

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page 1 of 18

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **2** of **18**

Q No.	Answer	marks	Total marks
1-a	Viscosity: It is the resistance to the flow.	1	2
	Unit in SI: N-sec/m ²	1	
1-b	Dalton's law:	1	2
	Daltons law states that total pressure of a gas mixture is equal to the sum of		
	partial pressures		
	$P=P_1+P_2+P_3$		
	where P is total pressure of gas mixture and P ₁ ,P ₂ ,P ₃ are partial pressures.		
	Amagat's law:		
	Amagats law states that total volume of a gas mixture is equal to the sum of	1	
	pure component volumes		
	$V=V_1+V_2+V_3$		
	where V is total volume of gas mixture and V_1, V_2, V_3 are pure component		
	volumes.		
1-c	Conduction : It is the transfer of heat without the movement of particles.	1	2
	Eg: heating of a metal rod		
	Convection: It is the transfer of heat within a fluid by the actual migration of	1	
	particles.		
	Eg. Boiling of liquid		
1-d	Temperature: It is the hotness or coldness of a body.	1	2
	Different temperature scales are:		
	1. degree Celsius (⁰ C)	1	
	2. degree Farenheit (⁰ F)		
	3. Kelvin (K)		
1-e	Mercury is filled in thermometer because its coefficient of thermal expansion	2	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **3** of **18**

г			
	is high.		
1-f	Molarity: It is the number of gram moles of solute present in one litre of	1	2
	solution.		
	M= gram moles of solute/ volume of solution in litres		
	Normality : It is the number of gram equivalent of solute present in one litre of	1	
	solution.		
	N= gram equivalent of solute/ volume of solution in litres		
1-g	Halogenation: It is the reaction between a compound and a halogen (Cl ₂ , Br ₂ ,	1	2
	I_2 etc.)		
	Eg: Chlorination of methane to monochloroethane	1	
	CH ₄ + Cl ₂ →CH ₃ Cl		
1-h	Excess reactant : It is the reactant added in excess quantity than the theoretical	1	2
	requirement.		
	Limiting reactant: It is the reactant which is added in limited quantity or that	1	
	disappears first in a chemical reaction.		
1-i	Hydrogenation : It is the reaction where hydrogen is added in a compound.	1	2
	$C_2H_4 + H_2 - C_2H_6$		
	Oxidation: It is defined as the reaction in which addition of oxygen or removal	1	
	of hydrogen.		
	$2SO_2+O_2 \rightarrow 2SO_3$		
1-j	Unit Operation: It is the operation in which only physical changes occur, but	1	2
	no chemical changes		
	Unit process : It is the process where chemical reactions or chemical changes	1	
	takes place.		
1-k	$^{0}\text{F}=1.8~^{0}\text{C}+32$		2
	$= 1.8 * 95 + 32 = 203 {}^{0}\mathbf{F}$	1	
	1		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **4** of **18**

V 272 - 9C			<u> </u>	
	(0 V)			
	ed for solid mixing:			2
1. Sigma mixer			each for	
2. Ribbon blende	er		any 2	
3. Muller mixer				
4. double cone b	lender			
Total moles $= 0.$	7 kmoles		4	4
Gas	kmoles	Mol%		
HCl	0.274	39.14		
O_2	0.337	48.14		
N ₂	0.089	12.71		
Total	0.7			
Methods of exp	ressing composition of mixt	ure:		4
1. By weight			2	
Let a mixture co	ontains components A,B & C	C of weights W _A , W _B & W _C		
Weight % of A =	=(Weight of A/ Total weight	of mixture) * 100		
$= \mathbf{W}_{\mathbf{A}}/(\mathbf{W}_{\mathbf{A}} + \mathbf{W}_{\mathbf{B}})$	$_{\rm B}+W_{\rm C})*100$			
2.By mole				
Let the moles of	the components be n _A ,n _B & r	$n_{ m C}$	2	
Mol% of A = (moles of A/total moles)*100				
$=(n_{A})$	$/n_{\rm A} + n_{\rm B} + n_{\rm C}) * 100$			
Mercury therm	ometer:			4
Construction:			2	
It consists of a gla	ss stem having fine capillary an	d glass bulb. The bulb is at lower end		
	Equipments use 1. Sigma mixer 2. Ribbon blende 3. Muller mixer 4. double cone be Total moles = 0. Gas HCl O2 N2 Total Methods of exp 1. By weight Let a mixture concentration with the moles of the mole	= 273 + 95 = 368 K Equipments used for solid mixing: 1. Sigma mixer 2. Ribbon blender 3. Muller mixer 4. double cone blender Total moles = 0.7 kmoles Gas kmoles HCl 0.274 O2 0.337 N2 0.089 Total 0.7 Methods of expressing composition of mixt 1. By weight Let a mixture contains components A,B & C Weight % of A = (Weight of A/ Total weight = W _A /(W _A +W _B +W _C)*100 2.By mole Let the moles of the components be n _A ,n _B & n Mol% of A = (moles of A/total moles)*100 = (n _A /n _A +n _B +n _C) *100 Mercury thermometer: Construction:		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **5** of **18**

