cover plate	02.14
			02 M
		Single cover single bolted butt joint Double cover double bolted butt joint	
		(Note: Marks are also to be given to fillet weld and butt weld types)	
Q.3	(c)	Define: i) Roof truss ii) Purlin iii) Pitch of truss iv) Ridge.	
	Ans	i) Roof truss: - Roof trusses are triangular structures that provide the support and	
		stability to the roof and distribute the weight of the roof away from the exterior walls of	
		the building.	01.145
		ii) Purlin: - Purlins are beams spanning between adjacent trusses, resting generally at	01 M for
		joints on principal rafter.	each
		iii) Pitch of truss:-it is defined as the ratio of rise to span of the truss.	
		iv) Ridge: - The ridge of a sloped roof system is the highest point of the roof truss where	
0.2	()	sloping sides meet.	
Q.3	(d)	Purlin is subjected to bi-axial bending: Illustrate with diagram.	
	Ans	Biaxial bending is the bending of the beam about both axes (the x-x and y-y axes). In	

Q.4	(A) (a) Ans	 Fabrication and transportation: this often guides the types of truss to be selected. Normally trusses are fabricated in the workshop and are transported to the site for erection. From the transportation consideration, depth of the truss becomes a controlling factor as it will not be feasible to transport a very deep truss. Aesthetic: from the aesthetic point of view the architect may give a very flat or deep truss, hereby limiting the choice. Climate: the climate of particular area plays an important role in the selection of truss. Drainage of water, ice and snow retention, etc. will have to be given due consideration. Attempt any three: Draw four built up section forms of compression members. 	01 M for each (12)
Q.3	(e) Ans	<i>Explain the different selection criteria for type of truss.</i> Roof Covering: the pitch of the truss depends upon the roofing material. The minimum recommended pitch of trusses with GI sheets is 1/6 with AC sheets it is 1/10 to 1 /12.	
		case of purlins it is subjected to self-weight, LL, weight of roof covering etc. in vertical downward direction and WL acts perpendicular to principal rafter. If these loads are resolved parallel and perpendicular to rafter then there exist biaxial bending of purlin section about its two major perpendicular axes. Pure biaxial bending occurs when the loads to each axis are applied directly through the shear center which is the point within a member such that when loads are applied through that point, twisting will not occur. When the applied loads do not pass through the shear center, as is often the case with singly symmetric shapes, torsion will occur. Examples of these beams are, purlins for roof framing, providing lateral support to exterior cladding.	04 M

			01 M for
		*_ L_ L_ L>	each
			cuen
		1 ¹⁴	
		السب المعالي المحالي ا	
Q.4	(A)(b)	State the functions of lacing and battening systems and general requirements for	
Q.4	(A)(D)	lacing as per IS 800.	
	Ans	Functions of lacing and battening systems: To achieve maximum value for minimum	
		radius of gyration, without increasing the area of the cross section, a number of	02 M
		elements are placed away from the principal axis using suitable lateral systems. Also,	
		lacing and battening are primarily provided to hold the main components of the	
		members of a built up section in their respective positions and equalize the stress	
		distribution between its various parts.	
		General requirements for lacing as per IS-800. a) Members comprising two main components laced and tied, should where practicable,	
		have a radius of gyration about the axis perpendicular to the plane of lacing not less	
		than the radius of gyration about the axis parallel to the plane of lacing.	
		(b)As far as practicable, the lacing system shall be uniform throughout the length of the	
		column.	
		c) Except for tie plates double laced systems and single laced systems on opposite sides	Any two
		of the main components shall not be combined with cross members (ties) perpendicular	
		to the longitudinal axis of the strut, unless all forces resulting from deformation of the strut members are calculated and provided for in the design of lacing and its fastenings.	01 M for
		d) Single laced systems, on opposite faces of the components being laced together shall	each
		preferably be in the same direction so that one is the shadow of the other, instead of	
		being mutually opposed in direction.	
		e) The effective slenderness ratio, (kl/r)e., of laced columns shall be taken as 1.05 times	
		the (KI/ r)o, the actual maximum slenderness ratio, in order to account for shear	
		deformation effects.	
		f) Width of Lacing Bars In bolted/riveted construction, the minimum width of lacing bars shall be three times the nominal diameter of the end bolt rivet.	
		g) Thickness of Lacing Bars The thickness of flat lacing bars shall not be less than one-	
		fortieth of its effective length for single lacings and one-sixtieth of the effective length	
		for double lacings.	
		h) Rolled sections or tubes of equivalent strength may be permitted instead of flats, for	
		lacings.	
		i) Angle of Inclination: Lacing bars, whether in double. Or single systems, shall be inclined at an angle not loss than 40° or more than 70° to the axis of the built up	
		inclined at an angle not less than 40° or more than 70 ⁰ to the axis of the built-up member.	
		j) The maximum spacing of lacing bars, whether connected by bolting, riveting or	
			1

