

WINTER – 14 EXAMINATIONS

Subject Code: 17556

<u>Model Answer</u>

Page No: ____/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

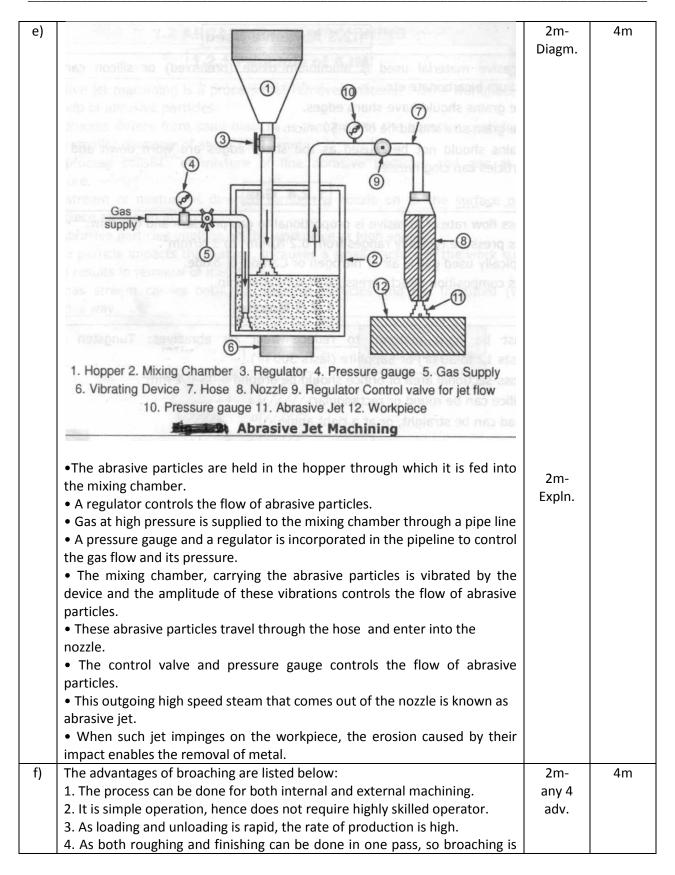
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

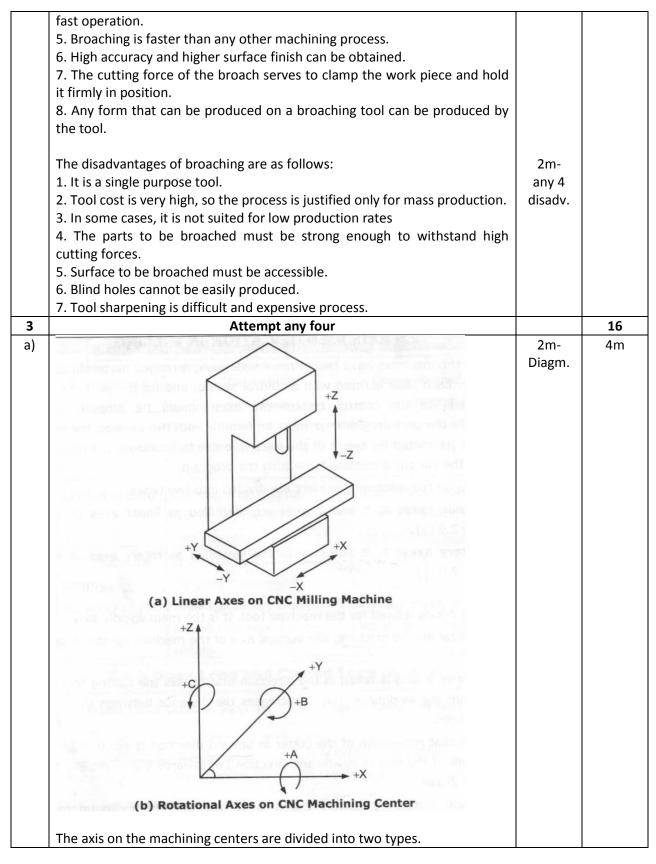
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	MODEL ANSWER	MARKS	TOTAL
NO.			MARKS
1	Attempt any five		20
a)	Non-traditional machining processes is defined as a group of processes that cut material by utilizing mechanical, thermal, electrical or chemical energy or combinations of these energies but do not use sharp and hard cutting tools as required for traditional manufacturing processes.	2m- Defn.	4m
	 The need of non-traditional processes is justified by the following points: (i) To machine the exotic material those were difficult to machine by conventlopal machining processes. (ii) To fulfill the requirements of new age like innovative design, tighter tolerances, micromachining and economy. (iii) To obtain intricate shapes. For example, a square blind hole of 15 mm x 15 mm with a depth of 30 mm. (iv) Overcome difficulty to machine the material. For example, Inconel, Ti alloy, carbide, ceramics. (v) To fulfill the requirement of low stress grinding. (if done by conventional then it reduce productivity). (vi) Drilling deep hole with small hole diamet:r1For example, 15 mm diameter. 	1m- any 2 needs	
	 The non-traditional machining processes has following importance (i)Any material can be machined irrespective of its hardness. (ii) Any complicated shape can be produced on the work piece. (iii) Very fine holes can be easily drilled. (iv) The parts produced are burr-free. (v) No mechanical force is exerted on the work piece, so fragile work piece can be machined. (vi) Drilling of tapered holes is Possible. (vii) Through cutting of any materials. 	1m- any 2 imp.	
b)	 A dielectric fluid should possess the following functions: (i) It should act as an insulator until the required breakdown voltage is attained. (ii) It should act as a conductor, once the breakdown voltage is reached. (iii) It should clean the spark gap by carrying away the molten metal. (iv) It should deionize the spark gap rapidly after the discharge has occurred. (v) It should cool the tool, work piece and the spark region. 	2m- any 4 function	4m
	 The following characteristics are required by the dielectric fluid: (i) It should have low viscosity. (ii) It should have high flash point: (iii) It should have controlled level of toxicity. (iv) It should have freedom from acid and alkaline products. (v) It should have high dielectric strength (i.e. remain electrically non- 	2m- any 4 char.	