geet cot	de :(17200)			Page 5 Or 16
	of glass stem. Mercury is filled in the bulb; under vacuum so that no air is left in capilla	after filling, open end of capillary is sealed ary.		
	.The mercury expands much more than	lb gets heated after immersion in a bath the glass and is therefore forced to rise re .For each particular temperature, the em.	2	
2-d	Sedimentation	Filtration	2 marks	4
	Gravitational force is acting	Pressure force is acting	each for	
	Sedimentation tanks or settling tanks	Filters are used	any 2	
	are used.		points	
	No filter medium is used	Filter medium is used		
2-е	Centrifugal Pump:		1 mark	4
			each	

Plate column

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION Model Answer

Subject code :(17206) Page 6 of 18 Packed column: Jaw crusher

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **7** of **18**

2-f Size reduction: It is an operation wherein large solid particles are s	subdivided 1	4
to smaller ones.		
It is carried out in industry to make it :		
1. Easy handling	3	
2. Easy transportation		
3. Increase in reaction rate		
4. For having intimate mixing of solid		
5. To separate various ingredients.		
3-a Molecular weight :	1 mark	4
It is the sum of atomic weights of all elements present in a compound	nd. each	
Equivalent weight :		
Equivalent weight = molecular weight/ valency.		
Gram mole		
Gram mole = weight in grams /molecular weight.		
Gram equivalent:		
Gram equivalent = weight in gram/ equivalent weight		
3-b Weight of solution = 100 kg		4
Density of solution= 1.196 Kg/lit	1	
Volume of solution= mass/ density = 100/1.196 = 83.61 lit		
Weight of NaOH = 20 kg		
Gm moles of NaOH = $20000/40 = 500$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **8** of **18**

jeet eet	de .(17200)		'	rage of it
	Molarity = 500/83.61 = 5.98 M		1	
	Gram equivalent of NaOH = 20000/40 =	=500		
	Normality = 500/83.61 = 5.98 N		1	
	Weight of solvent = 100-20 = 80 Kg			
	Molality= 500/ 80 = 6.25 gmoles/kg		1	
3-с	2 Molar HCl solution			4
	Normality = Molarity * valency		1	
	Molarity = 2M			
	Valency of HCl = 1		1	
	Normality = $2*1 = 2N$		1	
	Normality of 2M HCl solution = 2N		1	
3-d	Distillation:-		2	4
	- Distillation is an operation in which th	e components of a liquid mixture are		
	separated using thermal energy.			
	Methods for separation of solid-liquid	l mixture:	1mark	
	1. Sedimentation		each for	
	2. Filtration		any 2	
	3. Centrifuging			
3-е	Unit Process and unit operation:		2mark	4
	Unit process	Unit operation	each for	
	Chemical changes takes place	Physical changes takes place,	any 2	
	Chemical reactions involved	no chemical reactions involved		
	Eg; oxidation, reduction, nitration,	Eg; drying, distillation, mechanical		
	sulphonation	separation		
3-f	Nitration reactions :		4	4
	It is the reaction with nitrating mixture	e to introduce nitro(NO ₂) group into an		
			l	l

