

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Chemical Reaction Engineering

Subject code

17562

page 1 of 21

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Chemical Reaction Engineering

Subject code

17562

page **2** of **21**

Q No.	Answer				
1A	Attempt any THREE of the follow	ing	12		
1A-a	Rate constant: Rate constant of a ch	nemical reaction is a measure of the rate of	2		
	the reaction when all the reactants an	e at unit concentration.			
	Unit of rate constant = $(time)^{-1}$ (con				
	Given concentration in mole / 1 and t	ime in seconds,			
	Unit of rate constant for second or	der reaction is $(second)^{-1} (moles/l)^{1-2}$	2		
	=	/ (mole. second)			
1A-b	Definition:				
	Entropy : Entropy(s) is the measure	of the total disorder or randomness of the	1		
	system or it is a measure of the unav	ailable energy to perform useful work.			
	Unit: J/ K				
	Gibb's free energy: It is the energy	gy actually available to do useful work. It	1		
	predicts the feasibility and equilib	rium conditions for chemical reactions at			
	constant temperature and pressure.				
	Unit: Joules, calories		1		
1A-c	Fractional change in volume $\mathcal{E}_{A:}$ I	t is the fractional change in volume of the			
	system between no conversion and c	omplete conversion of reactant A	2		
	$\mathcal{E}_{A} = (\mathbf{V}_{XA=1} - \mathbf{V}_{XA=0}) / \mathbf{V}_{XA=0}$				
	A \rightarrow 3R Initially the reaction mixture contains 50 mole % A and 50 mole%				
	inerts. Ie along with 1 mole A, there will be 1 mole inerts				
	Inerts will not take part in the reaction.				
	Moles at no conversion	Moles after conversion			
	A=1 mole	R= 3 moles			
	Inert= 1 mole	Inert=1 mole	2		

Subject Titl	le: Che	emical Reaction Engineering	Subject code	17562	page	3 of 21
		$C_A = (V_{XA=1} - V_{XA=0}) / V_{XA=0} = [(3 + 1)^{-1}] $	1) - (1 + 1)] / (1 + 1)	= 1		
1	A-d	Space time:				
		It is the time required to process one read	ctor volume of feed i	neasured at	1	
		specified condition.				
		Mathematical expression and unit				
		$\tau = \frac{1}{s} = \frac{C_{A0V}}{F_{A0}}$			1	
		Unit is unit of time (seconds, minute, etc	2)			
		Space velocity				
		It is the number of reactor volume of feed	d at specified condit	ions which car		
		treated in unit time.			1	
		Mathematical expression and unit				
		$\mathbf{S} = \frac{1}{\tau} = \frac{F_{A0}}{C_{A0V}}$			1	
		Unit is $time^{-1}$ ($second^{-1}$, $minute^{-1}$ e	tc)			
	1B	Attempt any ONE of the following			6	
1	lB-a	Integrated form of rate expression for	zero order reaction	1		
		Rate equation is $-\mathbf{r}_{A} = -\frac{dC_{A}}{dt} = \mathbf{C}_{A0} \frac{d_{xA}}{dt} = \mathbf{C}_{A0} \frac{d_{xA}}{dt$	k			
		In terms of concentration				
		$-\frac{dC_A}{dt} = \mathbf{k}$				
		Integrating between appropriate limits				
		$\int_{CA_0}^{CA} - dCA = k \int_0^t dt$			2	
		$C_{A0} - C_A = kt$ for $t < \frac{C_{A0}}{k}$				
		Γ.				

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemical Reaction Engineering

17562

page **4** of **21**

	CAO CAO CA CA Slope = - K CAO R t = CAO/R t	1
	In terms of fractional conversion	
	$C_{A0}\frac{d_{xA}}{dt} = k$	
	Integrating between appropriate limits	2
	$C_{A0} \int_0^{xA} \mathbf{d}_{xA} = \mathbf{k} \int_0^t dt$	
	$C_{A0} X_A = kt \text{ for } t < \frac{C_{A0}}{k}$	
	XA' CAO IX t	1
1B-b	$T_1 = 500^0 C = 773 K$	
	$T_2 = 650^0 C = 923 K$	
	$E=300 \text{ KJ/mole} = 300 \text{ x} 10^3 \text{ J/mole}$	
	From Arrhenius law	
	$\ln \frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) = \left(-300 \times 10^3 / 8.314 \right) \times \left(\frac{1}{923} - \frac{1}{773} \right)$	2

