

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538 <u>Model Answer</u>

Important Instructions to examiners:

- 1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.		Question & I	Model Answer	Remark	Total Marks
1.A	Attemp	ot any Three:			12
a)	Disting	guish between open and clo	osed loop system (any four points)		04
Ans:					
	Sr.No	Open loop	Closed loop	1 mark	
	1	No Feedback element	Feedback element is present	for	
	2	Error detector is absent	Error detector is present	each point	
	3	Inaccurate	Accurate	(releva	
	4	Small bandwidth	large bandwidth	nt 4	
	5	More stable	less stable	points	
	6	Simple construction	Complex construction	only)	
	7	Less costly	more costly		
	8	Affected by non linearity	not affected by non-linearity		
	9	Sensitive to disturbance	not sensitive to disturbance		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

b)	Draw graphical representation their Laplace representation. i.) Step input ii.) Impulse input iii.) Ramp input iv.) Parabolic in	entation. ut	ving test signal and give		04
Ans:	Test Signal	Graphical representation	Laplace representation	1 mark for	
	Unit Step Input	r(t) A	$\frac{1}{s}$	each input graphic al	
	Unit Ramp Input	Slope = A	$\frac{1}{s^2}$	represe ntation and LT	
	Unit Parabolic Input	Slope = At	$\frac{1}{s^3}$		
	Unit Impulse	$ \begin{array}{c} \Gamma(t) \\ \uparrow \\ \uparrow \\ \downarrow \\ \hline $	1		
c)	Define the term stabi	lity and relative stabil	ity.		04
Ans:	conditions are satisfied i.) When the system is bounded and controllar	l. excited by a bounded in ble.	to be stable if following aput the output is also zero irrespective of the	2 marks each	
	the basis of settling time i.)If the settling time for	system is said to be relate. The system is less than the said to be relatively	that of another system		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

d) Ans:	second one. ii) As the location of the poles move towards left half of S- plane, the settling time becomes smaller and system becomes relatively more stable. Define ON –off controller. Give 2 examples. On- Off Controller:- It has only two fixed positions such as on (1) and off (0). The output signal P remains either 0% or 100% depending upon whether the error is negative or positive. P = 100% (ON) for positive error P = 0% (OFF) for negative error. Consider a practical example of temperature control system with Set Point "x". When the temperature is more than "x" the on - off controller will be off and when it is less than "x", on - off controller will be on.	02 marks For definiti on and 02 marks for any relevan t	04
	Example:- Relays, Thermostat	exampl es	
1.B	Attempt any One:		06
a)	Define transfer function. Derive the equation of transfer function for closed loop system.		
Ans:	Transfer Function is defined as the ratio of Laplace transform of Output to that of Laplace transform of input under the assumption of zero initial condition. Block diagram: (for negative feedback system)	1 mark for definati on	
	B(s) $E(s)$ $G(s)$ $C(s)$ $G(s)$	1mark For BD	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	$\frac{\text{ivation}}{=\frac{C(s)}{E(s)}}$	4 marks for	
E(s)	$=\frac{C(s)}{G(s)}$	Derivat ion	
C(s)	$= E(s) \times G(s)$		
B(s)	$= C(s) \times H(s)$		
E(s)	= R(s) - B(s) (for negative feedback) [.I.]		
Subs	stitute for E(s) & B(s) in [.I.]		
$\frac{C(s)}{G(s)}$	= R(s) - C(s) H(s)		
C(s)	$\left\{\frac{1}{G(s) + H(s)}\right\} = R(s)$		
C(s)	$\frac{[1+G(s)H(s)]}{G(s)} = R(s)$		
Tran	sfer Function:		
$\frac{C(s)}{R(s)}$			
	the unity feed back control system : $S(S) = \frac{10}{S(S+1)(S+5)}$		06
Ske	S(S+1)(S+5) tch the bode plot.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