	conductiv	euntil the required breakdown volt	age is attained).		
		uld be cheap and easily available.			
		uld have high fluidity.			
c)(i)		ar interpolation		1m-	4m
(ii)	G04 Dwe			Each	
(iii)	M06 Too	I Change		code	
(iv)		dle Start (Clockwise)			
d)	Sr.No.	Pull Broach	Push Broach	4m-	4m
,	1	This broach is pulled out of the	This broach is pushed	any 4	
		work piece	through the work piece.	points	
	2	It is longer in length than push	It is comparatively shorter		
		broach	in length		
	3	It is used where a longer surface	It is used where a short		
		is to be broached	length is to be broached		
	4	It carries more number of teeth.	It carries less number of		
			teeth.		
	5	The pull broach is in tension	The push broach is in		
			compression		
e)	The typica	al classification of milling machines	is given below.	4m	4m
	1.Column	and knee type milling machines			
		nilling machine			
	o Vertical milling machine				
		rsal milling machine			
		ed type milling machine			
		x milling machine			
	•	milling machine			
	•	milling machine			
		nd fall type milling machine			
		ion milling machine table milling machine			
	-	type milling machine			
		controlled milling machine			
		nilling machine			
		milling machine			
	•	ory milling machine			
		I milling machine			
		milling machine			
		nilling machine			
		illing machine			
	o Double	e end milling machine			
	o Spur m	nilling machine.			
f)	Indexing i	is an operation of dividing a peripl	hery of a cylindrical workpiece	2m-	4m
		I number of divisions by the help of	-	Defn.	
		ing head, also known as a divid			
	•	d tool that allows a workpiece to	•		
	easily and	I precisely rotated to preset angles of	or circular divisions.		



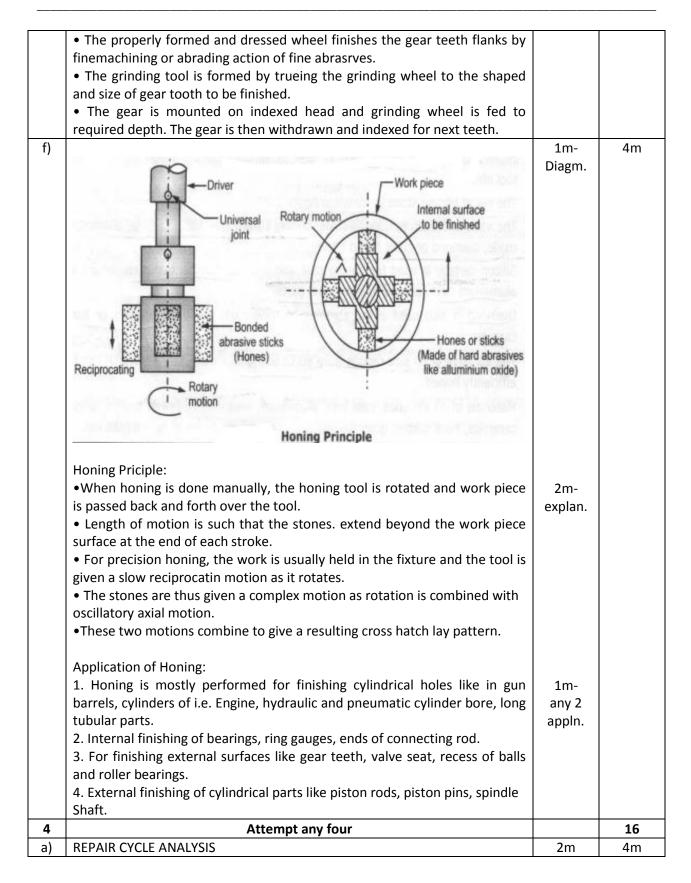
	The different methods of Indexing are:	2m-	
	o Direct or Rapid indexing.	any 4	
	o Plain or Simple indexing.		
	o Compound indexing.		
	o Differential indexing.		
	0 Angular indexing		
g)	The advantages of centreless grinding are given below:	2m-	4m
	1) The rate of production is much higher in centre-less grinding than	any 4	
	cylindrical grinding. Hence, cost of production is less.	adv.	
	2) As true floating condition exists during the grinding process rno		
	need ofholding the work piece between the centres. Hence, axial		
	thrust is absent.		
	3) The work piece is rigidly supported along the entire length, hence		
	betterstability.		
	4) Large grinding wheels can be used. Wheel wear and tear is less and		
	hence less maintenance.		
	5) The work is supported throughout its length and there is no		
	deflection, therefore long slender workpiece can be ground easily.		
	6) The process is continuous and can be used for production work.		
	7) Size of work is easily controlled.		
	8) Semi-skilled operator can perform operation.		
	The disadvantages of centreless grinding are given below:	2m-	
	1) The work piece having multiple diameters of steps and shoulders	any 2	
	cannot be handled.	disadv.	
	2) The work piece having flat surfaces and key ways can be ground.		
	3) In case of hollow work piece, shape may change		
2	Attempt any four		16
a)	Preventive maintenance is the planned maintenance of machine tools at	2m-	4m
	regular inetrvals in order to prevent or minimize breakdown. It is the	Defn.	
	Systematic inspection, detection, correction, and prevention of incipient		
	failures, before they become actual or major failures.		
	Advantages of Preventive Maintenance	2m-	
	(i) Flexibility allows for the adjustment of maintenance periodicity.	any 4	
	(ii) Reducedequipment or process failure and increased equipment life.	adv.	
	(iii) Reduced-breakdown and connected downtime.		
	(iv) Greater safety for workers.		
	(v) Fewer large scale and repetitive repairs.		
	(vi) Identification of equipments requiring high maintenance cost.		
	(vii) Reduceddown time as the machine work smoothly.		
	(viii) Minimized loss of production due to breakdown.		
	(ix) Greater control and supervision can be obtained.		
	(x) Inventory of standard spare parts of the machine is reduced.		
b)	Trueing Dressing	4m-	4m