Subject Title: Ch	emical Reaction Engineering Subject code	17562		page 5 o	of 21
	$\ln \frac{k_2}{k_1} = 7.586$			2	
	$\frac{k_1}{k_2} = 1970.4$ The reaction at 650 ⁰ C is 1970 times faster than the reaction	1 at 500 ⁰ C.		2	
2	Attempt any TWO of the following			16	
2-a	Temperature dependency of rate constant from transiti	on state the	eory:		
	Reactants combine to form unstable intermediates called a	ctivated con	nplex		
	which then decompose spontaneously into products. An e	quilibrium e	exists		
	between the concentration of reactants and activated complex	x at all times	s and		
	the rate of decomposition of the complex is the same for all	reactions a	nd is	2	
	given by kT / h where k is Boltzmann constant and h is Planck	k constant.			
	Consider the reversible reaction $A + B \leftrightarrow AB$, k_1 is the	rate constan	t for		
	forward reaction and k_2 is the rate constant for backward reaction	ion			
	k ₃				
	According to transition theory, $A + B \leftrightarrow AB^* \rightarrow AB$				
	\mathbf{k}_4 \mathbf{k}_5				
	$K_{c} = k_{3} / k_{4} = C_{AB} * / C_{A}.C_{B}$				
	$K_5 = kT/h$				
	$r_{AB,forward}$ = (concentration of activated complex) . (rate of				
	decomposition of activated	complex)			
	$= C_{AB}^* \cdot (kT / h)$				
	= (kT / h). K _c . C _A . C _B				
	From thermodynamics, $\Delta G = \Delta H - T\Delta S = -RT \ln K_c$			3	
	$\ln K_c = -(\Delta G / RT)$				
	$K_c = e^{-(\Delta G / RT)} = e^{-(\Delta H / RT) + \Delta S / R}$				
	$r_{AB,forward} = (kT / h).C_A. C_B . e^{-(\Delta H / RT) + \Delta S / R}$				
	= a constant . T. $e^{-(\Delta H/RT)} C_A$. $C_B = k C_A$. C_B				

Subject Title: Ch	emical Reaction Engineering	Subject code	17562	page 6 of 21
	where k = a constant . T. $e^{-(\Delta H/RT)}$ $e^{\Delta S/R}$ is less temperature sensitive constant. For forward reaction, k ₁ α T $e^{-(\Delta H_1/RT)}$ For backward reaction, k ₂ α T $e^{-(\Delta H_1/RT)}$ For backward reaction, k ₂ α T $e^{-(\Delta H_1/RT)}$ For relating ΔH and Arrhenia thermodynamics is used. E = ΔH - RT for liquids and solids E = ΔH - (molecularity – 1) RT for	art) us activation energy, gases	analogy	an be from 3
	The difference between E and ΔH is stransition theory predicts that K α T α		Г. Hence	
2-b	Performance equation for constant kinetics $A_{,B}$ $A_{$	mixed component A. ant A out + Rate of loss of ulation of reactant A wi eaves the reaction mixture te of reactant A out = 0	of reactant A thin the react	A due

Subject Title: Chemical Reaction Engineering Subject code 17562	page 7 of 21
Rate of loss of reactant A due to chemical reaction = - Rate of accumulation of	f 2
reactant A within the reactor(1)	
Rate of loss of reactant A due to chemical reaction = $-r_A V$	
Rate of accumulation of reactant A within the reactor $= \frac{dN_A}{dt} = -N_{A0}\frac{dX_A}{dt}$	2
Substituting in equation (1)	
$-\mathbf{r}_{\mathrm{A}}\mathbf{V} = \mathbf{N}_{\mathrm{A}0}\frac{dX_{A}}{dt}$	
Rearranging and integrating	
$\int_0^t dt = \mathbf{N}_{A0} \int_0^{x_A} \frac{dx_A}{V(-r_A)}$	
$\mathbf{t} = \mathbf{N}_{A0} \int_0^{x_A} \frac{dx_A}{V (-r_A)}$	
For constant volume system, the equation becomes	2
$t = \frac{N_{A0}}{V} \int_0^{x_A} \frac{dx_A}{(-r_A)} = C_{A0} \int_0^{x_A} \frac{dx_A}{(-r_A)} = - \int_{CA0}^{C_A} \frac{dC_A}{(-r_A)}$	
Graphical representation for constant volume batch reactor	
Area t -RA CAC I Area t XA C XA CA CAO CA	2
2-c Methods of catalyst Preparation:	
1. Precipitation	
2. Gel formation	
3. Simple mixing	
4. Impregnation method	
1.Precipitation method :	

