

WINTER-14 EXAMINATIONS

Subject Code: 17455

Model Answer

Page No: ___/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

b)	When using a DC power source, the question of whether to use electrode negative or positive polarity arises. Some electrodes operate on both DC straight and reverse polarity, and others on DC negative or DC positive polarity only. Direct current flows in one direction in an electrical circuit and the direction of current flow and the composition of the electrode coating will have a definite effect on the welding arc and weld bead. Electrode negative (-) produces welds with shallow penetration; however, the electrode melt-off rate is high. The weld bead is rather wide and shallow bead. Electrode positive (+) produces welds with deep penetration and a narrower weld bead. The deepest penetration is usually obtained with the direct current electrode positive (DCEP) polarity which also gives the best surface appearance, bead shape and resistance to porosity.	4M	4M
c)	 AC and DC welders are both shielded metal arc welders but differ in the electricity they use. AC welders use electric voltage directly from an alternating current outlet. DC welders use the same AC voltage but convert it to direct current voltage. 	4M (Any 4 Points)	4M
	 DC welding electrodes must only be used on a DC machine, even though AC electrodes can be used with either machine. 		
	 AC welding can be used to weld magnetized metal, but DC welding is easier to use and can weld thinner metals. 		
	 AC welders pulse the arc every time the alternating current changes polarity, which makes the arc harder to control. DC welders are more expensive. 		
	5. AC welders are cheaper and can weld thicker metals, while DC welders strike an arc easier and make a cleaner weld. An AC welder is fine for most home project jobs, but if welding is a regular chore, you will probably need AC and DC at some point.		
	 AC continuously changes polarity, since directional of flow is reversed 120 times per second for common 60 cycle electricity.With DC straight polarity (DCSP), the electrode is negative and the current flows in the opposite directionelectrode to work. 		

	7. AC Current ideal for		
	Downhand Heavy plate, Aluminum TIG Welding with Hi frequency , Carbon arc torch		
	DC Straight Polarity ideal for:		
	Hard facing, Single Carbon Brazing, Build-up Heavy Deposits, Stainless Steel TIG Welding.		
d)	The weldability, also known as join ability, of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others. A material's weld ability is used to determine the welding process and to compare the final weld quality to other materials. Applying an optimum magnetic field to a welding arc on both nonmagnetic and magnetic materials increases welding speed several times at which undercut-free and no porosity welds can be made. It is known the extent of arc deflection is dependent upon the flux density of the applied magnetic field, the arc current, arc length, and so on. To apply magnetic arc oscillation to welding automation such as weld quality control and joint tracking, therefore, quantitative information has to be obtained about the effect of welding conditions on arc deflection.	4M	4M
e)	FOLLOWING ARE THE DEFECTS:- 1.CRACKS 2.INCOMLETE PENETRATION 3.DISTORION INCLUSIONS 4.POOR FUSION 5.POROSITY 6.POOR WELD BEAD APPEARANCE 7.UNDERCUTTING 8.SPATTER 9.OVERLAPPING 10.BLOW HOLES	4 M (Any2 defects with its cause)	4M
	Inclusions There are two types of inclusions: linear inclusions and rounded inclusions. Inclusions can be either isolated or cumulative. Linear inclusions occur when there is slag or flux in the weld. It can also occur if the previous weld left an undercut or an uneven surface profile. Undercut Undercutting is when the weld reduces the cross-sectional thickness of the base metal, which reduces the strength of the		

