(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Su

Subject Code:

22103

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
INO.	Q.N.		Scheme
1.		Attempt any five of the following	10
	a)	Find the value of $\log\left(\frac{2}{3}\right) + \log\left(\frac{4}{5}\right) - \log\left(\frac{8}{15}\right)$.	02
	Ans	$\log\left(\frac{2}{3}\right) + \log\left(\frac{4}{5}\right) - \log\left(\frac{8}{15}\right) = \log\left(\frac{2}{3} \times \frac{4}{5}\right) - \log\left(\frac{8}{15}\right).$	1
		$= \log\left(\frac{8}{15}\right) - \log\left(\frac{8}{15}\right)$	
		$=0 \qquad OR \qquad = \log\left(\frac{\frac{8}{15}}{\frac{8}{15}}\right) = \log(1) = 0$	1
	b)	Find the area of the triangle whose vertices are $(3,1),(-1,3)$ and $(-3,-2)$.	02
	Ans	Let $(x_1, y_1) = (3,1), (x_2, y_2) = (-1,3)$ and $(x_3, y_3) = (-3,-2)$	
		$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$	
		$= \frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \\ -3 & -2 & 1 \end{vmatrix}$	1
		$= \frac{1}{2} [3(3+2)-1(-1+3)+1(2+9)]$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. Sub		
No. Q.N	Ληςωρτς	Marking Scheme
1. b)	A=12	1/2
c)	Without using calculator, find the value of $sec(3660^{\circ})$	02
An	$\sec(3660^{\circ}) = \sec(40 \times 90^{\circ} + 60^{\circ}) \text{ or } \sec(40 \times \frac{\pi}{2} + 60^{\circ})$	1
		1/2
	$= \sec 60^{\circ}$ $= 2$	1/2
(d)	The length of one side of the rectangle is twice the length of its adjacent side. If the	02
An	perimeter of rectangle is 60 cms, find the area of the rectangle. Let adjacent side = x	
	$\therefore \text{ other side } = 2x$	1/2
	perimeter = 2(x+2x) = 60	
	$\therefore x = 10$	1/2
	$\therefore l = \text{length} = 2x = 20$	
	$\therefore b = \text{breadth} = x = 10$ $\text{Area} = l \times b$	
	$= 20 \times 10 = 200$	1
e)	Find the surface area of a cuboid of dimensions 26 cms; 20 cms ans 12 cms.	02
An	Let $l = 26, b = 20, h = 12$	
	Surface Area = $2[lb+bh+hl]$	1
	$= 2[26 \times 20 + 20 \times 12 + 12 \times 26]$	
	= 2144	1
f)	Find range and coefficient of range for the data:	02
	120, 50, 90, 100, 180, 200, 150, 40, 80	
Ans	Range = $L - S$	
	= 200 - 40 = 160	1
	coefficient of range = $\frac{L-S}{L+S}$	
	$=\frac{200-40}{200-40}$	1/2
	200 + 40	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

34.5	jeet ita	ine. Dasic Mathematics <u>Model Allswel</u> Subject code.	.103
Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
1		0.67	1/
1. 2.	g) Ans	coefficient of range = 0.667 If coefficient of variation of a distribution is 75% and standard deviation is 24, find its mean. coefficient of variation = $\frac{\sigma}{x} \times 100$ $75 = \frac{24}{x} \times 100$ $\frac{\sigma}{75} = \frac{24 \times 100}{75}$ $\frac{\sigma}{75} = \frac{3}{x} = 32$ Attempt any three of the following: If $A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$. Find X such that $2X + 3A - 4B = I$. $2X + 3A - 4B = I$ $2X + 3\begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 9 & -3 \\ 6 & 12 \end{bmatrix} - \begin{bmatrix} 4 & 8 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix}$	% 02 ½ 12 04 1 1 1
		$2X = \begin{bmatrix} -4 & 11 \\ -18 & -11 \end{bmatrix}$ $\therefore X = \frac{1}{2} \begin{bmatrix} -4 & 11 \\ -18 & -11 \end{bmatrix} \qquad OR \qquad X = \begin{bmatrix} -2 & \frac{11}{2} \\ -9 & \frac{-11}{2} \end{bmatrix}$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:

