

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Chemical process Instrumentation & Control

Subject Code:

17561

Page **1** of **33**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Chemical process Instrumentation & Control

Subject Code: 17561

Page **2** of **33**

Q No.			Answer	Marks		
1a	Attempt any THREE					
1a-i	Difference between open loop and closed loop control system.					
	Sr	Open loop control system	Closed loop control system	each for		
	No.			any four		
	1	Feedback doesn't exists	Feedback exists	points		
	2	Output measurement is not	Output measurement is			
		necessary	necessary			
	3	Any change in output has	Changes in output affects the			
		no effect on input	input			
	4	Error detector is absent	Error detector is present			
	5	Inaccurate and unreliable	Highly accurate and reliable			
	6	Highly sensitive to	Less sensitive to disturbance			
		disturbance				
	7	Highly sensitive to	Less sensitive to environmental			
		environmental changes	changes			
	8	Simple in construction and	Complicated in construction and			
		cheap	hence costly			
	9	Highly affected by non-	Reduced effect of non-linearity			
		linearities				
1a-ii	Inherent flow characteristics					
	They are plotted when constant pressure drop is maintained across the valve.					
	There are two different inherent flow characteristics- linear and equal percent.					

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Name: Chemical process Instrumentation & Control

Subject Code: 17561

Page **4** of **33**

ame: Cl	hemical process Instrumentation & Control Subject Code: 175	61	
			Page 5 of 3
	contact of process fluid with diaphragm which is necessary to prevent the		
	corrosion and clogging of diaphragm and to prevent the loss of explosive or		
	hazardous process fluid in case of failure or replacement of diaphragm		2
	The force of pressure against the effective area of the diaphragm causes a		
	deflection of the diaphragm. The motion of the diaphragm operates an		
	indicating or recording type instrument.		
1b	Attempt any ONE		6
1b-i	Classification of level measurement:		
	Level measurements can be classified into		
	i) direct level measurement ii) indirect level measurement		
	In direct level measurement, the varying level of liquid is measured directly. In		2
	indirect level measurement, a variable which changes with the level of liquid is		
	measured and level is calculated using that variable.		
	eg for direct level measurement: Sight glass method, float type level		
	Indicator		
	Indirect level measurement can be further classified into		4
	a. Hydro static Methods: eg Pressure gauge, air purge or bubbler system, air		
	bellows, Diaphraghm box method (any one)		
	b. Differential methods: Differential pressure gauge		
	c. Electrical methods : Capacitance level measurement		
	d. Radiation methods: Radioactive level detector		
	e. ultrasonic methods : ultrasonic level detector		
1b-ii	Definitions:		mark
	1.Static error:	6	each
	It is the difference between the true value of a quantity not changing with time		
		<u> </u>	

SUMMER-18 EXAMINATION

2. Ac It is t being 3. Pr It is t 4. Ca It is t with meas 5. Re It is t	the value indicated by the instrument ccuracy: the instruments ability to indicate or record the true value of the variable g measured. recision: the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison a standard , of the correct value of each scale reading on a meter or other	Page 6
2. Ac It is t being 3. Pr It is t 4. Ca It is t with meas 5. Re It is t	the instruments ability to indicate or record the true value of the variable g measured. recision: the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison	
It is the being 3. Provide a second 	the instruments ability to indicate or record the true value of the variable g measured. recision: the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison	
being 3. Pr It is 4. Ca It is with meas 5. Re It is t	g measured. recision: the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison	
3. Pr It is 4. Ca It is with meas 5. Re It is t	recision: the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison	
It is a 4. Ca It is a with meas 5. Re It is t	the degree of exactness for which an instrument is designed to perform alibration: defined as the process for determination, by measurement or comparison	
4. Ca It is a with meas 5. Re It is t	alibration: defined as the process for determination, by measurement or comparison	
It is over the second s	defined as the process for determination, by measurement or comparison	
with meas 5. Re It is t		
meas 5. Re It is t	a standard , of the correct value of each scale reading on a meter or other	
5. Re It is t		
It is t	suring instrument	
	esolution:	
or dis	the least incremental value of input or output that can be detected, caused	
	scriminated by the measuring device.	
6. De	ead zone:	
It is t	the largest range of values of a measured variable to which the instrument	
does	not respond.	
2 Atter	mpt any FOUR	16
2-a Ultra	asonic flow meter: (Time Difference Type)	

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

_

-

ne: Chemical process Instrumentation & Control Subject Code:	17561	
		Page 10 of
2. Storage device		
3. Input/ Output device		
4. Bus interface		
The Central Processing Unit (CPU) consists of control unit, arithmetic le	ogic	
unit (ALU), main memory(Primary storage) and general purpose regis	ters.	
Computer fetches data from primary memory under the command of con	ntrol	
unit. ALU performs arithmetic & logical operations on the data and transfe	ers it	
to primary storage. The processed data is further transferred to input/out	itput	
devices (I/O) as per the requirements of application program.		3
Storage: They are of three types-		
1.Main storage or immediate access storage		
2. Auxiliary or secondary memory		
3.Cache memory		
Input/output devices: It is the sub system through which the O	CPU	
communicates with the outside world. The input-output (I/O) devices of pro	cess	
control computers are divided into three types.		
(1) Operator I/O devices: These are used to communicate with the operation	ators	
(people). Process operators uses devices such as keyboards, push but	tton,	
switches etc to input data or command to the computer and rec	eive	
information from computer via devices such as VDU(Visual Dis	play	
Unit), LED (Light Emitting Diode), numerical display etc.		
(2) Process I/O devices : These devices communicate between CPU	and	
plant devices such as sensors, limit switches etc for input and con	ntrol	
valves, motor starters etc for output, through ADC and E	DAC	
subsystems.		