	 weld and work pieces. One reason for this type of defect is excessive current, causing the edges of the joint to melt and drain into the weld; this leaves a drain-like impression along the length of the weld. Another reason is if a poor technique is used that does not deposit enough filler metal along the edges of the weld. A third reason is using an incorrect filler metal, because it will create greater temperature gradients between the center of the weld and the edges. Other causes include too small of an electrode angle, a dampened electrode, excessive arc length, and slow speed. Cracks 		
	Cracks are the most dangerous amongst all types of defects as it reduce the performance of a welded joint drastically and can also cause catastrophic failure. Depending on the position, location and orientation these can be categorised as longitudinal cracks, transverse cracks, crater cracks, under- bead cracks, and toe cracks.		
f)	 bead cracks, and toe cracks. Brazing is a metal-joining process whereby a filler metal is heated above melting point and distributed between two or more close-fitting parts by capillary action. The filler metal is brought slightly above its melting (liquidus) temperature while protected by a suitable atmosphere, usually a flux. Advantages:- Since brazing does not melt the base metal of the joint, it allows much tighter control over tolerances and produces a clean joint without the need for secondary finishing. Additionally, dissimilar metals and non-metals (i.e. metalized ceramics) can be brazed In general, brazing also produces less thermal distortion than welding due to the uniform heating of a brazed piece. Complex and multi-part assemblies can be brazed cost-effectively. Limitations:- 1)Size limitation of the parts to be brazed is of major importance.since area to be brazed must be heated, large cast sections or large heavy plates cannot be easily brought up to temperature. 2. Brazing requires tightly mating parts to ensure capillary flow of the filler metal. This involves expensive machining to attain the desired fit. 3. Flux residues if not properly removed can cause corrosion. 	2 M 1m (Any 1) 1m (Any 1)	4M
	elevated temperatures. 5. A certain degree of skill is required to perform the brazing		

	operations; personnel limitations may rule out the process		
g)	 Following are the Heat Treatment processes:- 1.Peening 2.Vibratory stress-relief 3. Thermal treatment 4. Thermo-mechanical treatment 5. Overstressing techique 	2М	4M
	Peening:- Peening is the process of working a metal's surface to improve its material properties, usually by mechanical means such as hammer blows, by blasting with shot (shot peening), or blasts of light beams with laser peening. Peening is normally a cold work process (laser peening being a notable exception It tends to expand the surface of the cold metal, thereby inducing compressive stresses or relieving tensile stresses already present. Peening can also encourage strain hardening of the surface metal	2М	
2.	ATTEMPT ANY FOUR		16
a)	Gas Welding:- Gas welding is a welding process in which an electric arc forms between a consumable wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to melt, and join.	2M 2M (ANY 2)	4M

	 the size, viscosity and surface tension of the weld puddle can be controlled, permitting the pressure of the flame to be used to aid in positioning and shaping the weld. 3. The rate of heating and cooling is relatively slow. In some cases, this is an advantage. 4. Since the sources of heat and of filler metal are separate, the welder has control over filler-metal deposition rates. Heat can be applied prefer- entially to the base metal or the filler metal. 5. The equipment is versatile, low cost, self-sufficient and usually portable. Besides gas welding, the equipment can be used for preheating, post heating, braze welding, torch brazing and it is readily converted to oxygen cutting. 6. The cost and maintenance of the welding equipment is low when compared to that of some other welding processes. 		
b)	Following are the equipment used in gas welding:-	4 M	4M
	1) Oxygen gas cylinder	(ANY 8)	
	2) Acetylene gas cylinder		
	3) Oxygen gas hose		
	4) Acetylene gas hose		
	5) Welding torch		
	6) Trolley		
	7) Filler rod		
	8) Flux		
	9) Protecting cloths		
c)	Electric Arc Welding:- Arc welding is a type of welding that uses a welding power supply to create an electric arc between an electrode and the base material to melt the metals at the welding point. They can use either direct (DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region is usually protected by some type of shielding gas, vapor or slag	2M	4M
	Arc Length:- An electric arc length, or arc discharge, is an electrical breakdown of a gas that produces an ongoing plasma discharge, resulting from a current through normally	1 M	