periphery concentric to bore dia opening the face of the wheel points 2. It removes glazing defect. 2. It removes loading defect and the start wheel gresser. 4. Profiles can be obtained on the wheel face. 3. It is done with a start wheel dresser. dresser. 4. Profiles can be obtained on the wheel face. 5. It is done to recover the lost for the wheel dm dm c) The principle of gear hobbing 4m dm dm • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. Am 4m • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m 4m d) Compound indexing 4m 4m e to the gear blank is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m				1	
2. It removes glazing defect. 2. It removes loading defect 3. It is done with a diamond tool. 3. It is done with a start wheel dresser. 4. Profiles can be obtained on the wheel face. 4. Profiles cannot be obtained wheel face. 5. It is done to recover the lost shape of the face. 5. It is done to recover the lost cutting action of the wheel c) The principle of gear hobbing 4m • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. • For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m d) Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves tur		1.It is the process making the	1. It is the process of cleaning and	any 4	
3. It is done with a diamond tool. 3. It is done with a start wheel dresser. 4. Profiles can be obtained on the wheel face. 4. Profiles cannot be obtained 5. It is done to recover the lost shape of the face. 5. It is done to recover the lost cutting action of the wheel c) The principle of gear hobbing 4m • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. 6ear hobbing the spurgear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. 4m • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. 4m • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m d) Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse direc				points	
dresser. 4.Profiles can be obtained on the wheel face. 5. It is done to recover the lost shape of the face. c) The principle of gear hobbing • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. Am • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. </td <th></th> <td></td> <td></td> <td></td> <td></td>					
4. Profiles can be obtained on the wheel face. 5. It is done to recover the lost shape of the face. 5. It is done to recover the lost cutting action of the wheel c) The principle of gear hobbing 4m • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. 6 For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. 4m • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. 4m • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m d) Compound indexing 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. In dex crank movement = 40/N=11/N1 ±n2/N2 Where, N = Number of divisions required. N1=		3. It is done with a diamond tool.	3.It is done with a start wheel		
wheel face. 5. It is done to recover the lost shape of the face. 5. It is done to recover proper cutting action of the wheel c) The principle of gear hobbing • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m 4m e Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m 4m e Goar hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m 4m e All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound Indexing • Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m 4m e It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. <			dresser.		
5. It is done to recover the lost shape of the face. 5.It is done to recover proper cutting action of the wheel c) The principle of gear hobbing • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. 4m • For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. 4m • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m d) Compound Indexing • Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ± n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		4.Profiles can be obtained on the	4. Profiles cannot be obtained		
shape of the face. cutting action of the wheel c) The principle of gear hobbing 4m e Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m e All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. 56 rot hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. e The gear blank is first moved in towards the rotating hob until the proper depth is reached. 6 As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. e During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process 4m d) Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m e In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. 4m e It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. 11 Index crank movement = 40/N=11/ N1 ±n2/ N2 where, N = Number of divisions required. </td <th></th> <td>wheel face.</td> <td></td> <td></td> <td></td>		wheel face.			
c) The principle of gear hobbing 4m 4m • Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). 4m 4m • All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. • For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing 4m 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by lock pin. N1= Hole circle used by lo		5. It is done to recover the lost	5.It is done to recover proper		
 Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool (hob). All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process Compound Indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		shape of the face.	cutting action of the wheel		
generated by a series of cuts with a helical cutting tool (hob). All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. • For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. • The gear blank is first moved in towards the rotating hob until the proper depth is reached. • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. 1t is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.	c)	The principle of gear hobbing		4m	4m
 All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1±n2/N2 where, N = Number of divisions required. N1= Hole circle used by lock pin. 		Gear hobbing is a machining process	s in which gear teeth are progressively		
 continuously as in two gears meshing until all teeth are cut. For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1±n2/N2 where, N = Number of divisions required. N1= Hole circle used by lock pin. 		generated by a series of cuts with a he	elical cutting tool (hob).		
 For hobbing the spur gear, the hob and gear blank are connected by means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process Compound indexing Compound indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• All motions in hobbing are rotary	, and the hob and gear blank rotate		
 means of proper change gears. The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing Compound indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		continuously as in two gears meshing	until all teeth are cut.		
 The gear blank is first moved in towards the rotating hob until the proper depth is reached. As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• For hobbing the spur gear, the ho	ob and gear blank are connected by		
depth is reached. • As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing 4m • Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		means of proper change gears.			
 As soon as the properdepth is reached, the hob cutter is fed across the face of the gear blank until the tooth is completely cut. During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1±n2/N2 where, N = Number of divisions required. N1= Hole circle used by lock pin. 		• The gear blank is first moved in tow	vards the rotating hob until the proper		
face of the gear blank until the tooth is completely cut. • During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing 4m • Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. 4m • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. 4m • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		depth is reached.			
 During cutting operation both gear blank as well as hob (tool) rotates simultaneously during the entire process d) Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• As soon as the properdepth is read	ched, the hob cutter is fed across the		
simultaneously during the entire process4md)Compound indexing • Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. • In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. • It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.4m		face of the gear blank until the tooth i	is completely cut.		
 d) Compound indexing Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• During cutting operation both gea	r blank as well as hob (tool) rotates		
 Compound Indexing is used when the available capacity of the index plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		simultaneously during the entire proc	ess		
 plates is not sufficient for the given indexing job. In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 	d)	Compound indexing		4m	4m
 In other words when the work piece periphery cannot be divided by simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/N1 ±n2/N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		 Compound Indexing is used when 	the available capacity of the index		
 simple indexing method, compound indexing is used. It is trial and error method. The method consists of two basic operations. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		plates is not sufficient for the given in	dexing job.		
 It is trial and error method. The method consists of two basic operations. 1. First operation is to turn the index crank through a required amount as it is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• In other words when the work p	iece periphery cannot be divided by		
 First operation is to turn the index crank through a required amount as it is done in case of simple indexing. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		simple indexing method, compound ir	ndexing is used.		
 is done in case of simple indexing. 2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		• It is trial and error method. The met	hod consists of two basic operations.		
2. Second operation involves turning the index plate and crank both either in same or reverse directions, thus adding or subtracting the further movement,from that obtained in the first operation. Index crank movement = $40/N=n1/N1 \pm n2/N2$ where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		1. First operation is to turn the index	crank through a required amount as it		
 in same or reverse directions, thus adding or subtracting the further movement, from that obtained in the first operation. Index crank movement = 40/N=n1/ N1 ±n2/ N2 where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin. 		is done in case of simple indexing.			
movement, from that obtained in the first operation. Index crank movement = $40/N=n1/N1 \pm n2/N2$ where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		2. Second operation involves turning	the index plate and crank both either		
Index crank movement = $40/N=n1/N1 \pm n2/N2$ where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		in same or reverse directions, thus	s adding or subtracting the further		
where, N = Number of divisions required. N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		movement, from that obtained in the	first operation.		
N1= Hole circle used by crank pin. N2 = Hole circle used by lock pin.		Index crank movement = 40/N=n1/ N2	1 ±n2/ N2		
N2 = Hole circle used by lock pin.		where, N = Number of divisions requir	red.		
		N1= Hole circle used by crank pin.			
		N2 = Hole circle used by lock pin.			
N1 = Holes moved by crank pin in Ni hole circle plate.		N1 = Holes moved by crank pin in Ni h	ole circle plate.		
n2 = Holes moved by plate and crank pin in N2 hole circle		n2 = Holes moved by plate and crank	pin in N2 hole circle		