		 welding, shall also be such that the the main member, between consecutimes the most unfavorable slender less, where al is the unsupported len Between lacing points, and r, is to member being laced together. k) Where lacing bars are not lapped to members, they shall be so connected triangulation of the system. I) The lacing shall be proportioned to the member, equal to at least 2.5 pe divided equally among all transverse m) For members carrying calculated applied end moments and/or lateral the actual shear due to bending. n) The slenderness ratio, Kl/r, of the construction, the effective length of strength shall be taken as the length single lacing, and as 0.7 of this length intersections. In welded construction the distance between the inner ends members. 	utive lacing connect mess ratio of the m ogth of the individua he minimum radiu to form the connect d that there is no ap o resist a total trans rcent of the axial for lacing systems in p bending, the lacing lacing bars shall no lacing bars for the between the inner n for double lacings n, the effective leng	tions is not greater than 50 or 0.7 nember as a whole, whichever is al member us of gyration of the individual tion to the components of the ppreciable interruption in the everse shear, Vt, at any point in orce in the member and shall be parallel planes. to eccentricity of loading, shall be proportioned to resist et exceed 145. In bolted/riveted determination of the design end fastener of the bars for s effectively connected at gths shall be taken as 0.7 times	
Q.4	(A)(c)	State with reason whether ISA 90 x :	90x 8 is of semi-co	mpact class or not. Take fy = 250	
		MPa.	$\frac{1}{2}$		01 M
	Ans	Ratio of width to thickness ratio =15. Width =90 mm and thickness =8 mm			
		Therefore width to thickness ratio=	90/8= 11.25		01M
		Which lies in the range of 10.5(250/F	••	Fy) ^{1/2}	02 M
Q.4	(A)(d)	Hence ISA90x90x8 is of semi-compa Calculate effective length of a 7 m lo		standard saces of and	
Q.4	(A)(U)	conditions i) both ends are fixed		xed and other is hinged.	
	Ans	Restrained condition	length of column		
		i)both ends are fixed	7 m	= 0.65 x 7 = 4.55m	02 M for each
		-			cuon
		ii) One end is fixed and other is hinged.	7 m	= 0.8x 7 = 5.60 m	
Q.4	(B)	Attempt any one:			(06)
	(a)	Explain with sketches three modes of	of failure in axial te	ension member.	
	Ans	Types of failure Gross section yielding Net section rupture Block shear failure			
		1. Design Strength Governed B	y Yielding Of Section	on:	
		When a tension members is subje	ected to tensile f	orces although the net cross	

sectional yield first, the deformation within the length of connection will be smaller than the deformation in the remainder of tension member.it is because the net section exist within a small length of the member. And the total elongation is the product of the length of the member and the strain. Most of the length of the member will have an unreduced cross section , some attainment of yield stress on the gross area will result in larger total elongation. It is the larger deformation not the first yield that is the limit state. To prevent excessive deformation initiated by yielding the load on the gross section must be small enough so that the stress on the gross section is less than the yield stress.

That is $\frac{T}{Ag} < \text{fy}$ $T = A_g \text{ fy}$

Design strength = Ag fy $/\gamma_{m0}$ γ_{m0} = partial safety factor = 1.1

2. Design strength due to rupture of critical section:

Frequently plates under tension have bolt holes. The tensile stress in a plate at the cross section of a hole is not uniformly distributed in the Tension Member: Behavior of Tension Members elastic range, but exhibits stress concentration adjacent to the hole. The ratio of the maximum elastic stress adjacent to the hole to the average stress on the net cross section is referred to as the Stress Concentration Factor. This factor is in the range of 2 to 3, depending upon the ratio of the diameter of the hole to the hole to the width of the plate normal to the direction of stress.