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **9** of **18**

	organic compound.		
	$C_2H_6 + HNO_3> C_2H_5NO_2 + H_2O$		
	HNO ₃ H ₂ SO ₄ 50°C + H ₂ O Nitrobenzene		
4-a	Distillation: Distillation is an operation in which the components of a liquid	4	4
	mixture are separated using thermal energy. It depends upon the difference in		
	boiling points of the individual components. The difference in vapour pressure		
	of the components of a liquid mixture at the same temperature is responsible for		
	separation by distillation.		
	In this operation, liquid and vapour phases are involved. The vapour phase is		
	created by supplying heat to the liquid phase. The concentration of more		
	volatile component of the liquid mixture is higher in vapour phase than in the		
	feed solution, while that of the less volatile component is higher in the liquid		
	phase.		
	When a liquid mixture containing more volatile and less volatile components		
	are heated, more volatile component will vaporize first and the vapours are		
	collected and condensed to get it in pure form.		
4-b	Weight of ethyl alcohol =20 kg		4
	Weight of water =120 kg		
	Total weight = 140 kg		
	Weight fraction of ethyl alcohol = weight of ethyl alcohol/ Total weight	1	
	= 20/140 = 0.143	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **10** of **18**

		_
Molecular weight of ethyl alcohol = 46		
Molecular weight of water = 18		
Moles of ethyl alcohol = $20/46 = 0.435$	1	
Moles of water = $120/18 = 6.67$		
Total moles = 7.10	1	
Mole fraction of ethyl alcohol = moles of ethyl alcohol/ Total moles		
= 0.435/7.1 = 0.061	1	
1 kg=1000gm	1	4
$1 \text{m}^3 = 100^3 \text{ cm}^3$		
$0.8 \text{ gm/cm}^3 = 0.8*100^3/1000$	2	
$= 800 \text{ kg/m}^3$	1	
Industrial example of:		4
1. Drying:	1	
Drying of dyes, food products, paper, pharmaceutical products etc		
Distillation :	1	
Petroleum industry for separation of fractions of crude petroleum		
Filtration :	1	
Separation of solid material from their slurry, separation of suspended		
impurities from water		
Size reduction :	1	
In cement industry raw materials are ground, food industry, ore processing etc		
Pump: It is a device used to transport liquids, solutions and slurries in which	2	4
mechanical energy is transformed into energy necessary for transporting the		
fluid.		
Classification of pump:		
1. positive displacement pump(reciprocating and rotary)	2	
	Molecular weight of water = 18 Moles of ethyl alcohol = 20/46 = 0.435 Moles of water = 120/18 = 6.67 Total moles = 7.10 Mole fraction of ethyl alcohol = moles of ethyl alcohol/ Total moles = 0.435/7.1 = 0.061 1 kg=1000gm 1m³ = 100³ cm³ 0.8 gm/cm³ = 0.8*100³/1000 = 800 kg/m³ Industrial example of: 1. Drying: Drying of dyes, food products, paper, pharmaceutical products etc Distillation: Petroleum industry for separation of fractions of crude petroleum Filtration: Separation of solid material from their slurry, separation of suspended impurities from water Size reduction: In cement industry raw materials are ground, food industry, ore processing etc Pump: It is a device used to transport liquids, solutions and slurries in which mechanical energy is transformed into energy necessary for transporting the fluid. Classification of pump:	Moles of ethyl alcohol = 20/46 = 0.435 Moles of water = 120/18 = 6.67 Total moles = 7.10 Mole fraction of ethyl alcohol = moles of ethyl alcohol/ Total moles = 0.435/7.1 = 0.061 1 kg=1000gm 1 m³ = 100³ cm³ 0.8 gm/cm³ = 0.8*100³/1000 = 800 kg/m³ Industrial example of: 1. Drying: Drying of dyes, food products, paper, pharmaceutical products etc Distillation: Petroleum industry for separation of fractions of crude petroleum Filtration: Separation of solid material from their slurry, separation of suspended impurities from water Size reduction: In cement industry raw materials are ground, food industry, ore processing etc Pump: It is a device used to transport liquids, solutions and slurries in which mechanical energy is transformed into energy necessary for transporting the fluid. Classification of pump:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **11** of **18**