		T	1
Ans:	<u>Step 1</u> :		
	Convert the given open loop transfer function to time constant form:	1	
		mark	
	10 2		
	G(s)H(s) = $\frac{10}{5s (s+1)(\frac{s}{5}+1)}$ = $\frac{2}{s (s+1)(0.2s+1)}$		
	$5s(s+1)(\frac{-}{5}+1)$ $s(s+1)(0.2s+1)$		
	Step 2:		
	Identify the factors:		
	y	2	
	1. Open loop gain K=2, Magnitude in dB= $20 \log K = 20 \log 2 = 6.02$	marks	
	dB		
	2. Pole at origin $(\frac{1}{s})$ which has a magnitude plot with slope of -20 dB/		
	3		
	decade.		
	For $\omega = 0.1$, M in dB for $(\frac{1}{s}) = -20 \log 0.1 = 20 \text{ dB}$		
	s' 20 $log 0.1$ 20 $log 0.1$		
	3. First order poles $(s+1)$ and $(0.2s+1)$. The corner frequencies of them		
	are:		
	$\omega c_1 = 1, \omega c_2 = \frac{1}{2} = 5;$		
	Z		
	Till the corner frequencies the magnitude plot's slope will be 0 dB		
	/decade and from the corner frequencies it changes to -20dB /decade.		
	Step 3: Phase angle ϕ :		
	and the surger of	1mark	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

Frequ ency =ω	For Factor1 , K=2	For Factor $2,(\frac{1}{s})$ $\phi_{2}=$	For Factor 3, $(\frac{1}{s+1})^{\phi} 3 =$ $-\tan^{-1} \omega$	For Factor $3, \frac{1}{0.2s+1}$ $0.2s+1$ $0.2s+1$ $0.2s+1$ $0.2s+1$ $0.2s+1$	Total phase angle $\phi = \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4}$	
0.1	00	-900	-5.70	-1.10	-96.80	
1	00	-900	-450	-11.30	-146.30	
10	00	-900	-84.20	-63.40	-237.60	2marks
100	00	-900	-89.40	-87.10	-266.50	
1000	00	-900	-89.90	-89.70	-269.60	
Step 4: paper.	Draw the	magnitude	e plot and phase	e angle plot or	n semilog	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

Model Answer

S^5	1	2	3
S^4	1	2	5
S ⁵ S ⁴ S ³	3	-2	0
	$2 \varepsilon + 2$		
S^2	ε	5	0
5	_	3	U
	$\frac{\left(-2(2\varepsilon+2)\right)/\varepsilon-5\varepsilon}{2\varepsilon+2}$		
		_	
$egin{array}{c} \mathbf{S} \\ \mathbf{S}^0 \end{array}$	ε	0	0
S°	5		

To examine sign change

$2 \varepsilon + 2$	ed
$\lim_{\varepsilon \to 0} \varepsilon = 2 + \lim_{\varepsilon \to 0} 2 / \varepsilon = 2 + \infty = \infty \text{ (sign is positive)}$	Rouths Array:
$\lim_{\varepsilon \to 0} \frac{\frac{(-2(2\varepsilon+2))/\varepsilon - 5\varepsilon}{2\varepsilon+2}}{\frac{2\varepsilon+2}{\varepsilon}} = \lim_{\varepsilon \to 0} \frac{\frac{-4\varepsilon - 4 - 5\varepsilon^2}{2\varepsilon+2}}{2\varepsilon+2} = \frac{0 - 4 - 0}{0 + 2}$	4 marks,

= -2 (sign is negative)

Final Rouths Array:

Routh's stability criteria states that the elements of 1st column of

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified) WINTER - 14 EXAMINATION

	Routh's array should not have any sign change for the system to be stable. The number of sign changes in the 1st column indicates the number of Poles on RHS which makes the system unstable. Here, 2 sign changes in the 1st column indicate 2 RHS poles. Therefore system is unstable. (Note:- Alternative method of Rouths Array by replacing S with $\frac{1}{z}$ in	Conclu sion – 02 marks	
	the original equation also can be considered n .)		
b)	Define servo system. Draw block diagram of it. Compare AC Servo motor with DC servomotor. (any 4 points)		08
	Servo motor with De servomotor. (any 4 points)		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538 <u>Model Answer</u>