		nonconduc characteriz relies on the	ctive me red by a hermioni	edia suo a lower v ic emissi	ch as ai oltage the on of elec	ir. An arc an a glow ctrons from	c discharge is discharge, and the electrodes		
			re Blow					1M	
		1 ypes of A	l Arc blov	\ A /					
		2) Backwa	rd Arc bl						
		2) Dackwa 3) Sidowar	1 Δrc Blc						
-	d)	Weldak	nility is th	ne canac	ity of a m	aterial to h	e welded under	2M	4M
	ч)	the fabrica	ation co	nditions	imnosed	into a s	necific suitably	2.00	
		designed s	structure	and to n	erform sa	atisfactorily	in the intended		
		service				anonaotorny			
		501 VIOC.							
		Factors eff	ecting a	re.					
		•Compositi	on of the	e metal					
		•Brittleness	s and str	enath of	metal at e	elevated ter	mperature	2111	
		•Thermal p	roperties	s of meta					
		•Welding te	echnique	es,fluxing	material	and filler m	aterial		
		•Proper he	at treatr	nent bef	ore and a	after the de	eposition of the		
		metal.					•		
	e)	(1) Americ	an (AWS	S-ASTM)	System			4M	4M
		EXX XX	or E 60	12					
		EXXX XX	or E 1	00 1 5					
		Letter E si	ignifies t	hat elect	rode is su	itable for m	netal (electric)		
		arc weldin	g.						
		XX/XXX (6	50/100)						
		First two c	or three of	digits indi	cate mini	mum tensil	e strength		
		of weld me	etal in th	ousands	of pound	s per sq. ir	ich, e.g.		
		60,000 an	d 100,00	JU Ibs/sq	. Inch . Ut	her values	of XX and		
			5, 70, 8	0, 90 and	1120.				
		X(1)	م مانمند ن	adiaataa	المميد ما		lt aan ha		
			ie algit li od by pu	nuicales		ig position.	. It can be		
		wolding	eu by nu	rriod out	in any no	a 5 which i sition flat (nulcate that		
			and flat	nosition	in any pu	Sillon, nat a	anu nonzoniai		
		X(2)(5)	anu nat	position	lespective	5iy.			
		Last digit	which m	av he 0	1235	or 6 tells al	hout nower		
		supply typ	ne of cov	verina tv	ne of arc	penetratio	n		
		characteri	stics, etc	conng, ty	po or aro,	ponotiatio			
		produces	medium	penetrat	ion, heav	v slag, a co	onvex weld		
		bead appe	earance	and a me	edium qua	ality weld d	eposition.		
					OR				
		(2)British	(BS) Sy	stem:					
ļ		Ĺ	ÌΧ΄ Ϊ	Х	Х	L			
		First	1 st	2 nd	3 rd	Last			
		Letter	Digit	Digit	Digit	Letter			

Examples: E 317 M	
E 145P Various latters and digits indicate the following	
1 at Latter. It can be E. P. or D. E indicates that it is a solid	
oversided electrode. P means reinforced electrode and D	
indicates 'Dipped electrode' is an electrode manufactured by	
dipping process	
appling process.	
1 2 3 4 5 6 or 9	
1, 2, 3, 4, 3, 0 01 9 1 moans high colluloso contont	
2 means high titania content resulting in fairly viscous slag	
2 means appreciable titania content resulting in fainy viscous slag.	
4 means high iron and/or Mn oxides and/or silicates content	
resulting in inflated slag	
5 means high iron oxides and/or silicates content resulting in	
a heavy solid slag	
6 means high calcium carbonate and fluoride content.	
9.any other type of covering not mentioned above.	
2 nd Digit It indicates the position in which electrode can weld	
satisfactorily.	
Second digit can be represented by 1, 2, 3, 4, 5, 6	
or 9.	
1. indicates welding positions like flat, horizontal, inclined,	
vertical, overhead (i.e. electrode il.suitable for welding in all	
positions).	
2. flat; horizontal.	
3. flat only	
5 flat, horizontal, vertical, overhead.	
6. vertical, overhead.	
9. Not classified above.	
sid Digit - it gives an idea of current, polarity and open circuit	
Voltage of the weiging power source. Any number like 0, 1, 2, $2, 4, 5, 6, 7$ or 0 con bo the third digit °	
3, 4, 5, 0, 7 of 9 can be the third digit.	
1 D + A95 i = DCRP or AC with OC voltage over 95 volts	
2 D- A70 i e DCSP or AC with OCV over 70 V	
3 D- A45 i.e. DCSP or AC with OCV over 45 V	
4 D +, A70, i.e. DCRP or AC with OCV over 70 V.	
5 D±, A95, i.e. DCSP, DCRP, AC with OCV over 95V.	
6 D±, A70, i.e.DCSP, DCRP, AC with OCV over 70V.	
7 D±, A45, i.e. DCSP, DCRP, AC with OCV over 45V	
9 Not classified above.	
Last letter-	
P indicates deep penetration electrode, and	
M means a molybdenum bearing electrode.	
Example: E 145 P means	