ject Title: Chemical Reaction Engineering	Subject code	17562	page 8 of
This method produces catalyst in porou	us form. It consists of a	adding a	2 marks
precipitating agent to the solution of th	e desired component.	The precipitation	on each for
is followed by washing, drying, calcina	ations & activation(or j	pretreatment)	explaining
Eg. Magnesium oxide catalyst is prepa	red by this method. It i	s prepared by	the
precipitating MgCO ₃ from magnesium	nitrate solution by add	ling sodium	methods
carbonate. The magnesium carbonate p	precipitate is washed, d	ried & calcine	d to with eg
obtain magnesium oxide.			
2.Gel formation: If the precipitate for	med in the above meth	od is colloidal,	,
then gel is formed.			
Eg Catalyst containing silica and alumi	ina are suitable for gel	formation beca	ause
their precipitates are colloidal in nature	2.		
3. Simple mixing: Some porous mater	ials are obtained by mi	xing the	
components with water, milling to the	desired grain size, dryi	ng and calcini	ng.
Such materials may be ground and siev	ved to obtain the partic	le size.	
Eg Mixed Mg and Ca oxide catalyst is	prepared by this metho	od	
4. Impregnation method:			
This method is used for the preparation	n of expensive catalysts	s like platinum	,
palladium, silver etc. A catalyst carrier	provides a means of o	btaining a larg	e
surface area with a small amount of cat	talyst. The steps in the	preparation of	a
catalyst impregnated on a carrier include	de evacuating the carri	er, contacting t	the
carrier with the impregnating solution,	removing the excess s	olution, drying	ŗ,
calcining and activation.			
Eg Nickel catalyst is prepared on alum	ina by soaking the eva	cuated alumina	a
particles with nickel nitrate solution, dr	raining to remove the e	excess solution	and
heating in an oven to decompose the ni	itrate to nickel oxide. T	The final step is	S
activation in which nickel oxide is redu	aced to nickel.		
Any other appropriate preparation	method should als	so be given	due

SUMMER-18 EXAMINATION **Model Answer**

Subject Title: Chemical Reaction Engineering

Subject code 17562 page 9 of 21 consideration 3 Attempt any FOUR of the following 16 Number of moles (n)= 10 / 4 = 2.53-a $P_1 = 3 \text{ atm}$ P₂ 15 atm $T = 100^{\circ}C$ $\Delta S = nC_p ln \frac{T_2}{T_1} + nRln \frac{P_1}{P_2}$ 2 For isothermal operation, $\Delta S = nRln \frac{P_1}{P_2}$ 2 $\Delta S = 2.5 \text{ x} 1.987 \text{ x} \ln (3/15) = -7.994 \text{ cal} / \text{K}$ $A \rightarrow Products$ 3-b Rate equation is $-\mathbf{r}_{A} = -\frac{dC_{A}}{dt} = \mathbf{k} \mathbf{C}_{A}^{n}$ 2 Rearranging $\frac{-dC_A}{C_A^n} = k dt$ Integrating between appropriate limits $-\int_{C_{AO}}^{C_A} \frac{dC_A}{C_A^n} = k \int_0^t dt$ 2 $C_A^{1-n} - C_{Ao}^{1-n} = (n-1)$ kt where n is not equal to 1 Temperature increase is not desirable for exothermic reaction. 3-c 4 Van't Hoff equation is $\frac{dlnK}{dT} = \frac{\Delta H}{RT^2}$ For exothermic reaction, ΔH is negative. When temperature is increased, dT is positive; the overall equation is negative, which means ln K is negative. When In K is negative, the value of K is low which denotes lower concentration of products. Therefore temperature increase is not desirable for exothermic reaction.

3-d	Differen	ce between order and molecularity	of reaction.(4 points)	1 mark
	Sr.No.	Molecularity	Order of reaction	each
	1	Molecularity is the number of	Order of reaction is the sum	
		molecules, atoms or ions in a	of exponents of the	
		chemical reaction.	concentration terms	
			involved in the rate	
			equation.	
	2	Molecularity always have an	Order of reaction can have a	
		integer value 1,2,3	fractional value.	
	3	Shows the elementary mechanism	Shows the kinetic	
		or separate steps of a complicated	dependence of the rate on	
		process	the concentration of the	
			reactants.	
	4	Depending upon the value of	Depending upon the value	
		molecularity, reaction can be	of order, the reactions are	
		unimolecular ,bimolecular etc.	termed as first order, second	
			order reactions	
	5	Molecularity is a theoretical	Order of reaction is entirely	
		quantity	an experimental value.	
3-е	Types of	f catalyst deactivation		
	1. Deacti	ivation by Fouling		1
	2. Chem	ical Deactivation - Poisoning		