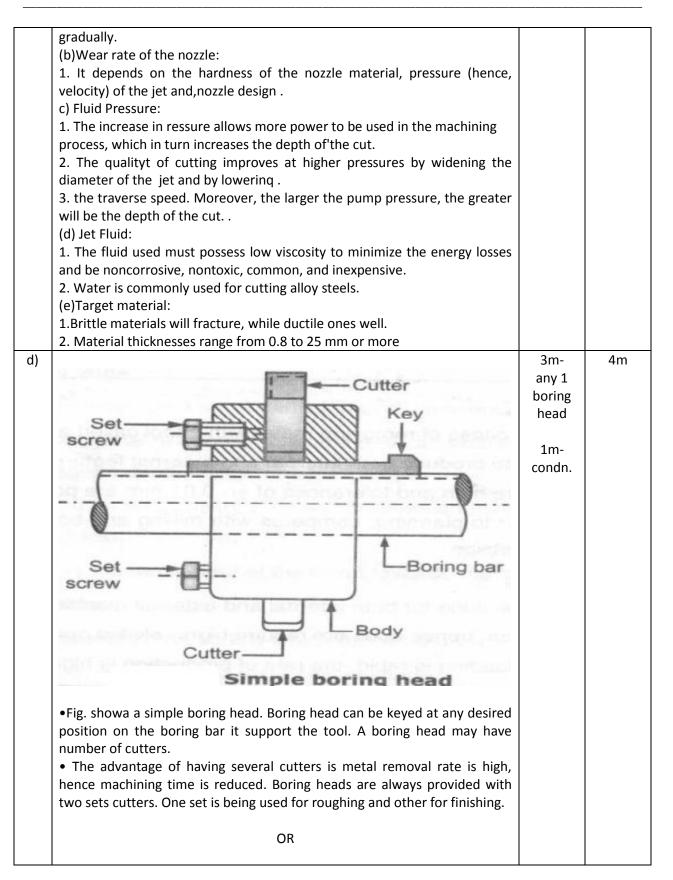
(i) Linear axes: X, Y and Z axes are identified as linear axes.	2m-	
(ii) Rotary axes: A, Band C axes are identified as rotary axes	explan.	
Z-axis:		
• First the Z-axis is fixed for the machine tool. It is the main spindle axis.		
• In a vertical milling machine, the vertical axis of the machine spindle is set		
as the Z-axis.		
• The positive Z-axis is taken in the direction that causes the cutting tool to		
move away from the workpiece. (i.e. it increases the distance between the		
workpiece and the tool.		
• It means that movement of the cutter in upward direction is positive Z-		
axis. The movement of the tool in downward direction i.e. towards the		
workpiece is set as negative Z-axis.		
• On vertical machining centers Z-axis is vertical and on horizontal		
machining centers Z-axis is horizontal.		
X-axis:		
 It is always horizontal and parallel to the workpiece/holding surface. 		
 It indicates the longitudinal travel of the work table. 		
• When looking from the tool spindle to the column, the positive X		
direction is identified as being to the right in vertical milling machine.		
Y-axis:		
 It is perpendicular to both X and Z-axes. 		
 It is also horizontal and indicates the cross travel of the table. 		
• The positive Y direction is the direction which completes with the		
+X and +Z motions a right hand cartesian co-ordinate system as		
shown in Fig. (b).		
A-axis:		
 It is the axis of rotary, motion of a tool along X axis 		
• Clockwise rotation is considered as positive movement looking in +X		
direction.		
B-axis.		
 It is the axis of rotary motion of a tool along Y-axls. 		
• Clockwise rotation is considered as positive movement looking in +Y		
direction.		
C-axis:		
 It is the axis of rotary motion of a tool along Z-axis. 		
• Clockwise rotation considered as positive movement and is identified by		
looking in +Z direction.		