(a) It is a solid extruded electrode,	
(b) It has a high cellulose content,	
(c) It 'can weld in flat, horizontal and inclined positions,	
(d) It can be operated on DCRP, DCSP or AC with a power	
source having OCV above 95 volts, and	
(e) It is a deep penetration electrode	
OR	
(3)Indian (IS) System:	
1st 1st 2nd 3^{rd} 4th 5^{th} 6^{th} Last letter	
Letter DIGITS	
Example: E307411	
Various digits and letters indicate the following:	
1st Letter - It can be E or R. E indicates that electrode is solid	
extruded and P means an electrode extruded with	
reinforcement	
$1 \text{ st Digit}_{-} It indicates the Class of covering. It can be 1, 2, 2, 4$	
5. 6 or 0 and has the meaning same as that of the first digit of	
p, o or a and has the meaning same as that or the first digit of Pritich cyctom, discussed earlier	
Difficit system, discussed editier.	
210 Digit - It indicates the positions in which electrode can weld	
satisfactorily. Second digit may be 0, 1,2,3,4, of 9. 0 and 1	
signify that the electrode can be used for weiding in all	
positions, and in flat, norizontal, overnead and vertical positions	
respectively.4 indicates flat and norizontal fillet positions. 2, 3	
and 9 have the same meaning as in British standard.	
Brd Digit - It has the same meaning as that of the third digit of	
British standard, except that the open circuit voltage is 90 in	
place of 95 volts, and 50 instead of 45.	
4th and - They indicate range of tensile strength and value of	
minimum	
5th Digit yield stress., e.g. 41 (fourth and fifth digits) and 51	
mean that tensile strength ranges from 410-510 and 510-610	
N/mm ² andminimum yield stress is 330 and 360 N/mm ²	
respectively.	
6th Digit - It tells percentage elongation and impact value.	
Last Letter- P indicates a deep penetration electrode, H	
hydrogen control led electrode, and J, K, L indicate electrodes	
with iron powder coating and metal recovery 110-130%, 130-	
150% and above 150%, respectively.	
Example: E 307411 means	
(a) It is a solid extruded electrode.	
(b) Its covering contains appreciable amount of titania; a fluid	
slag.	
(c) It is all position electrode,	
(d) It can be operated on DCRP, DCSP or AC with a power	
sourcehaving, open circuit voltage 50 volts,	

 (e) Weld metal tensile strength ranges between 410 and 510 N/rnm² and minimum yield stress is 330 Nzmm", (10 N/mm2 = 1.02 kgf/mrn²). (f) Minimum percentage elongation of weld metal (in tension) is 20% of 5.65 v'SO and impact value of weld metal at 27°C is 4.8 kgf m (or 47 J). Where Sois the cross-section area of the specimen being tested 		
 f) 1. CRACK: Minimize shrinkage stresses using backstep or block welding sequence Change welding current and travel speed Weld with covered electrode negative; butter the joint faces prior to welding. Change to new electrode; bake electrodes to remove moisture Reduce root opening; build up the edges with weld metal Increase electrode size; raise welding current, reduce travel speed Use filler metal low in sulfur Change to balanced welding on both sides of joint Fill crater before extinguishing the arc; use a welding current decay device when terminating the weld bead. 2 DISTORTION Reducing the metal weld volume to avoid overfill and consider the use of intermittent welding Minimising the number of weld runs Positioning and balancing the welds correctly round the axis Using backstep or skip welding techniques, which involves laying short welds in the opposite direction Making allowance for shrinkage by pre-setting the parts to be welded out of position Planning the welding sequence to ensure that shrinkages are counteracted progressively Shortening the welding time 3 INCOMPLETE PENETRATION/ FUSION: Remedies of incomplete fusion Follow correct welding procedure specification Maintain proper electrode position Reposition work, lower current, or increase weld travel speed Clean weld surface prior to welding 4 INCLUSIONS 	4M (ANY 4)	4M