22103

Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	b)	Resolve into partial fractions $\frac{x^2+1}{x(x^2-1)}$	04
	Ans	$\frac{x^2 + 1}{x(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$	1/2
		$\therefore x^2 + 1 = A(x-1)(x+1) + B(x)(x-1) + C(x)(x+1)$ Put $x = 0$	
		$\therefore 0+1 = A(0-1)(0+1)$ $\boxed{A=-1}$	1
		Put $x = -1$ $\therefore (-1)^2 + 1 = B(-1)(-1-1)$	1
		$ \begin{array}{c} B = 1 \\ \text{Put } x = 1 \end{array} $	1
		$\therefore 1^2 + 1 = C(1)(1+1)$	1
		$C = 1$ $\therefore \frac{x^2 + 1}{x(x+1)(x-1)} = \frac{-1}{x} + \frac{1}{x+1} + \frac{1}{x-1}$	1/2
	c)	The voltage in an electric circuit are related by following equations: $V_1 + V_2 + V_3 = 9$; $V_1 - V_2 + V_3 = 3$; $V_1 + V_2 - V_3 = 1$ find V_1 , V_2 and V_3 by using Cramer's rule.	04
		$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1) = 4$ $D_{V_1} = \begin{vmatrix} 9 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 9(1-1)-1(-3-1)+1(3+1) = 8$	1
		$\begin{vmatrix} 1 & 1 & -1 \\ \therefore V_1 = \frac{D_{V_1}}{D} = \frac{8}{4} = 2 \\ D_{V_2} = \begin{vmatrix} 1 & 9 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(-3-1) - 9(-1-1) + 1(1-3) = 12$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics Model Answer Subject Code: 22103				
Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: <u>221</u>	03	
Q. No.	Sub Q.N.	Answers	Markii Schem	
2.	c)	$\therefore V_2 = \frac{D_{V_2}}{D} = \frac{12}{4} = 3$ $D_{V_3} = \begin{vmatrix} 1 & 1 & 9 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1(-1-3) - 1(1-3) + 9(1+1) = 16$ $\therefore V_3 = \frac{D_{V_3}}{D} = \frac{16}{4} = 4$	1	
	d)	Calculate the mean deviation about the mean of the following data: 3, 6, 5, 7, 10, 12, 15, 18.	04	
	Ans		2	
		$\overline{x} = 9.5$ ∴ Mean deviation about mean = $\frac{\sum d_i }{N}$ $= \frac{34}{8} = 4.25$	1	
3.	a)	Attempt any three of the following : Without using calculator find the value of $\cos 570^{\circ} \sin 510^{\circ} + \sin \left(-330^{\circ}\right) \cos \left(-390^{\circ}\right)$	12 04	
	Ans	$\cos 570^0 = \cos \left(6 \times 90^0 + 30^0 \right)$		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code: 22103

,	•	ine. Dasic Mathematics <u>Model Allswei</u> Subject Code.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
3.	a)	$\cos 570^0 = -\cos 30^0 = -\frac{\sqrt{3}}{2}$	1/2
		$\sin 510^{0} = \sin \left(6 \times 90^{0} - 30^{0} \right)$	1/2
		$=\sin 30^{\circ} = \frac{1}{2}$	1/2
		$\sin\left(-330^{\circ}\right) = -\sin\left(330^{\circ}\right)$	'-
		$=-\sin(4\times90^{\circ}-30^{\circ})=-(-\sin30^{\circ})=\frac{1}{2}$	1/2
		$\cos\left(-390^{\circ}\right) = \cos 390^{\circ}$	1/2
		$= \cos\left(4 \times 90^{0} + 30^{0}\right) = \cos 30^{0} = \frac{\sqrt{3}}{2}$	1/2
		$\therefore \cos 570^{\circ} \sin 510^{\circ} + \sin \left(-330^{\circ}\right) \cos \left(-390^{\circ}\right)$	
		$= \left(-\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right)$	1
		=0	_
	b)	Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$	04
	Ans	LHS = $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 4\theta + \cos 2\theta}$	2
		$= \frac{2 \cdot \sin 2\theta \cdot \cos 2\theta + \sin 2\theta}{2 \cos^2 2\theta + \cos 2\theta}$	
		$=\frac{\sin 2\theta (2\cos 2\theta +1)}{\cos 2\theta (2\cos 2\theta +1)}$	1
		$-\frac{1}{\cos 2\theta (2\cos 2\theta + 1)}$ $= \tan 2\theta$	1
	c)	Prove that $\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A$	04
	Ans	$LHS = \frac{\sin 3A - \sin A}{\cos 3A + \cos A}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code: 22103

Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
3.	c)	$= \frac{2 \cdot \cos\left(\frac{3A+A}{2}\right) \cdot \sin\left(\frac{3A-A}{2}\right)}{2 \cdot \cos\left(\frac{3A+A}{2}\right) \cdot \cos\left(\frac{3A-A}{2}\right)}$	2
			1
		$=\frac{2\cos 2A \cdot \sin A}{2\cos 2A \cdot \cos A}$	1
		$= \tan A$	
		=RHS	
	d)	Prove that $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \cot^{-1} 2$	04
	Ans	$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}$	
		$= \tan^{-1} \left[\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \times \frac{2}{9}} \right]$	2
		$= \tan^{-1} \left(\frac{1}{2} \right)$	1
		$=\cot^{-1}2$	1
		$\therefore \tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \cot^{-1} 2$	
4.		Attempt any three of the following:	12
	a)	Find x and y if	04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	---------------------	---------------	-------

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.		$\left\{ 4 \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 & -1 \\ 2 & -3 & 4 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	
	Ans	$\left\{ 4 \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 & -1 \\ 2 & -3 & 4 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	
		$\left\{ \begin{bmatrix} 4 & 8 & 0 \\ 8 & -4 & 12 \end{bmatrix} - \begin{bmatrix} 2 & 6 & -2 \\ 4 & -6 & 8 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	1
		$\begin{bmatrix} 2 & 2 & 2 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	1
		$\begin{bmatrix} 4+0-2 \\ 8+0-4 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	1
		$\begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\therefore x = 2, y = 4$	1
	b)	Resolve into partial fractions $\frac{2x+1}{(x-1)(x^2+1)}$	04
	Ans	$\frac{2x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$	1/2
		$\therefore 2x+1 = (x^2+1)A + (x-1)(Bx+C)$ Put $x = 1$	
		$\therefore 2(1)+1=(1^2+1)A$	
		$\therefore 3 = 2A$ $\therefore A = \frac{3}{2}$	1
		Put x = 0,	
		$\therefore 2(0)+1=(0+1)A+(0-1)(B(0)+C)$ \therefore 1=A-C	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$\therefore 1 = \frac{3}{2} - C$	1
		$\therefore C = \frac{1}{2}$	1
		Put $x = -1$,	
		$\therefore 2(-1)+1=((-1)^2+1)A+(-1-1)(B(-1)+C)$ $\therefore -1=2A+2B-2C$	
		$\therefore -1 = 2A + 2B - 2C$ $\therefore -1 = 2\left(\frac{3}{2}\right) + 2B - 2\left(\frac{1}{2}\right)$	
		$\therefore -1 = 3 + 2B - 1$	1
		$\therefore B = -\frac{3}{2}$	
		$\therefore \frac{2x+1}{(x-1)(x^2+1)} = \frac{\frac{3}{2}}{x-1} + \frac{-\frac{3}{2}x+\frac{1}{2}}{x^2+1} \qquad OR$	1/2
		$\frac{2x+1}{(x-1)(x^2+1)} = \frac{1}{2} \left[\frac{3}{x-1} + \frac{-3x+1}{x^2+1} \right]$	
	c)	Prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$	04
	Ans	$\cos 20^{\circ}.\cos 40^{\circ}.\cos 60^{\circ}.\cos 80^{\circ} = \frac{1}{2} (2\cos 20^{\circ}\cos 40^{\circ}). \left(\frac{1}{2}\right) \cos 80^{\circ}$	1/2
		$= \frac{1}{4} \left[\cos \left(20^{\circ} + 40^{\circ} \right) + \cos \left(20^{\circ} - 40^{\circ} \right) \right] \cos 80^{\circ}$	1/2
		$=\frac{1}{4}\left[\cos\left(60^{\circ}\right)+\cos\left(-20^{\circ}\right)\right]\cos 80^{\circ}$	1/2
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$	
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} \left(2 \cos 20^{\circ} \cos 80^{\circ} \right) \right]$	1/2
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(20^{\circ} + 80^{\circ} \right) + \cos \left(20^{\circ} - 80^{\circ} \right) \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} + \cos \left(100^{\circ}\right) + \cos \left(-60^{\circ}\right)\right]$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:

22103

00.0	,ccc .ca.	ine. Basic Mathematics <u>Moder Aliswer</u> Subject Code.	
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	$\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(180 - 80^{\circ} \right) + \frac{1}{2} \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} - \cos \left(80^{\circ}\right) + \frac{1}{2}\right]$	1/2
		$=\frac{1}{16}$	1/2
	d)	If $\tan \frac{\theta}{2} = \frac{2}{3}$ find the value of $2\sin \theta + 3\cos \theta$.	04
	Ans	$2\sin\theta + 3\cos\theta$	
		$=2\left(\frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}\right)+3\left(\frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}\right)$	2
		$=2\left(\frac{2\times\frac{2}{3}}{1+\left(\frac{2}{3}\right)^2}\right)+3\left(\frac{1-\left(\frac{2}{3}\right)^2}{1+\left(\frac{2}{3}\right)^2}\right)$ $=3$	1
		5 4	
	e)	If A and B are obtuse angles and $\sin A = \frac{5}{13}$ and $\cos B = -\frac{4}{5}$ then find $\sin (A + B)$.	04
	Ans	$\cos^2 A = 1 - \sin^2 A$	
		$=1 - \left(\frac{5}{13}\right)^2$ $=1 - \frac{25}{169} = \frac{144}{169}$ 12	
		$\cos A = \pm \frac{12}{13}$	
		$\therefore \cos A = -\frac{12}{13} (\because A \text{ is obtuse angle})$	1
		$\sin^2 B = 1 - \cos^2 B$	
		$=1-\left(-\frac{4}{5}\right)^2$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
4.	e)	$\sin^2 B = 1 - \frac{16}{25} = \frac{9}{25}$	
		$\sin B = \pm \frac{3}{5}$ $\therefore \sin B = \frac{3}{5} \qquad (\because A \text{ is obtuse angle})$	1
		$\therefore \sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$ $= \left(\frac{5}{13}\right) \times \left(-\frac{4}{5}\right) + \left(-\frac{12}{13}\right) \times \left(\frac{3}{5}\right)$	1
		$= -\frac{56}{65}$	1
5.		Attempt any two of the following:	12
	a)	Attempt the following:	06
	i)	Find the length of the perpendicular from the point $(5,4)$ on the straigth line $2x + y = 34$.	03
	Ans	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{2(5) + 1(4) - 34}{\sqrt{(2)^2 + (1)^2}} \right $ $ 10 + 4 - 34 $	2
		$= \left \frac{10 + 4 - 34}{\sqrt{5}} \right $ $= \frac{20}{\sqrt{5}} \text{OR} 8.94$	1
	ii)	Find the equation of the line passing through $(3,-4)$ and having slope $\frac{3}{2}$.	03
	Ans	Point = $(x_1, y_1) = (3, -4)$ & slope = $\frac{3}{2}$	
		∴ equation of line is, $y - y_1 = m(x - x_1)$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	a)ii)	$\therefore y - \left(-4\right) = \frac{3}{2}(x - 3)$	1
		$\therefore 2(y+4) = 3(x-3)$	1
		$\therefore 3x - 2y - 17 = 0$	1
	b)	Attempt the following:	06
	i)	Find the equation of line passing through $(3,4)$ and perpendicular to the line	03
		2x-4y+5=0.	
	Ans	Point = $(x_1, y_1) = (3, 4)$	
		Slope of the line $2x-4y+5=0$ is,	
		$m = -\frac{a}{b} = -\frac{2}{-4} = \frac{1}{2}$	1