In statically loaded tension members with a hole, the point adjacent to the hole reaches yield stress, fy, first. On further loading, the stress at that point remains constant at the yield stress and the section plastifies progressively away from the hole [Fig. (b)], until the entire net section at the hole reaches the yield stress, fy, [Fig. (c)]. Finally, the rupture (tension failure) of the member occurs when the entire net cross section reaches the ultimate stress, fu, [Fig. (d)]. Since only a small length of the member adjacent to the smallest cross section at the holes would stretch a lot at the ultimate stress, and the overall member elongation need not be large, as long as the stresses in the gross section at the hole, Tdn,

$$Ptn = 0.9 fuAn / \gamma_{m1}$$

Where, fu is the ultimate stress of the material, An is the net area of the cross section after deductions for the hole [Fig.4.4 (b)] and γ_{m1} is the partial safety factor against ultimate tension failure by rupture (ym1 = 1.25). Similarly threaded rods subjected to

tension could fail by rupture at the root of the threaded region and hence net area, An, is the root area of the threaded section.

3. Design strength due to block shear:

A tension member may fail along end connection due to block shear as shown in Fig.

The failure of the member occurs along a path involving tension on one plane and shear on a perpendicular plane along the fasteners. Block shear failure is considered as a potential failure mode at the ends of an axially loaded tension member. In this failure mode, the failure of the member occurs along a path involving tension on one plane and shear on a perpendicular plane along the fasteners. A typical block shear failure of a gusset plate is shown in fig. Here plane B-C is under tension whereas planes A-B and C-D are in shear.

The block shear failure is also seen in welded connections. A typical failure of a gusset in the welded connection is as shown in fig (b). The planes of failure are chosen around the weld. Here plane B-C is under tension and planes A-B and C-D are in shear.

The block shear strength Tdb, at an end connection is taken as the smaller of $T_{db} = [A_{vg}fy / 1.73 y_{m0}] + [fu A_{tn} / y_{m1}]$

 $T_{db} = [fu A_{vn} / 1.73 \gamma_{m1}] + [fy A_{tg} / \gamma_{m0}]$ Where, A_{vg} , $A_{vn} = minimum$ gross and net area in shear along a line of transmitted force.