	This defect can only be repaired by grinding down or gouging out and re-welding.		
	5 POROSITY AND BLOW HOLES OR GAS POCKETS Use low-hydrogen welding process; filler metals high in deoxidizers; increase shielding gas flow Use preheat or increase heat input Clean joint faces and adjacent surfaces Use specially cleaned and packaged filler wire, and store it in clean area Change welding conditions and techniques Use copper-silicon filler metal; reduce heat input Use E6010 electrodes and manipulate the arc heat to volatilize the zinc ahead of the molten weld pool Use recommended procedures for baking and storing electrodes Preheat the base metal Use electrodes with basic slagging reactions		
	6 SPATTER Spatter can be minimized by correcting the welding conditions and should be eliminated by grinding when present.		
	7 UNDER-CUITING Undercutting can be avoided with careful attention to detail during preparation of the weld and by improving the welding process. It can be repaired in most cases by welding up the resultant groove with a smaller electrode		
3.	ATTEMPT ANY FOUR		16
a)	 METAL-ARC WELDING OF GRAY CAST IRON Procedure A Vee joint with included angle of 60° to 90° may be formed (on the workpieccs to be joined) by chipping or machining. Notching or studding may be adopted to increase the strength of the weld joint The joint is carefully cleaned of all dust, dirt, oil, grease and paint Electrodes of cast iron, mild steel, austenitic stainless steel, nickel alloys etc., may be employed for welding gray cast iron. The arc is struck by touching the electrode with the job. As the molten pool forms, the welding is carried out in the normal way. In order to minimize the stresses set up in the workpiece, the welds may be laid in short runs (skip welding) and then 	4M	4M
	the welds may be laid in short runs (skip welding) and then each allowed to cool. Peening the weld while hot also relieves		

	stresses. Skip welding technique is very successful in arc welding of cast iron. A short length of weld metal is deposited in one part of the seam (Fig.), then the next length is done some distance away, keeping the sections as far away from each other as possible thus localizing the heat. Before welding, preheating (600-700C) may be carried out and after the welding is over, the job may be covered with an insulating material to produce good quality welded joints. In some situations post-heat-treatment is carried out immediately after welding. In that case there is no need to cover the weld etc., with an insulating material. An AC or DC power source may be employed for welding. The current required to weld with 6 and 10 mm cast iron electrodes is approximately 300 and 400 Amps respectively.		
b)	 ELECTRODE COATING Ingredients' AND THEIR FUNCTIONS The covering/coating on the core wire consists of many materials which perform a number of [unctio" ns as listed below: Slag forming ingredients, like silicates of sodium", potassium,magnesium, aluminium, iron oxide, china clay, mica etc., produce a slagwhich because of its light weight forms a layer on the molten metal and protects the same from atmospheric contamination: Gassheilding ingredients,like cellulose,wood,wood flour,starch,calcium carbonate etc., form a protective gas shield around the electrode end, arc and weld pool. Deoxidizing elements like ferro-rnanganese, and ferrosilicon, refine the molten metal. Arc stabilizing constituents like calcium carbonate, potassium silicate, titanates, magnesium silicates, etc. add to arc stability and ease of striking the same. Alloying elemetts .like ferro alloys of manganese, molybdenum etc. may be added to impart suitable properties and strength to the weld metal and to make good the loss of some of the elements, which vaporize while welding. Iron powder in the coating improves arc behaviour, bead appearance; helps increase metal deposition rate and arc travel speed. Inaddition, the electrode covering may perform the fallowing functions: The covering improves penetration and surface finish. Core wire melts faster than the covering, thus forming a 	4M (ANY 4)	4M