Step 3:

Reduce the blocks in series:

2 marks

1 mark

Step 4:

Consider the final loop:

Closed loop:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

$$T.F = \frac{\frac{G_{1}G_{2}(G_{3} + G_{4} + G_{5})}{1 + G_{1}H_{1}}}{1 + \frac{G_{1}G_{2}(G_{3} + G_{4} + G_{5})}{1 + G_{1}H_{1}}} H_{2}$$

$$T.F = \frac{G_{1}G_{2}(G_{3} + G_{4} + G_{5})}{1 + G_{1}H_{1}} H_{2}$$

$$Block \ diagram R(s) \longrightarrow \frac{G_{1}G_{2}(G_{3} + G_{4} + G_{5})}{G_{1}H_{1} + [G_{1}G_{2}(G_{3} + G_{4} + G_{5})H_{2}]} \longrightarrow C(s)$$

$$3. \quad Attempt \ any \ four: \qquad 16$$

$$a) \quad Find \ the \ transfer \ function \ of \ the \ network \ given \ in \ figure: \qquad 04$$

$$e_{i} \longrightarrow R \longrightarrow R(s) \longrightarrow R \longrightarrow R(s) \longrightarrow R(s)$$

$$Ans: \quad Applying \ KVL \ we \ get \ the \ following \ equations: \qquad 1 \ Mark$$

$$R \ i(t) + \frac{1}{c} \int i(t) \ dt = e_{i}(t)$$

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	1		
	$\frac{1}{c} \int \mathbf{i}(t) dt = e_0(t)$		
	Taking Laplace transform, we get	1 Mark	
	$R I(s) + \frac{1}{sC} I(s) = E_i(s)$		
	$\frac{1}{sC}I(s) = E_o(s)$		
	$\frac{1}{2}I(s)$	1Mark	
	Transfer function $T(s) = \frac{Eo(s)}{Ei(s)} = \frac{\frac{1}{sC}I(s)}{RI(s) + \frac{1}{sC}I(s)}$	Tiviaik	
	On simplifying:		
	Transfer function $T(s) = \frac{1}{1 + sCR}$	1 3 4 1	
	1+sCR	1 Mark	
b)	For given transfer function :		04
,	T.F = $\frac{40(S+2)}{S(S+1)(S+4)}$, find:		
	$(3.5+1)(5+4)^{7}$ i.) poles		
	ii.) zeros		
	iii.) characteristic equation		
Ans:	i)Poles are obtained by making denominator of the transfer function =0	1 3 4 1	
	There are three poles at $s = 0$, $s = -1$ and $s = -4$	1 Mark	
	and the transfer of the state o		
	ii) Zeros are obtained by making numerator of the transfer function $= 0$		
	There is one zero at $s = -2$	1Mark	
	iii) Characteristic equation: It is given by $s(s+1)$ $(s+4) = 0$		
	On simplifying we get:	2	
	Characteristic equation = $s^3+5s^2+4s=0$	Marks	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

system is stable or unstable? Ans: Statement: 2	
The necessary and sufficient condition for a system to be stable is "All the terms in the first column of Routh's array must have same sign. There should not be any change in the first column of Routh's array." If there are any sign changes then, a) The system is unstable. b) The number of sign changes is equal to the number of roots lying in the right half of s- plane. Determination of whether system is stable or unstable: To apply Routh's stability criterion, consider the system whose characteristic equation is given by: $F(s) = a_0 s_n + a_1 s_{n-1} + a_2 s_{n-2} +$	Marks