OR

Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm ² Strength of 20 mm bolts: a) Strength in single shear = [$\pi/4 x(20)2+0.78 x \pi/4 x(20)2]x400x1/1.25v3 = 103314 N$ b) Strength in bearing : e= 40 mm p=60mm kb is smaller of 40/(3x22); 60/(3x22)-0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.606x20x8x400=77568 N (Bolt Value =77568 N) Nos. of bolt required = 350000/77568=4.5 Provide 4 bolts of 20 mm dia, in one line Figure : 40 mm 180 mm 10 mm Checking the design:a) Strength Against Yielding : Design strength = Ag fy /y _{m0} = 1956 x 250/1.1=444545 N > 350,000N b)Strength of Plate in Rupture : Area of connected leg, Anc =2{80-22-4}x8 =864 mm ² Area of unconnected leg, Ago=2x{50-4}x8 =736 mm ² $\beta = 1.4-0.076(w/t)*(fr/fu)*(bs/Lc)$ $\beta = 1.4-0.076(b7)(8*(250/410)*(75/180)=1.28)$ Design strength = (0.9 Anc fu /y _{m1})+{ β Ago fy /y _{m0} } = {0.9x864x410/1.25} +{1.28 x 736 x250/1.1} = 400000			1
as shown in Fig and fu, fy = ultimate and yield stress of the material respectivelyQ.4(B)(b)Design a suitable angle section can a tile member in a truss to carry factored load of 330 KN. Use double angle section connected back to back on back sides of 10mm. thick gusset plate by means of 4 bolts of 20 mm dia. in one line. Given a = 0.8, fy = 250 MPa, fs = 410 MPa. Available sectionsGross Area (mm ²) (SA 80 × 50 × 8 978 ISA 100 × 75 × 6 11014 ISA 125 × 75 × 6 Strength of 20 mm the consideration of yielding =1.1 × 350 ×1000/250 =1540 mm ² Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm ² Strength in single shear = [r/4 × (20)2-0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.606x20x8x400=77568 N (Bolt Value =77568 N) Nos. of bolt required =350000/77568=4.5 Provide 4 bolts of 20 mm dia, in one lineSumm01 maFigure : 40 mm00 mmOut mode SummChecking the design:a) Strength Against Yielding : Design strength = Ag fy /ym0 = 1956 x 250/1.1=444545 N >350,000N (OK)Other and connected leg, Anc =2(80-22.4)x8 =864 mm ² Area of unconnected leg, Age=2x(50.4)x8 =736 mm ² Summ01 maArea of unconnected leg, Age=2x(50.4)x8 =736 mm ² Summ01 maArea of unconnected leg, Age=2x(50.4)x8 =404 mm ² Area of unconnected leg, Age=2x(50.4)x8 =736 mm ² B = 1.4-0.076(by(1)*(fx/tu)*(bx/tc)) B = 1.4-0.076(by(1		6	
Q.4(B)(b)Design a suitable angle section as a tie member in a truss to carry factored load of 350 kN. Use double angle section connected back to back on both sides of 10mm. thick gusset plate by means of 4 bolts of 20 mm dia. in one line. Given $a = 0.8$, $fy = 250$ MPa, $fu = 410$ MPa. Available sectionsGross Area (mm²) SISA 80 x 50 x 8 978 ISA 100 x 75 x 6 11660114 15A 100 x 75 x 6 116601 mmAnsArea required from the consideration of yielding =1.1 x 350 x1000/250 =1540 mm² Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm² Strength of 20 mm bolts: a) Strength in single shear = $ T/4 x 2012+0.78 \times \pi/4 x 2012 x400x1/1.25V3 = 103314 N$ b) strength in bearing : e= 40 mm p=60mm kb is smaller of 40/(3x22): 50/(3x22)-0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.606x208x400=77568 N (Bolt Value =77568 N) Nos. of bolt required = 330000/77568=4.5 Provide 4 bolts of 20 mm dia, in one line01 mmFigure : 40mm01 mm01 mm <td></td> <td>angle or next last row of bolt in plates, perpendicular to the line of force, respectively</td> <td></td>		angle or next last row of bolt in plates, perpendicular to the line of force, respectively	