	sleeve of the coating which constricts and produces an arc with high concentrated heat.		
	9. It limits spatter, produces a quiet arc and easily removable slag.		
	10. With proper constituents, the slag may have quick freezing		
	11. Coating saves the welder from the radiations otherwise		
	emitted from a bare electrode while the current flows through it during welding.		
	12. Suitable coating will improve metal deposition rates.		
	13. Proper coating ingredients produce weld metals resistant to hot and cold cracking.		
c)	Effect of welding on properties of metal	4M	4M
	- Welding involves many metallurgical phenomena. Welding		
	ope-		
	- In all welding processes, except cold welding, heating and		
	cooling		
	'are essential and integral parts of the process. High degrees		
	of		
	superheat in the weld metal may be obtained in many		
	tusion weiding processes.		
	1 The grain growth region		
	2. The grain refined region.		
	3. The transition region		
	The grain growth region.		
	- Grain growth region is immediately adjacent to the weld		
	metal zone (fusion boundary).		
	well above the upper critical (A3) temperature. This resulted		
	in grain growth or coarsening of the structure.		
	(b) The grain refined region		
	- Adjacent to the grain growth region is the grain refined zone.		
	- The refined zone indicates that in this region, the parent		
	where grain refinement is completed and the finest grain		
	structure exists.		
	(c) The Transition zone		
	In the transition zone. a temperature range exists between		
	the lower critical temperature and upper critical temperature		
	recrystallization takes place		
	(c) Unaffected Parent Metal		
	- Outside the heat affected zone is the parent metal that was		
	not heated sufficiently to change its microstructure.		

		OR			
	Effects Carbon to increas shows c Mangan yield poi mum li content cracks.	of various elements on wel During solidification gr ase in, hardness and re racks and brittleness. dutili ese The presence of nt and ultimate tensile stre mit. Excessive mangane increases hardness, hard	ding rods is listed below. rain growth occurs, resulting sidual stresses. The metal ty is poor. 1.1% manganese raises the ngth of the weld to the maxi- ese along with the carbon denability and tendency to		
	Silicon as impur Sulphur iron sulp adhesive Phospho decrease phospho increase	Silicon is a strong deoxid rity in steels. Sulphur readily cor ohide (FeS). It has low eness between adjacent orus Phosphorus for es the plasticity of the n orus content from 0.5	liser but excess amount acts mbines with iron'and forms melting point and reduces grains of the metal. ms iron phosphides steel. It netal. In cast iron welding to 1.0% is desirable. It netal and helps the filling		
	grooves Nickel increase ductility Chromiu hardnes quantitie Vanadiu strength	properly. The properties of nickel s strength, hardness, h of steel. Chromium forms com s without decreasing the s up to 1.5 m It's a strong oxidize ens the weldability and inc	are similar to maganese.It ardenability toughness and plex carbides increases the toughness when added in er When used as an alloy it reases hardenability		
	I ungste carbides quantitie Molybde tungster	n I ungsten reacts wi s. It affects the properties s by increasing harnessan num The properties of and act a cheaper substit	th iron and forms complex s of steel even in small d strength. molybdenum are similar to ute of tungsten.		
d)	SR.NO.	BRAZING	SOLDERING	4M (ANX 4)	4M
	1	These are stronger than soldering but weaker than welding. These can be used to bear the load up to some extent	These are weakest joint out of three. Not meant to bear the load. Use to make electrical contacts generally	(ANT 4)	
	2	It may go to 600C in brazing	Temperature requirement is upto 450C		

	3	Work pieces are heated but below their melting point	No need to heat the work pieces		
	4	May change in mechanical properties of joint but it is almost negligible.	No change in mechanical properties after joining		
	5	Cost involved and skill required are in between others two	Cost involved and skill requirements are very low.		
	6	No heat treatment is required after brazing.	No heat treatment is required		
	7	Preheating is desirable to make strong joint as brazing is carried out at relatively low temperature	Preheating of workpieces before soldering is good for making good quality joint.		
	8	Cost involved and sill required are in between others two	Cost involved and skill requirements are very low.		
	9	No heat treatment is required after brazing.	No heat treatment is required		
e)	OXY AC	ETYLENE WELDING		2M	4M
	ACET SOLIDIFIED WELD META	YLENE FEATHER MOLTEN WELD METAL	INNER CONE		
	- When	acetylene is mixed with o elding torch and ignited, the	xygen in correct proportions e flame resulting at the tip of		