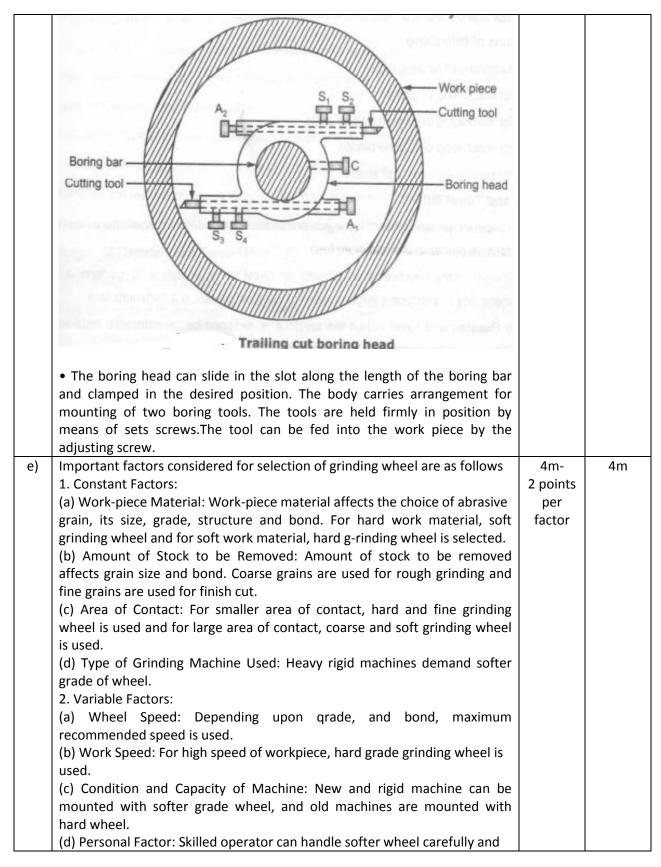
b)	Total reflective mirror	1m-	4m
	Cas reserve generality have a whervery or characteristic	Diagm.	
	Partially reflective		
	mirror		
	Laser material		
	a bac Marine] [and and] [aging and marine and a low of a low		
	(a) Atoms in a Medium Laser at Ground State		
	~ 3 S S		
	orystal or a glassy material		
	(b) Atoms Being Excited Due to Pumping		
	Assessor and (the chromatic latence contraction of the low statement)		
	L'ansal and a second		
	emiconductor Lasers		
	(c) Excited Atoms Emit Photon Before Returning to Ground State		
	direction is perpendentiar to the suitable of the Water.		
	(d) A Light Beam Coming Out in Form of Laser Beam		
	Theatoms of a medium (for example, a ruby crystal rod) are at ground	3m-	
	state. When a quantum of energy from a light source is made to fall on this	explan.	
	medium, it causes absorption of radiation by the atoms of the medium.		
	This results in electron of the atoms of the medium to jump to the upper		
	energy level. The atoms in the upper energy level are then said to be in an		
	excited state. The atom in an excited state immediately begins to drop		
	spontaneously to the metastable (intermediate) state. From the metastable		
	state the atom emits photon at random before it falls to the original energy		
	level. This radiation of photons is known as spontaneous emission which is		
	extremely rapid. In the presence of light of the appropriate frequency		
	stimulated emission will occur in the upper energy level when the atoms		
	will begin to emit and chain reaction will occur by causing more to emit		
	and the whole avalanche would dump down together. This is called losing		
c)	action.	4m-	4m
c)	Sr.No. Capstan lathe Turret lathe		4111
	1 It is a light duty machine. Turret lathes are relatively	any 4	
	more robust and heavy duty	points	



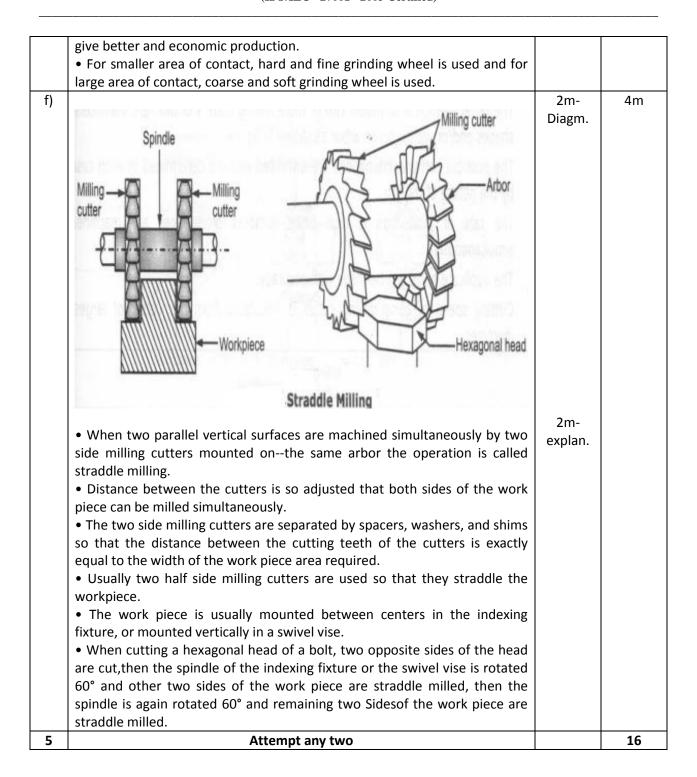
		machine.	<u>т</u>	
2	The turret head is mounted on the ram and the ram is mounted on the saddle and	The turret head is directly mounted on the saddle and the saddle slides over the bed		
3	moves on the guideways. The saddle will not be moved	ways. The saddle is moved along		
5	during machining	with the turret head during machining		
4	The lengthwise movement of turret is less	The lengthwise movement of turret is more.		
5	Only short workpieces can be machined	Long work pieces can be machined.		
6	Collet is used to hold the workpiece	Jaw chuck is used to hold the workpiece		
7	It is easy to move the turret head as it slides over the ram			
8	The turret head cannot be moved crosswise.	The turret head can be moved crosswise in some turret lathes		
9	As the construction of lathe is notrigid, heavy cut cannot be given,	As the construction of lathe is rigid, heavy cut can be given.		
10	It is used for machining work pieces up to 60 mm diameter	It is used for machining workpieces up to 200 mm diameter.		
11	Capstan lathes generally deal with short or long rod type blanks held in collet.	Turret lathes mostly work on chucking type jobs held in the quick acting chucks.		
12	The turret travels with limited stroke length within a saddle type guide block, called auxiliary bed, which is clamped on the main bed	In turret lathe, the heavy turret being mounted on the saddle which directly slides		
13	External screw threads are cut incapstan lathe using a self opening die being mounted in one face of the turret.	In turret lathes external threads are cut by a single point or multi point chasing tool being mounted on the front slide and moved by a short leadscrew and a swing type half nut		
14	The turret of capstan lathe is called as a capstan head which may be circular or hexaqonal.	The turret of turret lathe is called as a turret head which may be square octagonal or hexagonal		
Sr.no.	Up Milling	Down Milling	4m-	4m