kN. Use double angle section connected back to back on both sides of 10mm. thick gusset plate by means of 4 bolts of 20 mm dia. in one line. Given a = 0.8, fy = 250 MPa, fu = 410 MPa. Available sections Gross Area (mm ²) ISA 80 x 50 x 8 978 ISA 100 x 75 x 6 1014 ISA 100 x 75 x 6 1014 ISA 125 x 75 x 6 1166 Ans Area required from the consideration of yielding =1.1 x 350 x1000/250 =1540 mm ² Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm ² Strength of 20 mm bolts: a) Strength in single shear = [r/4 x(20)2+0.78 x r/4 x(20)2]x400x1/1.25v3 =103314 N b)strength in bearing : e= 40 mm p=60mm kb is smaller of A0/(3x22); 60/(3x22):0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.6066x20x8x400=77568 N (Bolt Value =77568 N) Nos. of bot required =350000/77568=4.5 Provide 4 bolts of 20 mm dia, in one line Figure: 40mm 40mm 10mm Checking the design:a) Strength Against Yielding : Design strength = Ag fy /ymo = 1956 x 250/1.1=444545 N >350,000N (OK) b)Strength of Plate in Rupture : Area of connected leg, Anc =2{80-22-4}x8 =864 mm ² A = 32(0-2-4)x8 =864 mm2 $A = -2(80-22-4)x8 = 864 mm2 A = -14.0.076(50/8)*(1250/410)*(75/180)=1.28Design strength = (0.9 Anc fu /ym;)+{B Ago fy /ymo}=(0.9x864x410/1.25)+{1.28 x 736 x250/1.1}=469161.88 > 350,000N (OK)D = ma$		as shown in Fig and fu, fy = ultimate and yield stress of the material respectively	
Ans Area required from the consideration of yielding =1.1 x 350 x1000/250 =1540 mm ² Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm ² Strength of 20 mm bolts: a) Strength in single shear = $[\pi/4 x(20)2+0.78 x \pi/4 x(20)2]x400x1/1.25V3 = 103314 N$ b)strength in bearing : e = 40 mm p=60mm kb is smaller of 40/(3x22); 60/(3x22)-0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.606x20x8x400=77568 N (Bolt Value =77568 N) Nos. of bolt required =350000/77568=4.5 Provide 4 bolts of 20 mm dia, in one line Figure : 40 mm 40 mm 40 mm 40 mm 40 mm 50 mm 50 mm 50 mm 01 ma 50 mm 01 ma 10 mm 01 ma 10 mm 10 mm	Q.4 (E	kN. Use double angle section connected back to back on both sides of 10mm. thick gusset plate by means of 4 bolts of 20 mm dia. in one line. Given a = 0.8, fy = 250 MPa, fu = 410 MPa.Available sectionsGross Area (mm²)ISA 80 x 50 x 8978ISA 100 x 75 x 61014	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Checking the design:a) Strength Against Yielding : Design strength = Ag fy /y _{m0} 01 ma = 1956 x 250/1.1=444545 N >350,000N (OK) b)Strength of Plate in Rupture : Area of connected leg, Anc =2{80-22-4}x8 =864 mm ² Area of unconnected leg, Ago=2x{50-4}x8 =736 mm ² β = 1.4 -0.076(w/t)*(fy/fu)*(bs/Lc) β = 1.4 -0.076(50/8)*(250/410)*(75/180)=1.28 Design strength = {0.9 Anc fu /y _{m1} }+{ β Ago fy /y _{m0} } ={0.9x864x410/1.25} +{1.28 x 736 x250/1.1} =469161.89 >350,000N (OK) 02 ma		Area required from the consideration of yielding =1.1 x 350 x1000/250 =1540 mm ² Try-2 ISA80X50X8 mm thick which has a gross area=2*978=1956 mm ² Strength of 20 mm bolts: a) Strength in single shear = $[\pi/4 \times (20)2+0.78 \times \pi/4 \times (20)2] \times 400 \times 1/1.25 \vee 3 = 103314 \text{ N}$ b) strength in bearing : e= 40 mm p=60mm kb is smaller of 40/(3x22); 60/(3x22)-0.25; 400/410; 1 i.e. kb=0.606 Vdpb=1x2.5x0.606x20x8x400=77568 N (Bolt Value =77568 N) Nos. of bolt required =350000/77568=4.5 Provide 4 bolts of 20 mm dia, in one line Figure: 40 mm	01 mark
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			01 mark
Anc =2{80-22-4}x8 =864 mm ² Area of unconnected leg, Ago=2x{50-4}x8 =736 mm ² β = 1.4 -0.076(w/t)*(fy/fu)*(bs/Lc) β = 1.4-0.076(50/8)*(250/410)*(75/180)=1.28 Design strength = {0.9 Anc fu /y _{m1} }+{ β Ago fy /y _{mo} } ={0.9x864x410/1.25} +{1.28 x 736 x250/1.1} =469161.89 >350,000N (OK) 02 ma		= 1956 x 250/1.1=444545 N >350,000N (OK)	01 mark
$\beta = 1.4 - 0.076(w/t)^{*}(fy/fu)^{*}(bs/Lc)$ $\beta = 1.4 - 0.076(50/8)^{*}(250/410)^{*}(75/180) = 1.28$ Design strength = {0.9 Anc fu /y _{m1} }+{ β Ago fy /y _{mo} } ={0.9x864x410/1.25} +{1.28 x 736 x250/1.1} =469161.89 >350,000N (OK) 02 ma		Anc =2 $\{80-22-4\}x8 = 864 \text{ mm}^2$ Area of unconnected leg,	01 mark
per angle $T_{db} = A_{vg}fy / [SQRT3 y_{m0} + fu A_{tn} / y_{m1}]$ OR		$ \beta = 1.4-0.076(50/8)^*(250/410)^*(75/180)=1.28 $ Design strength = {0.9 Anc fu /y _{m1} }+{ β Ago fy /y _{mo} } ={0.9x864x410/1.25} +{1.28 x 736 x250/1.1} =469161.89 >350,000N (OK) c)strength against block shear failure : per angle T _{db} = A _{vg} fy /[SQRT3 y _{m0} + fu A _{tn} / y _{m1}]	02 mark