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	$b_1 = \frac{a_1a_2 - a_0a_3}{a_1}; b_2 = \frac{a_1a_4 - a_0a_5}{a_1}; b_3 = \frac{a_1a_6 - a_0a_7}{a_1}$ $c_1 = \frac{b_1a_3 - a_1b_2}{b_1}; c_2 = \frac{b_1a_5 - a_1b_3}{b_1}$ The process is continued till the coefficient for s_0 is obtained which will be a_n . From this array, the stability of the system is predicted.		
d)	Explain synchro as error detector with diagram.		04
Ans:	Electrical zero position S2 Synchro control transformer Cutput voltage Synchro transformer Error detector	2 Marks For diagra m	
	Explanation: Synchro transmitter alongwith synchro control transformer is used as error detector. The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap. The output of the synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but	2 Marks For related explain ation	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors. The output equation is given by: $e_0(t) = V_r \sin \omega t + \cos \varphi$ where: $V_r \sin \omega t$: input voltage to the transmitter rotor and φ is the angular difference between both rotors. When $\varphi=90^\circ$ both rotors are perpendicular to each other and the output voltage is zero. This position is called electrical zero and is used as reference position.		
e)	Draw the neat diagram of electronics PID controller using Op-amp . List two advantages.		04
Ans:	Any 2 advantages:	03 Marks for diagra m 01 Marks For any relevan t advant	
	Advantages of electronic PID controller: 1) It is the most powerful mode of controllers	age	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	2) It eliminates offset		
4.A.	Attempt any four:		16
a)	Draw block diagram of process control system and explablock.	in each	04
Ans:	Block diagram of process control system Control element		
	u u		
	e = r - b Controller Process		
	Summing point c	2 Marks For	
	Explanation:	diagra m	
	The block diagram of process control system consists of the blocks:- 1) Measuring element: It measures or senses the actual valu controlled variable 'c' and converts it into proportional feed variable b.	e of	
	 2) Error detector: It receives two inputs: set point 'r' and covariable 'p'. The output of the error detector is given by e= applied to the controller. 3) Controller: It generates the correct signal which is then applied to the control element. Controller output is denoted by 'p'. 4) Final control element: It accepts the input from the control is then transformed into some proportional action performed process. Output of control element is denoted by 'u'. 5) Process: Output of control element is given to the process. 	pplied to o'. boller which I by the 2 Marks For related explain ation	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	changes the process variable. Output of this block is denoted by 'u'.		
b)	List ant two advantages and two disadvantages of frequency response analysis.		04
Ans:	1) The absolute and relative stabilities of the closed loop systems can be found out from open loop frequency response characteristics by using methods like Nyquist stability criteria. 2) The transfer functions of complicated systems can be found out practically by frequency response method when it is difficult to determine using differential equations. 3) Frequency response tests are simple and can be easily performed using by using equipments available in laboratories. 4) Without the knowledge of transfer function, the frequency response of a stable open loop control system can be obtained experimentally. 5) Due to close relationship between frequency response and step response of a system, idea about step response can be obtained from its frequency response.	2 Marks for any 2 advant ages	
:)	Disadvantages: 1) Obtaining frequency response practically is time consuming. 2) It is applicable to linear systems only. 3) The methods are considered to be old and outdated as compared to methods like digital computer simulation and modelling. 4) It is not recommended for systems with large time constants. Transfer function of second order system is given by	2 marks for any two disadv antages	04
,	$\frac{C(S)}{R(S)} = \frac{10(S+1)}{S^2 + 6S + 25}$ Find Tr, Tp, Ts and % Mp for unit step input.		- -
Ans:	Comparing the given equation with the standard form of second order equation,	(1 Mark for	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	$C(s) = \omega_n^2 = 25$	each	
	$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi \omega_n s + s^2} = \frac{25}{s^2 + 6s + 25}$	parame	
	we get, $\omega_n^2=25$	ter Means for	
	Therefore, $\omega_n = 5rad/sec$	Tr,Tp,	
		Ts,and	
	$2\xi\omega_n$ =6, ξ =0.6	%Mp)	
	$\theta = \tan^{-1}(\frac{\sqrt{1-\xi^2}}{\xi}) = \tan^{-1}(\frac{\sqrt{1-0.6^2}}{0.6}) = 0.9272$ rad		
	$\omega_{\rm d} = \omega_{\rm H} \sqrt{(1-\xi^2)} = 5\sqrt{(1-0.6^2)} = 4 \text{ rad/sec}$		
	$T_{r} = \frac{\pi - \theta}{\omega d} = \frac{\pi - 0.9272}{4} = \underline{0.5535 sec}$		
	$T_p = \frac{\pi}{wd} = \frac{\pi}{4} = \underline{0.785 sec}$		
	$T_{s} = \frac{4}{\xi w_{n}} = \underline{1.33 \text{sec}}$		
	$\%\mathbf{M}_{p} = e^{\frac{-\pi\xi}{\sqrt{1-\xi^{2}}}} *100 = \underline{9.48\%}$		
d)	Explain construction of variable reluctance stepper motor with		04
	diagram.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538 <u>Model Answer</u>