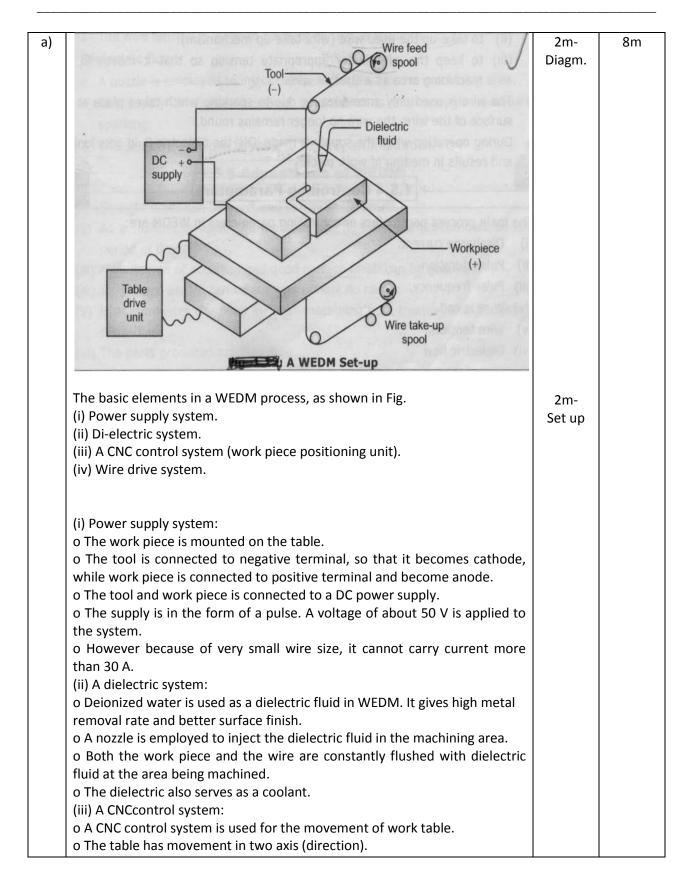
		cutter rotates in a direction	rotates in the same direction	points	
		opposite to that in which the	to which the work is fed		
		work is fed			
	2	The chip thickness progresses	The chip thickness is		
		gradually from start to cut to	maximum at the beginning of		
		end of cut (i.e. chip thickness	cut and minimum at end of		
		is minimum at the beginning	the cut		
		of cut and maximum at end of			
	2	the cut).	The sutting fores to also to each		
	3	The cutting force tends to lift	The cutting force tends to seat		
	4	the w/p away from the fixture.	the w/p into the fixture		
	4	It is difficult to pour coolant at	It is easy to pour coolant at		
	-	the point of machining	the point of machining		
	5	It is difficult to design the	Fixture designer is easy		
	6	fixture	Better surface finish is		
	0	Wavy type of surface finish is obtained.	obtained		
	7	The cutter does not start	The cutter starts cutting metal		
		cutting metal as soon as it	as soon as it contacts the w/p.		
		comes in contact with the			
		workpiece			
	8	The cutting force is down	The cutting force is upword at		
		wordat beginning and reaches	beginning of cut and reaches		
		to upword at the end of the	to downward at the end of		
		cut.	the cut		
e)				1m-	4m
	10	17407		Diagm.	
		Formed			
		grinding wheel			
		Feed			
		+ 634			
			\square		
		Gear to	be (
	D' China	finish	ed		
		7	5		
			IN APOLO MUCHA GARD PLAN		
				3m-	
	-	perating at high speeds and high	loads are always hardened and	explan.	
		listortion in gear flank. er to remove this distortion and t	to have accurate profile on gear		
		r smooth running gear grinding is d			
		is a very accurate method and			
		dely used for finishing teeth of di			
		erial or hardened surfaces.	increme type and size of gears of		
	nuru mat	charor nuractica surfaces.			