			1
		$T_{db} = fu A_{vn} / [SQRT3 \gamma_{m1} + fy A_{tg} / \gamma_{m0}]$	
		$A_{vg} = (40+60x3)x8 = 1760 \text{ mm}^2$	
		$A_{tn} = (80-35)x8=360 \text{ mm}^2$	
		$A_{vn} = (40+60x3-3.5 x22)x8=1144 mm^2$	
		A _{tg} =(80-35-0.5x22)x8 =272 mm2	
		$T_{db} = [A_{vg}fy / 1.732y_{m0}] + [fu A_{tn} / y_{m1}]$	
		= [1760x250/1.732*1.1]+[410*360/1.25]=349026.88 N	
		OR	
		$T_{db} = [fu A_{vn} / 1.732 \gamma_{m1}] + [fy A_{tg} / \gamma_{m0}]$	
		=[410*1144/1.732*1.25]+[250*272/1.1]=278464 N	
		Strength of two angles against block failure = 2 x 278464 =556929 N >350,000N (OK)	
		Hence Use 2 ISA 80x50x8 With 4 BOLTS OF 20MM dia.	
Q.5		Attempt any two:	(16)
4.5	(a)	An industrial building of size 16m x 25 m is provided with Fink type trusses at 6 m c/c.	(
	(9)	Calculate panel point load in case of Dead load and Live load from following data:	
		i) Unit weight of roofing material = $160N/m^2$	
		i) Self weight of purlin = $115N/m^2$	
		iii) Weight of bracing = 50 N/m^2	
		iv) Rise to span ratio = 1/5	
		v) No. of panels = 8.	
	Ans.	1. General design: -	
	Ans.	Effective span, L = 16 m.	
		Spacing of trusses, S = 6 m C/C	
		Rise of truss = $L/5 = 16 / 5 = 3.2 \text{ m}.$	
		Slope of truss, $\theta = \tan^{-1}(\text{Rise}/0.5\text{L}) = \tan^{-1}(3.2/8) = 21.80^{\circ}$	01 M
		2. Calculation of panel point DL: -	
		a) Weight of roof covering material on plan area = 160 N/m^2	
		b) Self weight of truss = $[(L/3) + 5] \times 10 = [(16/3) + 5] = 103.33 \text{ N/m}^2$	
		c) Weight of bracing = 50 N/m^2	
		d) Weight of purlin = 115 N/m^2	
		Total intensity of DL = $160 + 103.33 + 50 + 115 = 428.33 \text{ N/m}^2$	02 M
		DL on one panel point = Intensity of DL x area under one panel point.	02 101
		$= 428.33 \times 2 \times 6 = 5139.96 \text{ N}$	01 M
		$\frac{OR}{Plan area} = 16 \times 6 = 96 \text{ m}^2$	
		Total DL = $428.33 \times 96 = 41119.68 \text{ N}$	
		DL per panel point = Total DL / No. of panels = $41119.68 / 8 = 5139.96 N$.	
		DL per parter point = $101a DL / NO. 01 parters = 41119.08 / 8 = 5139.90 N.$ DL on end panel point = $5139.96 / 2 = 2569.98 N$	
		3. Calculation of panel point LL: -	
		LL intensity on purlin = $750 - (\theta - 10) \times 20$	
		$= 750 - (21.8 - 10) \times 20 = 514 \text{ N/m}^2 > 400 \text{ N/m}^2 \text{ OK}.$	02 M
		LL intensity on truss = $(2/3) \times 514 = 342.67 \text{ N/m}^2$	01 M
		Total LL = Intensity of LL x Plan area = $242.67 \times 0.6 = 2280.6 \text{ N}$	
		$= 342.67 \times 96 = 32896 \text{ N}$	
		LL on one panel point = $32896 / 8 = 4112 N$	
0.5		LL on end panel point = $4112 / 2 = 2056 N.$	01 M
Q.5	(b)	A hall has Howe truss of 6 panels for 15 m span, are spaced at 4.2 m C/C and rise of	
		truss is 3 m. Calculate panel point load in case of Live load and Wind load. Given Data:	