	2. Centrifugal pump		
4-f	Hydrogenation of benzene:	2	4
	Benzene reacts with hydrogen gas in presence of Ni at 150 °C under pressure to		
	give cyclohexane.		
	$C_6H_6 + H_2 - C_6H_{12}$		
	Benzene cyclo hexane		
	Reduction of nitro benzene:	2	
	Nitrobenzene can be reduced to aniline by using Fe + HCl		
	$C_6H_5NO_2 + 2Fe + 6HCl \longrightarrow C_6H_5NH_2 + 2 H_2O + 2FeCl_3$		
5-a	Name a product produced with the corresponding reaction when:	1 mark	4
3-a			4
	(1) Acetic acid is reacted with ethyl alcohol to produce Ethyl Acetate	each	
	(2)Benzene is reacted with concentrated nitric acid to produce Nitrobenzene		
	(3)Benzyl alcohol is Oxidised with air to produce Benzoic Acid		
	(4) Benzene is reacted with H ₂ SO ₄ to produce Benzene Sulphonic Acid		
5-b	Drying : Drying refers to the removal of moisture of a substance by thermal	2	4
	means (i.e. with the help of thermal energy)		
	Purpose of Drying:		
	-To obtain the products almost in the dried form is the purpose of drying.	2	
	-In this operation, Moisture is removed by circulating hot air or hot gas (drying		
	medium) over the material in order to carry away the water vapours.		
	- In this operation ,heat and mass transfer occur simultaneously.		
5-c	Difference Between Conversion and Yield :	2 mark	4
	Conversion Yield	each for	
		any 2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **12** of **18**

oject coc	ie .(17200)		•	rage 12 01 16
	1.Conversion is the ratio of the	1. Yield of a desired product is the		
	amount of reactant reacted to the	ratio of the quantity of the desired		
	initial amount of the reactant	product actually obtained to its		
		quantity maximally obtainable.		
	2. Conversion gives us idea	2. The Yield of a desired product		
	regarding how efficient a given	tell us how efficient is a given		
	chemical process is from the point	chemical process is in terms of the		
	of view of utilization of the	reaction product.		
	starting materials.			
	3. Higher values of Conversion is	3. Higher values of Yield is the		
	the indication of minimum	indication of minimum occurrence		
	amount of the limiting reactant	of side reactions.		
	left unreacted.			
	4. Conversion is applicable to	4. Yield is applicable to Complex		
	single reactions as well as to	reaction		
	Complex reaction.			
5-d	Oxidising Agents employed in cher	nical Industries:	2	4
	-Potassium Permanganate with sulph			
	- Potassium dichromate with sulphur			
	Reducing Agents employed in cher		2	
	- Fe + HCl or Zn + HCl			
	- Lithium aluminium hydride			
5-e	Flow sheet for manufacturing of N	itric acid:	4	4
	220 ii biicet for munufucturing of 14	20220 002001		_

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **13** of **18**

100 CODE 100 CODE	
5-f Saponification: The alkaline hydrolysis of an ester to form sodium salt of the 4	4
parent acid and alcohol is referred to as saponification	7
Example : $ \begin{array}{c} \text{reflux} \\ \text{CH}_3\text{COOC}_2\text{H}_5 + \text{NaOH} &$	
6-a Personal protective equipments used in Chemical industries: 1 mark	4
The purpose of PPE is to provide a safety barrier a hazard and the body of a each for	
person working in a hazardous environment. any four	
1) Hard hat: It is used for protection of head	
2) Safety goggles: It is used for protection of eye	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **14** of **18**

	3)Safety shoes: It is used for protection of legs and foot		
	4)work clothes: It is used for protection of whole body		
	5)Ear muff: It is used for protection of ear		
	6)Ear plug: It is used for protection of ear		
	7)Guard cuff's: It is used for protection of body		
	8)Face Shield: It is used for protection of face		
6-b	Redwood Viscometer:		4
	Constant temperature bath Valve / ball Jet for oil	2	
	Construction:		
	(1) It consists of cylindrical oil cup made of brass.		
	(2) The cup is open at the top and Its bottom is shaped concave internally to		
	permit a complete drainage of content of cup.		
	(3) The cup has a tapered central hole centrally at the bottom in which a jet is		
	fixed for oil flow from the cup.		
	(4) A pointer is provided at the side of the cu which gives idea regarding a level		
	to which oil is to be filled in the cup.	2	
	(5) The cup is surrounded by a constant temperature water bath made up of		
	copper		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **15** of **18**