Ans:

02 marks For Diag.

Marks

relevan

For

Explanation:

The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches.

es, tor the of 30

When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor is made to complete one revolution.

(OR)

Multi Stack variable reluctance stepper motor

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538 <u>Model Answer</u>

Explanation:

Synchro transmitter along with synchro control transformer is used as error detector. The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap.

The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but different magnitude will flow through both set of stator coils.

This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors.

The output equation is given by:

$$e_0(t) = V_r \sin \omega t + \cos \phi$$

where $V_r \sin \omega t$ =input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When ϕ =90°both rotors are perpendicular to each other and the output voltage is zero This position is called electrical zero and is used as reference position.

2 Marks For Diagra m

3 Marks For Explai nation

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

b)	A unity feedback system has $G(s) = \frac{10(s+1)}{s^2(s+2)(s=10)}$ find error coefficient Kp,Kv, Ka		06
Ans:	$G(s) = \frac{10(s+1)}{s^2 (s+2)(s+10)}, H(s) = 1$ $K_p = \lim_{s \to 0} G(s) H(s) = \lim_{s \to 0} \frac{10(s+1)}{s^2 (s+2)(s+10)} * 1 = \infty$	2 Marks	
	$K_{v}=\lim_{s\to 0} s G(s) H(s) = \lim_{s\to 0} \frac{s 10(s+1)}{s^{2}(s+2)(s+10)} = \infty$ $K_{v}=\lim_{s\to 0} s G(s) H(s) = \lim_{s\to 0} \frac{s 10(s+1)}{s^{2}(s+2)(s+10)} = \infty$	2 Marks	
	$K_a = \lim_{s \to 0} s^2 G(s) H(s) = \lim_{s \to 0} \frac{s^2 10(s+1)}{s^2 (s+2)(s+10)} * 1$	2 Marks	
	$=\lim_{s\to 0} \frac{10(s+1)}{(s+2)(s+10)} - \frac{10(0+1)}{(0+2)(0+10)} = \frac{10}{20} = 0.5$		
	$Kp = \infty$ $Kv = \infty$ $Ka = 0.5$		
5.	Attempt any four:		16
a)	Explain how AC servomotor is different from two phase induction motor.		04