Subject '	Title: Ch	emical Reaction Engineering	Subject code	17562	page 11 of 2	21
		Description:			_	
		Deactivation by Fouling Generally fouling covers all phenomena w	here the surface is	covered with	a	
		deposit. The most widely known form of f	ouling of catalysts	is coke forma	tion.	
		Most of coke formation arises as a result o	f carbonaceous resi	dues covering	g the 3	
		active sites of a heterogeneous catalyst sur	face, subsequently	decreasing the	-	
		active surface area of the catalyst. In addit	ion the deposition of	of rust and sca	ale	
		from elsewhere in the catalytic system is n	ot uncommon. Cok	e-forming		
		processes also involve chemisorption of di	fferent kinds of car	bons or		
		condensed hydrocarbons that may act as ca	atalyst poisons caus	sing the chem	ical	
		deactivation of the catalyst.				
		Eg. The fouling of zeolite catalysts occurs	in the form of coke	molecules		
		limiting the access of the reactant hexane t	to the active sites of	f catalyst.		
		Due consideration should be given	to any other me	ethod of ca	talyst	
		deactivation				
	4A	Attempt any THREE of the following			12	
	4-A-a	For second order reaction:				
		$k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$				
		$t = 50 \min$				
		$C_{A0} = 5*10^{-4} \text{ mol/l}$				
		$X_A = 40\% = 0.4$				
		$C_A = C_{A0}(1 - X_A) = 5 \times 10^{-4} \times (1 - 0.4) = 3$	3*10 ⁻⁴ mol/l		2	
		$k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$				
		$k = 26.67 \mathrm{l} / (\mathrm{mol.min})$			2	
	4A-b	Fluidized bed reactor:				
		Merits:			1 mark	

itle: Ch	emical Reaction Engineering Subje	ect code	17562	page 12 of
	1. Good temperature control			each for
	2. Can use small size catalyst particles			any two
	3. Regeneration is easily done without shut d	lown of the	reactor.	points
	Demerits:			
	1. Effective contacting require large among	unt of cata	lyst for high	gas 1 mark
	conversion			each
	2. Catalyst loss is there. So recovery units are	e required.		
4A-c	Graphical representation of integrated rate eq	uation for f	irst order	
	reaction			
	(i) In terms of concentration			
	- ln Ca CAO (i) In terms of conversion	X		2
4A-d	-ln(h-w) Relation between Gibb's free energy (ΔG ⁰) and	d equilibriu	m constant K _p	2
	Consider the reaction $aA + bB \rightarrow rR + sS$			