		$V_{h} = 20 m/c_{h}$ much shill the function $K_{h} = 1$ to much show $K_{h} = 0.0$ to so so much be function $K_{h} = 1$.	1
		$Vb = 39 m/s$; probability factor $K_1 = 1$, terrain factor $K_2 = 0.9$, topography factor $K_3 = 1$;	
		Coefficient of external wind pressure = -0.7 and normal permeability. (Cpi = ± 0.2).	
	Ans.	1. Data: -	
		Span of truss, L = 15 m., No. of panels = 6, Spacing of trusses = 4.2 m. C/C	
		Rise = 3 m., V_b = 39 m/sec, K_1 = 1, K_2 = 0.9, K_3 = 1, C_{pe} = 0.7, C_{pi} = ± 0.2	
		Slope of truss, $\theta = \tan^{-1}(\text{Rise}/0.5\text{L}) = \tan^{-1}(3.0/7.5) = 21.80^{\circ}$	01 M
		2. Calculation of LL per panel point: -	
		LL intensity on purlin = 750 – (θ – 10) x 20	
		= 750 – (21.8 – 10) x 20 = 514 N/m ² > 400 N/m ² OK.	
		LL intensity on truss = (2/3) x 514 = 342.67 N/m ²	01 M
		Total LL = Intensity of LL x Plan area	
		= 342.67 x 15 x 4.2 = 21588 N	01 M
		LL on one panel point = 21588 / 6 = 3598 N	
		LL on end panel point = 3598 / 2 = 1799 N	01 M
		3. Calculation of WL per panel point: -	
		Design wind speed = $V_z = V_b \times K_1 \times K_2 \times K_3$	
		= 39 x 1 x 0.9 x 1 = 35.1 m/sec.	
		Design wind pressure = $p_d = 0.6 \times (V_z)^2 = 0.6 \times 35.1^2 = 739.2 \text{ N/m}^2$	01 M
		Note: As the external wind pressure co-efficient is given for one condition (i.e. there is	
		no mention of wind blowing normal or parallel or position along length of building)	
		only one condition will be critical.	
		Total intensity of design wind pressure = (Cpe – Cpi) x pd	
		$= (-0.7 - 0.2) \times 739.2$	
		$= - 665.28 \text{ N/m}^2 \text{ (uplift)}$	01 M
		WL per panel point = Design wind pressure x Inclined panel length x S	
		$= -665.28 \times (2/\cos 21.80^{\circ}) \times 4.2 = -6018.78 \text{ N (uplift)}$	01 M
		WL at end panel point = $-6018.78 / 2 = -3009.39 N.$	01 M
Q.5	(c)	Design a suitable slab base for an ISHB 450 to transfer a factored load of 1300 kN to	02.00
Q.5	(0)	foundation stratum having bearing capacity 400 kN/m ² . Assume concrete of grade	
		M20. Draw the details. For ISHB 450: bf= 250 mm, tf= 13.7 mm fy = 250 M.Pa, fu = 410	
		MPa .	
	Ans.	Factored load, $P_u = 1300 \text{ kN}$., $f_{ck} = 20 \text{ N/mm2}$, $B = b_f = 250 \text{ mm}$, $t_f = 13.7 \text{ mm}$	
	A113.	$D = h = 450 \text{ mm}, f_v = 250 \text{ mPa}, q_u = 400 \text{ kN/m}^2$	
		i. Bearing area of base plate,	
		A = Pu / (0.6 x fck) = 1300×10^3 / (0.6 x 20) = 108333 mm^2	01 M
		ii. Size of base plate, $\int \left(\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} 1$	
		$Lp = [(D-B) / 2] + SQRT{[(D-B) / 2]2 + A}$	
		$= [(450-250) / 2] + SQRT\{[(450-250) / 2]^{2} + 108333\}$	
		= 443.99 mm Say 450 mm.	
		Bp = 108333 / 450 = 240.74 mm Say 250 mm.	01 M
		Larger projection = $a = (Lp - D)/2 = (450 - 450) / 2 = 0$	
		This is not advisable because, thickness will become zero which is not	
		possible, more ever cleat angles are to be accommodated, hence increase	
		value of Lp and Bp by 150 mm each.	
		Lp = 450 + 150 = 600 mm and Bp = 250 + 150 = 400 mm.	01 M
		Now larger projection = $a = (600 - 450) / 2 = 75 \text{ mm}$.	
		Smaller projection = b = (400 – 250) / 2 = 75 mm.	
		Area of base plate = Lp x Bp = $600 \times 400 = 240000 \text{ mm}^2$.	01 M