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Ans:	Two Phase Induction Motor	AC Servomotor	1	04
	In these motor the current flows	In these motors, signal error is	mark	
	through rotor due to principle of	converted in to angular velocity	each	
	induction	to correct the error.	point	
	Two phase induction motor are	A servomotor is a rotary actuator		
	type of AC motor where power	that allows for precise control of		
	is supplied to the rotor by	angular position.		
	means of electromagnetic			
	induction, rather than a			
	Commutator or slip rings.			
	These motor are widely used in	Servomotors are used in		
	high power industrial drives.	applications such as robotics,		
		CNC machinery or automated		
		manufacturing.		
	Speed of the induction motor is	Servomotors are controlled by		
	controlled by the number of	microcontrollers.		
	poles pairs and the frequency of			
	the supply voltage.			
	Torque producing capacity is	Torque speed characteristic is		
	high	linear.		
b)	Illustrate PI control action with	output equation and nature of		04
	output response.			
Ans:		on of the Proportional mode and the	2	
	integral mode.		marks	
	The output equation of this control	lling mode is given by,	for	
			relevan	
	$P=K_p e_p+K_p k_i \int_0^t e_p dt + $	$+ p_i(0)$	t	
	P P P 1 30 P		explan	
	where $p_i(0) = \text{Integral term}$	value at $t = 0$	ation	
			1 mark	
	The main advantage of this compo	site control mode is that the one to	equatio	
	one correspondence of the proport		n	
	integral mode eliminates inherent			
	G			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	Error ((%)		ponse of the PI mode controlling action.	1 mark for output respons e	
c)				$\mathbf{G}(\mathbf{S}) = \frac{\mathbf{K}}{\mathbf{S}(1+0.4\mathbf{S})(1+0.25\mathbf{S})}$ K'. Calculate marginal values of K.		04
Ans:				1 + G(s) H(s) = 0 and H(s) = 1.		
		$1 + \frac{1}{S(1+0.4)}$ $s(1+0.65s + \frac{1}{S(1+0.65s + \frac{1}{$			2 marks for value of 'K'	
	:	$0.1s^3 + 0.65$	$s^2 + s + k$	x = 0		
	S^3	0.1	1	for $s^0, k > 0$		
	S^2	0.65	k	for s^1		
	S^1	0.65-0.1k 0.65	0	0.65 - 0.1k > 0 0.65 > 0.1k 6.5 > 0.5 > 0.5		
	S^0	k			2	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

 ∴ Range of values of K: 0 < k < 6.5 The marginal value of 'K' is a value which makes any row other than s⁰ as row of zeros. ∴ 0.65 - 0.1 K_{mar} = 0 ∴ K_{mar} = 6.5. d) A second order system is given by C(S)/R(S) = 25/S² +6S+25, find: i.) Damping ratio ii.) Natural frequency iii.) Peak time iv.) Settling time 	Marks for margin al value of ' K'	04
Comparing T.F. with Standard Form $\frac{\omega_n^2}{S^2 + 2\zeta \omega_n s + \omega_n^2}$ $\omega_n^2 = 25 \text{ and } 2\zeta \omega_n = 6$ $\bullet \text{ so }, \omega_n = 5 \text{rad/sec and}$ $\bullet \zeta = 0.6$ $\theta = \tan^{-1} \sqrt{1 - \frac{\zeta^2}{\zeta}} = 0.9272 \text{ rad.}$ $\omega_d = \omega_n \sqrt{1 - \zeta^2} = 5 \sqrt{1 - (0.6)^2} = 4 \text{ rad/sec.}$ $\bullet T_p = \frac{\Pi}{\omega d} = \frac{\pi}{4} = 0.785 \text{ sec}$ $\bullet T_s = \frac{4}{\zeta \omega_n} = 1.33 \text{ sec}$	1 Mark for calcula ting value for each point	
e) Define transient response and steady state response.		04