Subject Title	Chemical Reaction Engineering Subject code 17562	page 13 of 21
	$= (r \ \mu_{R} + s \ \mu_{S}) - (a \ \mu_{A} + b \ \mu_{B}).$	
	At equilibrium there is no Gibb's free energy change, $\Delta G = 0$	
	$(r \ \mu_R + s \ \mu_S) - (a \ \mu_A + b \ \mu_B) = 0$	
	$(r \ \mu_R + s \ \mu_S) = (a \ \mu_A + b \ \mu_B)$	2
	But $\mu_i = \mu_i^0 + RT \ln p_i$	
	Therefore $r(\mu_R^0 + RT \ln p_R) + s(\mu_S^0 + RT \ln p_S) = a(\mu_A^0 + RT \ln p_A) + c(\mu_B^0 + $	
	$b(\mu_B^0 + RT \ln p_B)$	
	RT ln $\left(\frac{p_R^r p_S^s}{p_A^r p_B^b}\right) = (a \mu_A^0 + b \mu_B^0) - (r \mu_R^0 + s \mu_S^0)$	
	= - (ΔG product - ΔG reactant)	
	$= -\Delta G$ reaction.	
	$\ln\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) = \frac{-\Delta G \text{ reaction}}{RT} \qquad \text{But}\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) = K_p$	2
	Therefore $\Delta G = -RT \ln K_p$	
4	Attempt any ONE of the following	6
41	-a $-r_A = 0.005 C_A^2 (mol / cm^3.min)$	
	Ie $-\mathbf{r}_{\mathrm{A}} = \mathbf{k} \mathbf{C}_{\mathrm{A}}^2$	
	In the above equation, concentration is expressed in mol / cm^3 and time in	3
	minutes	
	Unit of k = unit of $-r_A$ / Unit of C_A^2	
	When concentration is expressed in mol /l and time in hours,	
	Value of rate constant is $0.005 \ge 60 / 1000 = 3 \ge 10^{-4}$	3
	Unit of rate constant is l / (mol.hr)	
41	-b Van't Hoff equation:	
	Consider the reaction $aA + bB \rightarrow rR + sS$	
	$\Delta G^0 =- \operatorname{RTln} K(1)$	
	$\Delta G^0 = (r \mu R + s \mu s) - (a \mu A + b \mu B)(2)$	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ubject Title: Chemical Rea	ction Engineering	Subject code	17562	page 14 of
From 1 an Different	and 2 - RTln K = ($r\mu R$ + ating with respect to T at	+ s μs) –(a μA +b μB) constant pressure		
	= -(1/R) (($r \partial/\partial T \mu R/T +$ elmholtz equation is a $\partial/\partial T$	s $\partial/\partial T \mu s/T$) –(a $\partial/\partial T \mu A/T$ ($\mu i/T$)=- Hi/RT ²	T+b ∂/∂T µb/T	[•]) 2
$=(1/RT^2)$	$\mathbf{k} = (1/RT^{2}) \{ [rH_{R} + sH_{s}] $ ($\Sigma H^{0}_{product} - \Sigma H^{0}_{reactant})$			2
		off equation where ΔH^0 is	molal enthalp	-
	any TWO of the following	ng		16
5-a Derivatio $2A \rightarrow pr$				
In terms	of concentration			
$-r_{\rm A} = -d_{\rm C}$	$\sqrt{dt} = kC_A^2$	terms of rate of disappeara	ance of reactan	tt A. 2
Rearrang	$ \lim \frac{-dC_A}{C_A^2} = kdt $			
Integratin	g between appropriate lim	nits		
	$-\int_{C_{AC}}^{C_{AC}}$	$\int_{0}^{A} \frac{dC_A}{C_A^2} = k \int_0^t dt$		
		$C_A^{-1}]_{C_{A0}}^{C_A} = kt$		3
	$\left \frac{-}{C_A}-\frac{-}{C_A}\right $	$\frac{1}{C_{A0}}\Big] = kt$		
	e equation is the integrated oncentration.	d rate equation for second	order reaction	in
Graphica	l representation:			

Subject Title: Ch	emical Reaction Engineering	Subject code	17562	page 15 of 2	21
	TCA Vicas E	ope tk		3	
	The plot of $\frac{1}{c_A}$ Vs time t yields a straight li constant k and an intercept equal to $\frac{1}{c_{A0}}$	ne with a slope equ	ual to value of r	ate	
5-b	Given: $X_A = 0.70$, $t = 13$ min				
	For batch reactor, in which first order che	emical reaction is ta	aking place		
	$-r_A = k.C_A$				
	$-\ln(1 - X_A) = kt$				
	$-\ln(1-0.70) = k * 13$ k = 0.0926 min ⁻¹				
	For Plug flow reactor (constant –density	v system):			
	$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{c_{A0}}$ $\tau = C_{A0} \int_0^{X_A} \frac{dX_A}{r_A} = \frac{\tau}{c_{A0}}$	$\frac{dX_A}{CAD(a, X_A)}$		2	
	$\tau = \int_0^{X_A} \frac{1}{k \cdot c}$	$\frac{dX_A}{dX_A}$			
	$\int_{0}^{1} \frac{1}{k} (1 - k) = \int_{0}^{1} \frac{k}{k} (1 - k) = $	$(1 - X_A)$	10	1	
	Space time $\tau = \frac{1}{k}(-\ln(1-X_A)) = \frac{1}{0.0926}($ Space velocity = s = 1/ τ = 1/13 = 0.076	$-\ln(1-0.7)) =$ 92 min ⁻¹	13 min.	1	
	For Mixed flow reactor :				