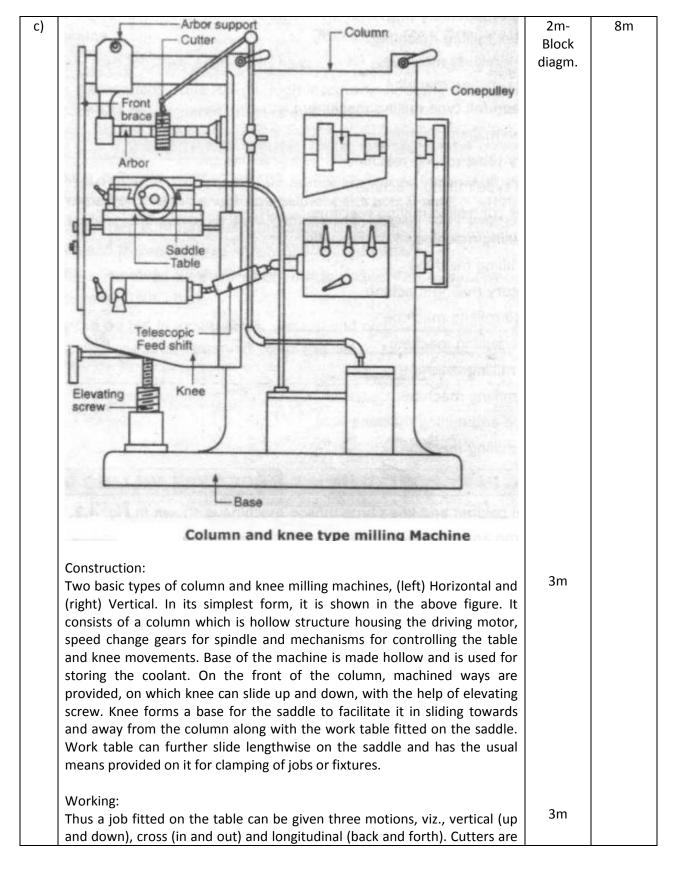




	complete • The ins a particu • This se • Thus the repeated • The cy comlete • OR The repair cy For exam (i) 11 - S1 is a repair small reported on carried of	e overhaul of the machine. spection and repair activities are lar sequence. quence is determined forehand i ne cycle of I, R (small or medium d till three or four overhauling. ycle of inspection, small repair overhauls is called as repair cycle e cycle from machine commission rcle. nple, _ – I2 - S2 - I3 - M1 - I4 - S3 - I5 - S ir cycle for a particular grinding pair is carried out. However, after carried out and after two mediu	repair) and C (complete overhaul) and medium repair between two e. hing to first complete overhaul is 54 - 16 - M2 - 17 - S5 - 18 - S6 - 19 - C g machine. After every inspections, er every three inspections, medium im repairs, complete overhauling is	2m	
	C is a rep				
	small rep	pairs and twelve inspections betw	veen two overhauls.		
b)	Sr.No	Preventive Maintenance	Breakdown Maintenance	4m-	4m
	1	For preventive maintenance		any 4	
		tasks, the machines are shut		points	
		down.	down		
	2	It is done at the preset schedule.	It is done when the need occurs.		
	3	It is time based	It is need based.		
	4	Even if the performance	Actual condition of the machine		
		capability of machine is	is not concerned at all, whether		
		good, the maintenance is	good or bad, maintenance is		
		done on schedule	done only at breakdown.		
	5	In early life of machine	In early life of machine		
		preventive maintenance jobs	breakdown maintenance is very		
		are comparatively more in	rare.		
		nature			
	6	It is more suitable for	It is suitable for small industries		
		industries where large	only having less number of		
		number of similar or nearly	machines. It is not suitable in		
		similar machines are available	big industries having more number of machines		
c)	Process	Parameters of WJM		4m-	4m
C)		and-off distance:		any four	
		e gap between the jet nozzle and	l the workpiece.	2, 1001	
			nd-off distance upto a certain limit		
			•		
		after which it remains unchanged for a certain tip distances and then falls			







	 o The table can also be moved in both the directions simultaneously for taking contouring cuts. (iv) Wire drive system: o This system performs three functions: (i) to feed the fresh wire for machining (wire feed mechanism). (ii) to take-up the used wire (wire take-up mechanism). (iii) to take-up the used wire (wire take-up mechanism). (iii) to keep the wire under appropriate tension so that it moves in the machining area as a straight wire. o The wire is used only once because due to sparking which takes place at the surface of the wire, the wire no longer remains round. o During operation when the supply is made 'ON' the dielectric fluid gets ionized and results in melting of work piece. Disadvantages of WEDMI; (ii) Wire cannot be reused, because due to sparking the wire no longer remains round. (iii) If proper tension in wire is not maintained, the surface finish will be poor. (iii) Only electrically conductive material can be machined. (iv) Residual stresses are induced in the work piece during machini'ng. (v) The maximum depth of work piece which can be machined is around 90' mm. (vi) A hole is necessary in the work piece for machining of surface which are 	2m- any 2 limitns	
	not at the edges. Applications of WEDM; (i) Punches and dies used in press tools can be made. (ii) For the production of moulds and dies. (iii) Used to cut out complex contours in electrically conductive work pieces. (iv) Simple, flat shapes, which usually would be stamped, may be a job for wire EDM when they require a superior quality edge. (v) Cylindrical pins as small as 5 mm in diameter can be machined.	2m- any 2 applns.	
b)	(b): Tool movement	8m with sketch	8m

Program	Description	
	Program Number	
N100 G90 G21 G94 EOB	Absolute mode, input in mm, feed in mm/min.	
NII0 M03 5800 M08 EOB	Spindle start clockwise direction, spindle speed, coolant on.	
N120 GOO XO Z2 EOB	Rapid travel of tool to Position B.	
N130 GO1 Z 0 F 200 EOB	Movement of tool to Position C	
N140 X23 EOB	Facing operation. (Position D.)	
N150 Z -20 EOB	Turning to diameter 23 mm for a length of 20 mm(Position E.)	
N160 GOO X28 Z2 EOB	Rapid travel of tool to Position F.	
N170 GOI X21 F200 EOB	Movement of tool to the Position G.	
N180 Z-20 EOB	Turning to diameter 21 mm for a length of 20 mm. Position H.	
N190 GOO X28 Z2 EOB	Rapid travel of tool to Position F.	
N200 GOI X20 F200 EOB	Movement of tool to Position I.	
N210 Z-20 EOB	Turning to diameter 20 mm for a length of 20 mm. (Position J).	
N220 X25 Z -25 EOB	Taper Turning for a length of 5 mm. Position K.	
N230 GOO X80 Z50 EOB	Rapid travel of tool away from the work piece. Position L.	
N240 G28 EOB	Rapid return to machine reference position.	
N250 M05 EOB	Spindle stop.	
N230 M09 EOB	Coolant-off.	
N240 M30 EOB	Program end and tape rewind	

	mounted on the horizontal arbor which is rig arm, spindle and the braces. In the hollow of drives the counter shaft by means of a belt or or hydraulic devices are used for the quick ch power feeds for the job.	asing of the column, motor chain. Mechanical, electrical		
6	Attempt any four			16
a)	DRY RUN Depress this switch to enter into dry run m AUTO/MDI operations, the feedrate specified changed to JOG feedrate set on the traverse switch to come out of this dry run mode.The program quikly without cutting pacts.	ode. When selected during d in the program or MDI is feed dial. Depress the same	2m	4m
	 JOG MODE The mode that allows for the manual operation of tool movement via the jog buttons is called as jog mode. Jog mode is mostly used to travel the CNC machine table slide for movement of table along x-axis or z-axls, These axis movements can be via a jog mode button or through the CNC machine hand wheel. It is also called as manual mode. In this mode, the CNC machine behaves like a standard or conventional machine. With the jog mode, the operator of a CNC machine is allowed to press buttons, turn hand wheels, and activate switches in order to attain the desired machine function. The activation of each button or switch in the manual mode has an 		2m	
b)	1It is simple in design.It is com2There is no feedback elementA feedback this syst3The input is directly given to the MCU.The input given to sends the MCU.4Time processing is less.Time more.5The output controlled.The output cannot be lt provid	out and feedback signal is o the comparator which he required signal to the equired for processing is tput given is exactly as	4m- any 4 points	4m
c)	A broaching machine is classified as below: o According to the method of operation (a) Pull broach (b) Push broach		4m	4m