		∴ Slope of the required line is,	
		$m' = -\frac{1}{2} = -2$	1
		m \therefore equation is,	
		$y - y_1 = m'(x - x_1)$	
		$\therefore y-4=-2(x-3)$	4
		$\therefore 2x + y - 10 = 0$	1
	ii)	Find the acute angle between the lines $3x - y = 4$ and $2x + y = 3$.	03
	Ans	For $3x - y = 4$,	
		slope $m_1 = -\frac{a}{b} = -\frac{3}{-1} = 3$	1/2
		For $2x+y=3$,	
		slope $m_2 = -\frac{a}{b} = -\frac{2}{1} = -2$	1/2
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
		$= \left \frac{3 - (-2)}{1 + 3 \times (-2)} \right $	1
		$ 1+3\times(-2) $ $= 1$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 2210	3
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	b)ii)	$\therefore \theta = \tan^{-1}(1)$	
		$\therefore \ \theta = \frac{\pi}{4} \text{ or } 45^{\circ}$	1/2
	c)	Attempt the following:	06
	i)	Find the capacity of a cylindrical water tank whose radius is 2.1m and length is 5m.	03
	Ans	Let $r = 2.1 \& h = 5$	
		capacity of a cylindrical water tank = volume of cylinder	
		$\therefore V = \pi r^2 h$	2
		$=\frac{22}{7}\times(2.1)^2\times5$	
		= 69.3	1
	ii)	External dimensions of a wooden cuboid are 30 cm×25 cm×20 cm. If the thickness of wood	03
	Ans	is 2 cm all round. Find the volume of the wood contained in the cuboid formed.	
		External length of the cuboid = $30 cm$	
		External breadth of the cuboid = $25 cm$ External height of the cuboid = $20 cm$	
		External volume of the cuboid = $(30 \times 25 \times 20) \text{ cm}^3$	
		$=15000 \text{ cm}^3$	1
		Internal volume of the cuboid = $(26 \times 21 \times 16) cm^3$	
		$=8736 \ cm^3$	1
		Volume of wood = External Volume - Internal Volume	
		$=15000 cm^3 - 8736 cm^3$	1
		= 6264 cm ³	_
6.		Attempt any two of the following:	12
0.	-)		
	a)	Calculate the mean, standard deviation and co-efficient of variance of the following data:	06
		Class Interval 0-10 10-20 20-30 30-40 40-50	
		Frequency 03 05 08 03 01	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

	•	ne. Dasie Wathematies	<u></u>	iouci A				et cou			
Q. No.	Sub Q.N.				Ansv	vers					Marking Scheme
6.	a)										
		Class Interval	X_i	f_{i}	$f_i x_i$	$d_i = \frac{x_i - a}{h}$	$f_i d_i$	d_i^2	$f_i d_i^2$]	
		0-10	5	3	15	-2	-6	4	12		
		10-20	15	5	75	-1	- 5	1	5	1	
		20-30	25	8	200	0	0	0	0		3
		30-40	35	3	105	1	3	1	3	1	
		40-50	45	1	45	2	2	4	4		
				20	440		-6		24		
		Mean $\overline{x} = \frac{\sum f_i x_i}{N} = \frac{440}{20} =$ $S.D. = \sigma = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i^2}{N}\right)}$	$\left[\frac{\int f_i d_i}{N}\right]$	$\sqrt{\frac{1}{2}} \times h$							1
		$= \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)^2} \times $ $= 10.54$	10								1
		= 1	$\frac{\sqrt{5}}{x} \times 100$ $\frac{0.54}{22} \times 100$ 17.91		O	R					1
					0	R					