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Chemical Reaction Engineering Subject code 17562	page 17 of 21
X _A = Fractional conversion of A	
$F_A = F_{A0} (1 - X_A) = F_{A0} - F_{A0} X_A$	
$dF_A = - F_{A0.} d X_A$	
For the differential volume dV	
Input of A in moles/time = F_A	
Output of A from reactor in moles/time $= F_A + dF_A$	2
Disappearance of A due to chemical reaction in moles/ time $= (-r_A) dV$	
Substituting all the terms in the material balance equation (1)	
$F_A = F_A + d F_A + (-r_A) . dV$	
$- d F_A = (-r_A) dV$	
$F_{A0.}d X_A = (-r_A) dV$	
$\frac{dV}{F_{A0}} = \frac{dX_A}{-r_A}$	
$F_{A0} - r_A$	
This is the equation accounting for A in the differential section of the reactor of	
volume dV. For the whole reactor, the equation must be integrated.	
$\int_0^V \frac{dV}{F_{A0}} = \int_0^{x_A} \frac{dX_A}{-r_A}$	3
$\frac{V}{F_{A0}} = \int_0^{x_A} \frac{dx_A}{-r_A} = \frac{\tau}{C_{A0}}$	-
Where X_A and $(-r_A)$ are evaluated at the exit conditions	
For constant volume system :	
$\frac{V}{F_{A0}} = \int_{0}^{x_{A}} \frac{dx_{A}}{-r_{A}} = \frac{\tau}{C_{A0}} = \frac{-1}{C_{A0}} \int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{-r_{A}}$	
Graphicalrepresentation	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Chemical Reaction Engineering

	achieved using one PFR of volume	Thus it makes no differen	ce if two PFRs are	
	connected in series or one PFR of s			
6-b	Relation between K_p and K_c			
0-0	Consider the reaction $aA + bB + \dots$	\rightarrow rR + sS		
	$K_{c} = (C_{R}^{r} \cdot C_{S}^{s}) / (C_{A}^{a} \cdot C_{B}^{b})$. / IIX - 55		
	For ideal gas $C_i = p_i / RT$			
	Therefore $K_c = \{(p_R / RT)^r . (p_S / II)\}$	$(n_{\rm P})^{\rm s} / \{ (n_{\rm P} / RT)^{\rm a} \}$	/ RT) ^b }	2
		. $(1 / RT)^{(r+s+(a+b=))}$		2
	$(p_R \cdot p_S) / (p_A \cdot p_B)$ R is the ideal gas constant	. (17 KI)		
	T the absolute temperature in K			
	P is the pressure in atm			
	$ieK_c = K_p$. $(1 / RT)^{\Delta n}$ where $K_p =$	$(\mathbf{n}_{P}^{\mathbf{r}} \mathbf{n}_{S}^{\mathbf{s}}) / (\mathbf{n}_{A}^{a} \mathbf{n}_{P}^{b})$		
	$\Delta n = (r + s + (a + b +))is$		mber of moles of	2
	product and reactant			-
	Or $\mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}} \times (\mathbf{RT})^{\underline{\wedge}\mathbf{n}}$			
6-c	Factors affecting the rate of a ch	nemical reaction :		1 mar
	1. In homogeneous system temperation	ature, pressure and compo	sition are the	each fo
	variables.			any 4
	2. In heterogeneous system, since	more than one phase is inv	volved, material	points
	have to move from phase to phase of	during reaction, hence the	rate of mass	
	transfer is important.			
	1. rate of heat transfer			
	2. Catalyst			
	3. Nature of reactants			
	4. Surface area available.			
	5. Intensity of light if reaction is lig	ght sensitive.		
6-d	General procedure for analysis of	of complete rate equation	by integral	

Subject Title: Chemical Reaction Engineering	Subject code	17562	page 20 of 21
terms of C_A 3. Above equation is $C_A t$ $-\int (dC_A / f(c)) = k \int dt$ C_{A0} 0 4. The concentration function concentration vs time gives rate equation. 5. From experiment, determined and plot these at the correct 6. If the data fall on a rease particular rate equation for the set of the set o	tem , the rate expression for the following form ed as ration of materials which ma integrated with ap tion is proportional to tim yes a straight line of slope k the numerical value for esponding time. onable straight line, then it being tested satisfactorily fi a curve, the rate equation a	the disappea ay be express propriate 1 ne, so a pla for this parti the above int may said tha its the data. 1	ed in limits 3 ot of acular regral at the lf the

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Ch	emical Reaction Engineering Subject code 17562	page 21 of 2
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1
б-е	Batch reactor	1 mark
	Advantages:	each for
	1. Simple in construction & operation	any two
	2. Low equipment cost	points
	3. Gives highest conversion by leaving the reactants for longer periods in	
	reactor.	
	4. Requires small instrumentation & less supporting equipment.	
	Disadvantages:	1 mark
	1. High labor costs per unit volume of production.	each for
	2. Requires considerable time to empty, clean out & refill.	any two
	3. Poorer quality control of product.	points
	4. Large scale production is difficult.	