	1	1
1) Oil at given temperature is filled into the oil cup upto the tip of the		
3) When the oil temperature remains constant at a desired value for		
five minutes, the oil is allowed to flow through the jet by lifting the		
3) The viscosity of on is described in seconds		
Pressure		4
Difference in height of mercury columns		
Construction:		
1) U-tube manometer is simplest form of manometer	2	
2) It consists of small diameter U-shaped glass tube.	2	
3) The tube is clamped on a wooden board and between two arms or leg of the manometer.		
4) A scale is fixed on the same boared.which is marked in centimeter and		
	I	i
	pointer. 2) The temperature of oil is kept at a constant temperature by the addition of hot water in the heating bath. 3) When the oil temperature remains constant at a desired value for five minutes, the oil is allowed to flow through the jet by lifting the metal ball. 4) The time in seconds required to fill the oil in the flask up to the Mark is noted accurately with the help of a stop-watch. 5) The viscosity of oil is described in seconds Construction: 1) U-tube manometer is simplest form of manometer 2) It consists of small diameter U-shaped glass tube. 3) The tube is clamped on a wooden board and between two arms or leg of the manometer.	1) Oil at given temperature is filled into the oil cup upto the tip of the pointer. 2) The temperature of oil is kept at a constant temperature by the addition of hot water in the heating bath. 3) When the oil temperature remains constant at a desired value for five minutes, the oil is allowed to flow through the jet by lifting the metal ball. 4) The time in seconds required to fill the oil in the flask up to the Mark is noted accurately with the help of a stop-watch. 5) The viscosity of oil is described in seconds Construction: 1) U-tube manometer is simplest form of manometer 2) It consists of small diameter U-shaped glass tube. 3) The tube is clamped on a wooden board and between two arms or leg of the manometer.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **16** of **18**

jeer est	ie .(17200)		age 10 or 10
	5) The mercury is poured into the tube until the level in the both the arm reaches the zero marks		
	Working:		
	1)The pressure in the inlet line can be measured by connecting it by plastic		
	tubing to one of the arms of the U-tube.	2	
	2) By measuring the difference in the height of the fluid in two arms of the U-	2	
	tube pressure can be measured by the equation.		
	$\Delta P = P_1 - P_2 = h(\rho_m - \rho) g$		
	Where , ΔP = Pressure difference, h= difference in levels of two arms		
	ρ_{m} = density of manometric fluid		
	pin sonony or manomorna nord		
6-d	Rotameter	2	4
	Perforated plate Tapered glass tube Float		
	Construction:		
	1)It consist of tapered glass tube mounted vertically in a frame with large end		
	up.	1	
	2)The tube is usually made of glass and contains a freely moving solid float is		
	smaller in diameter than diameter of bottom of the tapered tube.		
	3)The float is generally made of stainless steel and positioned centrally of the		
	tube with the help of a guide.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **17** of **18**

oject code :(1/206)		r	age 17 of 18
	scale is marked n the glass tube or mounted close to the		
tube so that reading is	Sotamed.		
Working:			
	flow varies, the float rises or falls, thus altering the flow		
	nular space/opening between the float and tube. As the		
flow increases, the flo	at moves upward, thus increasing the area. At a given	1	
flow rate, float stabilize	zes at a certain fixed position in the tube and at steady-		
state, it is recorded as	rotameter reading from the scale provided. It is used for		
flow measurements of	liquids and gases		
Tank————————————————————————————————————	Tape Highest point reached by liquid Distance to be measured after tape is taken out of tank Bob (weight)	2	4
1) Bob and tape is devices.	the most simple direct liquid level measurement		
	a bob (Weight) suspended from a tape marked in	2	
centimeter and mete			
3) Bob is lowered	I to the bottom of a tan or vessel containing liquid.		
4) The liquid in the	e tank wets the part of the tape that is dipped into the		
pool of liquid.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **18** of **18**

			· ·
	5) The bob and tape assembly is then removed from the tank and a reading		
	of liquid level is made by noting the point on the tape reached by the liquid.		
6-f	Determination Density of a liquid using Specific gravity bottle:	4	4
	1) In order to determine the density by specific gravity bottle, first weigh		
	the clean, dry, empty and stoppered bottle.		
	2) Then fill the bottle completely with the liquid ,stopper it ,clean the		
	bottle from the outside with blotting paper to remove the excess liquid		
	that spills on it outside		
	3) Weigh it again.		
	Mass/Weight of empty bottle = W_1 g		
	Mass/Weight of bottle filled with liquid = W_1 g		
	Mass/Weight of the liquid = $W_2 - W_1$		
	Volume of the specific gravity bottle = V ml		
	$Mass W_2 - W_1$		
	Density of the liquid in g/ml = =		
	Volume V		
	To avoid error due to the volume ,a certificate regarding the exact, accurate		
	volume of the bottle should be taken from the supplier		