			[]
	(c) Stationary broach		
	o According to the kind of operation		
	(a) Internal broach		
	(b) External broach		
	o According to their use		
	(a) Single purpose		
	(b) Combination		
	o According to their construction		
	(a) Solid		
	(b) Built up		
	(c) Progressive		
	(d) Inserted tooth		
	o According to their function		
	(a) Keyway broach		
	(b) Spline broach		
	(c) Sizing broach		
	(d) Spiral broach		
	(e) surface broach		
d)	• A horizontal broaching machine consists of power head hydraulic cylinder	4m	4m
- /	supporting plate, broach.		
	• Its bed or a base a little more than twice the length of the broaching		
	stroke, a broach pilot and the drive		
	• mechanism for pulling the broach.		
	 Horizontal broaching machines are used primarily for broaching keyways, 		
	splines, slots, round holes, and other internal shapes or contours.		
	 Burnishing is a cold working process, by which improvement in surface 	4m	4m
e)	finish, dimensional accuracy and work hardening can be obtained without	4111	4111
	removing themetal.		
	 Burnishing is a non-cutting operation and uses no abrasives. It is a process of producing bright chining and smooth surface on metals. 		
	 It is a process of producing bright, shining and smooth surface on metals. It is a finishing operation and is permally done on parts which are turned 		
	• It is a finishing operation and is normally done on parts which are turned,		
	bored, reamed or ground. Any ductile or malleable material with hardness		
	less than 49 HRCcan be successfully burnished.		
	Burnishing is done as supplementa process after metal cutting operations like turning milling chaping operations		
	like turning, milling, shaping operations.		
	 Lapping and Honing is eliminated with burnishing. Durnishing is a metal finishing are seen that involves a busical displacement. 		
	• Burnishing is a metal finishing process that involves physical displacement		
	of surface irregularities rather than cutting or grinding.		
	• The process involves moving a set or hardened rollers or balls against the		
	metal surface under pressure, thereby causing microscopic blemishes in the		
	metal surface to flatten for a perfect, mirror surface.		
	•In this process fine surface finish is produced by the planetary rotation of		
	ardened rollers over a bored or turned metal surface.		
	• All the machined surfaces consist of a series of peaks and valleys (surface		
	irregularities) of irregular height and spacing. The plastic deformation		
	created by burnishing is a disptacement of the material from the peaks		

should be replaced if there is an indication of wear cut etc.pro•To facilitate making and breaking connections, couplings are furnishedwiwith rocker lugs. Rocker lugs are located on all male and female couplingsrem	
 tool, spreading minute surface irregularities into flat surface. This helps to flatten the high spots by allowing plastic flow of the metal. The edges of the metal can be smoothened by pushing it through a die that will smooth out the burrs and the blanked edge caused by the die break. f)(i) Gasket should be placed in the female coupling to make the connection 2r water tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc. To facilitate making and breaking connections, couplings are furnished wi with rocker lugs. Rocker lugs are located on all male and female couplings 	
 This helps to flatten the high spots by allowing plastic flow of the metal. The edges of the metal can be smoothened by pushing it through a die that will smooth out the burrs and the blanked edge caused by the die break. f)(i) Gasket should be placed in the female coupling to make the connection water tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc. To facilitate making and breaking connections, couplings are furnished with rocker lugs. Rocker lugs are located on all male and female couplings 	
The edges of the metal can be smoothened by pushing it through a die that will smooth out the burrs and the blanked edge caused by the die break.f)(i)•Gasket should be placed in the female coupling to make the connection water tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc. •To facilitate making and breaking connections, couplings are furnished with rocker lugs. Rocker lugs are located on all male and female couplings	
will smooth out the burrs and the blanked edge caused by the die break.f)(i)•Gasket should be placed in the female coupling to make the connection2rwater tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc.pro•To facilitate making and breaking connections, couplings are furnished with rocker lugs. Rocker lugs are located on all male and female couplingsrem	
 f)(i) Gasket should be placed in the female coupling to make the connection 2r water tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc. To facilitate making and breaking connections, couplings are furnished with rocker lugs. Rocker lugs are located on all male and female couplings 	
water tight. Gasket should be checked every time a connection is made and should be replaced if there is an indication of wear cut etc.and pro•To facilitate making and breaking connections, couplings are furnished with rocker lugs. Rocker lugs are located on all male and female couplingsrem	-
should be replaced if there is an indication of wear cut etc.pro•To facilitate making and breaking connections, couplings are furnishedwithwith rocker lugs. Rocker lugs are located on all male and female couplingsrem	m- 4m
•To facilitate making and breaking connections, couplings are furnished wi with rocker lugs. Rocker lugs are located on all male and female couplings rem	y 2
with rocker lugs. Rocker lugs are located on all male and female couplings rem	ob.
	ith
	nedy
with the exception of couplings found on booster hose.	
• All couplings are attached to the hose jacket by an expansion ring. This	
expansion ring is pressed outward, securing the hose jacket to the coupling.	
• The lug portion, the locks and the race way of the coupling should be	
lubricated.	
• Do not lubricate the gasket or seals. Replacethe-gasket periodically.	
• Following practice should be followed for bearing:	
o Coupling maintenance is generally a simple matter, requiring a regularly	
scheduled inspection of each coupling.	
o It consists of performing visual inspections, checking for signs of wear or	
fatigue and cleaning collplings regularly.	
o Checking and changing lubricant regularly if the coupling is lubricated.	
o This maintenance is required annually for most couplings and mores	
frequently for couplings in adverse environments or in demanding	
operating conditions.	
o Documenting the maintenance performed on each coupling, along with	
the date	
•They are eliminated by adopting following maintenance activities:	
(i) Regular scheduled inspection.	
(ii) Visual inspection of each element.	
(iii) Proper lubrication.	
(iv) Documenting the maintenance performed on each coupling.	
	m-
	y 2
	ob.
o Belt should not be operated close to furnaces, radiators, steam pipes or wi	ith
	nedy
o Never use idler on the top side of a V-belt.	-
o The belt should not be too tight or else it will wear out quickly.	
o It should not be too loose or else it will slip out of the pulley	