			1
		iii. Ultimate pressure from below on the slab base:	01.14
		$w = Pu / Area of base plate = 1300 \times 10^3 / 240000 = 5.417 N/mm^2.$	01 M
		iv. Thickness of base plate:	
		$t_s = SQRT\{[2.5 \times w (a^2 - 0.3b^2) \times y_{m0}] / fy\}$	
		$= SQRT\{[2.5 \times 5.417 (75^{2} - 0.3 \times 75^{2}) \times 1.10] / 250\}$	
		= 15.31 mm Say 16 mm.	01 M
		Also $t_s > t_f$ i.e. 13.7 mm	
		Hence provide 600 x 400 x 16 mm base plate and connect it to ISHB450 by securing 2ISA	
		75 x 75 x 10 mm cleat angle with 4 – 20 mm diameter bolts.	
		v. Size of concrete pedestal:	
		$A_f = (Pu \times y_{m0}) / q_u = (1300 \times 1.1) / 400 = 3.575 m^2$	
		For equal projections,	
		$L_f = [(Lp - Bp) / 2] + SQRT{[(Lp - Bp) / 2]^2 + A_f}$	
		$= [(0.6 - 0.4) / 2] + SQRT\{[(0.6 - 0.4) / 2]^{2} + 3.575\}$	
		= 1.993 m Say 2.0 m.	01 M
		$B_f = A_f / L_f = 3.575 / 2 = 1.787 m Say 1.8 m.$	
		Provide M20 concrete pedestal of size 2.0 m x 1.8 m.	
		Provide depth of concrete block, $D_f = (2.0 - 0.6) / 2 = 0.7 m$.	
		Cleat angles ISA 75X75X10 mm ISHB 450 Dotts one at each	
		A 45° A A A A A A A A A A A A A A A A A A A	01 M
		Sectional Elevation	
Q.6		Attempt any four :	(16)
Q.0	(2)	Why laterally supported beam always preferred? Explain any two methods to support	(10)
	(a)	beam laterally.	
	Ans.		
	AIIS.	Laterally supported beams are always preferred because: 1. Thin projecting flange is susceptible to buckling under compression.	01 M
			01 M 01 M
		 In laterally supported beam, flange is restrained from buckling. We can support the beam laterally in many ways as fallows. 	
			01 M
		 Embedding compression flange in the floor. Connection of compression flange to the floor with the help of shear connectors. 	01 M 01 M
Q.6	(b)	<i>Explain with sketch: i) Web buckling ii) Web crippling</i>	
Q.0	Ans.	A heavy concentrated load or end reaction produces a region of high compressive	
	7115.	stresses in the web either at support or under the load. This causes the web either to	02 M
		buckle or to cripple (or local bending) as shown in fig.	
			01 M for
			each
		(a) Web Buckling (b) Web Crippling	

Q.6	(c)	Draw neat labeled sketch of bolte			
	Ans.	Note: Students may draw longitudinal sectional view and cross sectional view of bolted plate girder for which full marks shall be given if views are correct.			
1.6	(d) Ans.	Differentiate between gusseted be Difference between gusseted base			
		Sr. No. Slab base	e Gusseted base		
		1. The load on column is o transferred to the base thickness required for b more.	plate. Hence through gusset plates and base plate	Any four	
		2. The cleat angles are us column section to base width of column.		01 M for each	
		3. The bearing surfaces m (not machined). Hence due to transit, unloading may be caused.	the moments ensure perfect control between		
		4. The slab bases are simp construction and fasteni elements speedily.			
		5. Economical as material less.	required is Expensive but more stronger than slab base.		
).6	(e) Ans.	fastenings. It spreads the lo and evenly.2. Cleat angle: - These are use	-	01 M for each	

4.	. Concrete block: - It is provided to transfer the load evenly onto the underlying	
	soil such that the design stresses induced in the soil should not exceed the	
	bearing capacity of soil.	