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Ans:	<u>Transient Response</u> : The output variation during the time, it takes to	2	
	achieve its final value is called as transient response.	marks	
		for	
	Steady state Response: It is that part of the time response which	each	
	remains after complete transient response vanishes from the system	definati	
	output.	on with	
	It is also define as response of the system as time approaches infinity	respons	
	from the time at which transient response completely dies out.	e	
	from the time at which transfent response completely dies out.		
	c(t)		
	$c_{t}(t) \longrightarrow c_{t}(t) \longrightarrow c_{ss}(t) \longrightarrow$		
	$c_t(t)$		
	Step		
	e _{ss}		
	$\leftarrow c_{ss}(t) \rightarrow$		
	-557.9		
	Time 0 Time		
	Steady		
	Transient state of Transient		
	time system time		
	(a) c _t (t) is exponential (b) c _t (t) is oscillatory		
f)	Define gain margin and phase margin.		04
Ans:	• Gain Margin: The Margin in gain allowable by which gain can	2 marks	
	be increased till system reaches on the verge of instability.	for gain	
	,	margin	
		6	
	G.M. = -20 Log ₁₀ G(j ω) H(j ω) ω = ω _{pc}		
		2 marks	
	• <u>Phase Margin</u> : The amount of additional phase lag which can be	for	
	introduced in the system till system reaches on the verge of		
	instability is called as phase margin.	phase	
		margin	
L		l .	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	P.M. = $180^{\circ} \pm G(j\omega) H(j\omega) \omega = \omega_{gc}$		
6.	Attempt any four:		16
a)	Draw the transient response of second order system for different values of ζ (zeta)		04
Ans:	$\xi = 1 \qquad \xi = 2 \qquad \xi = 3 \qquad \xi = 4$ $Critically damped$ $\xi \geq 1$	1 mark for each respons e	
	$\xi = 0.4$ Underdamped $\xi = 0.8$ $\xi = 0.8$		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	$C(t)$ C_{SS} $\xi = 0$		
	ξ = 0		
	Un-damped response		
b)	Note: Marks can be given for relevant explanation too		04
b)	What is ON – OFF controller? Explain the neutral zone in ON OFF controller.		U4
Ans:	ON-OFF controller is a two position discontinuous controlling mode.	2 mark	
	The mathematical equation of ON-OFF Controller is shown below:	s for	
	$P = 0 \%, e_p < 0$	relevan	
	$100 \% e_p > 0$	t	
		explan ation of	
	Neutral Zone: In virtually any practical implementation of the two –	ON	
	position controller, there is an overlap as e_p increases through zero or	OFF	
	decreases through zero, In this span, no change in controller output occurs.	control	
	Fig shows p versus e_p for ON-OFF Controller. Until an increasing	ler	
	error changes by Δe_p above zero, the controller output will not change		
	state. In decreasing it must fall Δe_p below zero before the controller		
	changes to the 0% rating.	2 mortes	
		marks for	
		explan	
		ation of	
		neutral	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	p (%) Neutral zone - Δε, 0 + Δε, Error (%)	zone	
c)	Derive the unit step response of first order system. The T.F. of First order system is		04
Ans:	The T.F. of First order system is , $\frac{V_0(s)}{V_i(s)} = \frac{1}{1 + sRC}$ For Unit Step input $V_i(s) = \frac{1}{s}$ So, $V_0(s) = \frac{1}{s(1 + sRC)} = \frac{A'}{s} + \frac{B'}{1 + sRC}$ Where: $A' = 1$ and $B' = -RC$ $V_0(s) = \frac{1}{s} - \frac{RC}{1 + sRC} = \frac{1}{s} - \frac{1}{s} + \frac{1}{RC}$ Taking Laplace inverse, $V_0(t) = 1 - e^{\frac{-t}{RC}} = > Css + ct(t)$ $Css = 1 \text{ and } ct(t) = -e^{\frac{-t}{RC}}$	01 Mark for TF. 01 Mark for Value of A And B	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17538

	The Response is shown in fig. $A = \frac{V_0(t)}{A(1 - e^{-t/RC})}$	01 M for final answer and Respon se	
d)	List any 4 applications of PID controller.		04
Ans:	 Temperature, Level Controller Flow Controller Uses in Satellite Communication Used in Closed loop Control System Note: Marks could be given for any other relevant application	1 mark for each relevan t applica tion.	
e)	Determine the stability of a system having characteristics equation		04

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

	as S	⁴ +4 <i>S</i>	³ + S ² +	-8S+1=0	
Ans:		Charao Apply	03 mark		
	S ⁴		1		for Routh array
	S^3		8		and
	S^2	-1	1	0	
	S ¹	12	0		
	S ⁰	1			01 Mark
				gn changes in first column of the rouths array. table with two roots located in right half s-plane.	for conclus ion