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.				Ansv	wers					Marking Scheme
6.	a)	Cla Inter		X_i	f_{i}	$f_i \lambda$	z _i x	. 2 i	$f_i x_i^2$		06
		0-1	10	5	3	15	5 2	.5	75		
		10-	-20	15	5	75	22	25	1125		
		20-	-30	25	8	200) 62	25	5000		3
		30-	-40	35	3	10	5 12	25	3675		
		40-	-50	45	1	45	20	25	2025		
					20	440)		11900)	
		S.D. $\sigma = \sqrt{\frac{\sum f_i x_i^2}{N}}$ $= \sqrt{\frac{11900}{20}}$ $\sigma = 10.54$ Coefficient of var	iance $=\frac{\sigma}{x}$ $=\frac{10}{x}$	$\frac{0.54}{22} \times 100$							1
			17	7.01							
			= 47 								1
	b)	Attempt the follow									06
	b) i)	Calculate the rang	ving:	fficient of							
		Calculate the rang	ving: ge and coef	fficient of 20-29	30-39	40-49	9 50-59	60-6	9		06
		Calculate the rang	ving:	fficient of	30-39 16	40-49		60-6	9	59.5-69.5	06

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	--------------	---------------	-------

Q. No.	Sub Q.N.			Answers	Marking Scheme
6.	b)	Range = $L-S$ = $69.5 -$ = 60 Coefficient of r	range = $\frac{L-S}{L+S}$		1
			$= \frac{69.5 - 9.5}{69.5 + 9.5}$ $= 0.76$		1
	ii)	The data of run	scored by two batsmen A	and B in five one day matches is given be	elow : 03
		Batsman	Average run scored	S.D.	
		A	44	5.1	
		В	54	6.31	
		State which bat	tsman is more consistent?		
	Ans	For Batsman A $C.V = \frac{\sigma}{x} \times 100$ 5.1			
		$= \frac{5.1}{44} \times 100$ $= 11.59$ For Batsman B $C.V = \frac{\sigma}{x} \times 100$ 6.31			1
		$= \frac{6.31}{54} \times 100$ =11.69 <i>C.V</i> of A < <i>C.V</i>			1
		∴ Batsman A i	s more consistent.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	--------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	Solve the following equations by matrix inversion method:	06
		x+3y+3z=12, $x+4y+4z=15$, $x+3y+4z=13$	
	Ans	Let $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 12 \\ 15 \\ 13 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
		$ A = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{vmatrix}$	
		A = 1(16-12)-3(4-4)+3(3-4)	
		A = 4 - 0 - 3	1
		$\therefore A = 1 \neq 0$	
		$\therefore A^{-1}$ exists	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 4 & 4 \\ 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 1 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} \\ \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} \\ \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} \end{bmatrix}$	
		$= \begin{bmatrix} 4 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$	1
		$= \begin{vmatrix} 3 & 1 & 0 \\ 3 & 1 & 1 \end{vmatrix}$	_
		Matrix of cofactors = $\begin{bmatrix} 4 & 0 & -1 \\ -3 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ OR	1
		$C_{11} = + \begin{vmatrix} 4 & 4 \\ 3 & 4 \end{vmatrix} = 16 - 12 = 4, \ C_{12} = - \begin{vmatrix} 1 & 4 \\ 1 & 4 \end{vmatrix} = -(4 - 4) = 0$	
		$C_{13} = + \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} = 3 - 4 = -1, \ C_{21} = - \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} = -(12 - 9) = -3$	
		$C_{22} = + \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = 4 - 3 = 1, \ C_{23} = - \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} = -(3 - 3) = 0$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	

 Marking Scheme
1
1
1/2
1/2
1
1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Important Note

In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.