ame: Cl	nemical process Instrumentation & Control Subject Code: 175	561
		Page 13
	power supply to the heater equals the heat transferred to the fluid, i.e. Q, and is	
	measured by a wattmeter. Thus by measuring the values of Q, T1 and T2 the	
	flow rate W of liquid is determined from the equation	
	W=Q/Cp(T2-T1)	
	Where	
	Q=heat transfer	
	W= mass flow rate of fluid	
	Cp= specific heat of fluid	
	T1=initial temperature of the fluid after heat has been transferred	
	T2=final temperature after heating the fluid	
	(Hot wire flowmeter should also be given due consideration)	
3-b	Thermocouple:	
	Principle:	
	The working principle of a thermocouple depends on the thermo-electric effect	
	Seebeck discovered that when there is temperature difference between two	
	junctions of thermocouple, an emf is developed between the junctions. This emf	
	causes electric current to flow through thermocouple circuit. This is called	
	thermo electric effect by which thermal energy is converted to electrical energy	
	Construction and working:	

me: Cl	nemical process Instrumentation & Control	Subject Code:	17561	
				Page
	and Reynolds number to ensure that the proper equation	and correction fac	tors	
	are used. As many difficulties occur due to oversized val	ves as to undersize	ed	
	valves. Adding lots of "safety factors" will result in a val	ve that is nearly c	losed	
	during normal operation and has poor rangeability.			
	3. The trim characteristic is selected to provide good perf	formance; goals ar	e	
	usually linear control loop behaviour along with acceptat	ole rangeability.		
	4. The valve body can be selected. The valve size is either	er equal to the pipe	e size	
	or slightly less, for example, a 3-inch pipe with a 2-inch	globe valve body.		
	When the valve size is smaller than the process piping, and	n inlet reducer and	1	
	outlet expander are required to make connections to the p	process piping.		
	5. The actuator is now selected to provide sufficient force	e to position the st	em	
	and plug.			
	6. Finally, auxiliaries can be added to enhance performan	nce. A booster can	be	
	increase the volume of the pneumatic signal for long pne	umatic lines and la	arge	
	actuators. A positioner can be applied for slow feedback	loops with large v	alves	
	or valves with high actuator force or friction. A hand whe	eel is needed if ma	inual	
	operation of the valve is expected.			
4a-iv	Pneumatic controller:			
	Types of pneumatic controller			
	ON-OFF controller			
	Proportional controller			
	Integral controller			
	Derivative controller			
	Pneumatic Proportional controller:			4
	Description:			

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

speed of the system. This cannot eliminate the off-set error, as the derivative

SUMMER-18 EXAMINATION

me: Chemi	cal process Instrumentation & Control	Subject Code:	17561	
				Page
	l-Length of conductor			
	B-Magnetic flux density			
	v-Velocity of conductor			
Th	is emf induced is proportional to the velocity of the	conductor. As the f	low	
rate	e varies, velocity of fluid changes and hence the indu	uced emf changes.		
Ad	vantages :			
	1. Low pressure drop		1	mark
	2. Used for measuring the flow of slurries in which	h the liquid phase is	ea	ch for
	electrically conductive.		an	y two
	3. Can be used for measuring the flow rate of corre	osive fluids provide	d a	
	suitable lining material is used.			
	4. Can handle small as well as large flow rates.			
	5. Flow measurement is not affected by viscosity,	density and tempera	ature	
	of the fluid.			
Dis	advantages:			
	1. Can be used for measuring the flow rate of conc	luctive fluids only.		
	2. Insulating line is subjected to damage when abr	asive fluids are hand	dled. 1	mark
	3. Expensive		ea	ch for
	4. It must be well protected when used in electrica	l areas to prevent	an	y two
	explosion hazards.			
	5. It can't be used for metering gases, steam, pet	roleum products be	cause	
	they have low electrical conductivity			
6-b Dis	tributed control system:			
Blo	ock diagram:			

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Subject Name: Chemical process Instrumentation & ControlSubject Code:175	561	
	F	Page 33 of 33
soldered at the base through pressure is fed inside the tube, while the other end		
is sealed by a tip. The linear motion of the tip moves the pointer on a scale		
calibrated in terms of pressure.	4	1
When the fluid under pressure enters the bourdon tube, its cross section tends to		
become more and more circular that causes straightening of the tube. Since one		
end of the tube is fixed, straightening of the tube causes the free end to deflect,		
which is called as tip travel. The amount of tip travel for given rise in pressure		
is a function of tube length, wall thickness, cross section and elastic modulus of		
the tube material. Sector and pinion converts the amplified tip travel into		
proportional rotary motion of the pointer connected to the pinion. The pointer		
deflection can be read on the scale calibrated in terms of pressure.		