	 the torch is sufficiently hot to melt and join the parent metal. The oxy-acetylene flame reaches a temperature of about 3200°C and thus can melt all commercial metals which, during welding, actually flow together to form a complete bond. A ruler metal rod is generally added to the molten metal pool to build up the seam slightly for greater strength Oxy-acetylene welding does not require the components to be forced together under pressure until the weld forms and solidifies ADVANTAGES :- It is probably the most versatile process. It can be applied to a wide variety of manufacturing and maintenance situations. Welder has considerable control over the temperature of the metal in the weld zone. When the rate of heat input from the flame is properly coordinated with the speed of welding, the size, viscosity and surface tension of the metal puddle can be controlled, permitting the pressure of the flame to be used to aid in positioning and shaping the weld. 	1M	
	 4. Since the sources of heat and of filler metal are separate, the welder has control over filler-metal deposition rates. Heat can be applied prefer- entially to the base metal or the filler metal Applications:- O in stone working for "flaming" where the stone is heated and a top layer crackles and breaks. A steel circular brush is 		
	attached to an angle grinder and used to remove the first layer leaving behind a bumpy surface similar to hammered bronze. O in the glass industry for "fire polishing". O in jewelry production for "water welding" using a water torch (an oxyhydrogen torch whose gas supply is generated immediately by electrolysis of water). O in automotive repair, removing a seized bolt	1M	
f)	 Arc welding provides a high quality welds metal at lower cost with less effort on the part of the welder. Excellent weld appearance, smooth and uniform welds, less liable to porosity. It can weld a variety of steels over a wide variety of range. Also it can provide high deposition rates with high current density. Relatively high travels speeds and considerably reduced spatter. 	4 M	4M
4.	ATTEMPT ANY FOUR		16
a)	Advantages:-		

1.	The welded structures are usually lighter than riveted structures. This is due to the reason, that in welding, gussets or other connecting components are not used	2M (ANY 2)	41
2.	The welded joints provide maximum efficiency which is not possible in case of riveted joints.		
3.	Alterations and additions can be easily made in the existing structures.		
4.	As the welded structure is smooth in appearance, therefore it looks pleasing.		
5.	In welded connections, the tension members are not weakened as in the case of riveted joints.		
6.	A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.		
7.	Sometimes, the members are of such a shape that they afford difficulty for riveting. But they can be easily welded.		
8.	The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames.		
9.	It is possible to weld any part of a structure at any point. But riveting requires enough clearance.		
	Disadvantages:-		
1.	Since there is an uneven heating and cooling during fabrication, therefore the members may get distorted or additional stresses may develop.	2M (ANY 2)	
2. 3.	It requires a highly skilled labour and supervision. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it.		
4.	The inspection of welding work is more difficult than riveting work.		

	- In all metallic systems, solidification is accompanied by the		
	evolution of heat. In a pure metal the rate of growth is		
	determined solely by the rate of heat extraction from the solid-		
	liquid inter- face. This situation, however, is of purely		
	academic interest in welding.		
e)	CARBON	2M	4M
	ELECTRODE	(diagm.)	
	ARC CORE		
	ARC STREAM		
	ARC FLAME		
	FILLER ROD		
	Summing Strangenter		
	An CAPPON are brozing process wherein collescence is produced	2M	
	All CARDON alc-ofazing process wherein coalescence is produced	(explan.	
	Current is switched on and by operating the machanism of are length	with 1 adv.	
	diustment the the electrode are brought electro	& 1 limitn)	
	The two electrodes touch momentarily, then senarate and thus on are	~ • • • • • • • • • • • • • • • • • • •	
	The two electrodes touch momentarily, then separate and thus an arc		
f)		4 M	4M
'	FURCES AFFECTING METAL TRANSFER	4W ($\Delta NY A$)	-11/1
	holow:	(/ 111 - 1)	
	(1) surface of the drep. It is a retarding force which tries to		
	koon the dronin its position. The force of surface tension acting		
	on the drop when it is just to detach is given by ndo K where d		
	is the electrode 'diameter, a is surface tension and K is a		
	function dependent upon electrode diameter		
	and capillarity constant of electivode diameterial Normally the		
	value of K varies from 0.6 to 1.0. The force of surface tension		
	ranges between 400 to 800 dynes for electrodes from 1.5 to 3		
	mm diameter. At higher temperatures the surface tension is		
	lowered		
	(2) Viscosity of The Liquid Metal. It is also a retaining force		
	(3) The High Velocity Gas, lets striking the job and getting back		
	may retard the movement of the metal drop tending to fall		
	down in the molten pool		
	(4) Gravity acts as a detaching force when welding in a flat		
	position, and is a retarding force when welding overhead. The		
	force of gravity, equal to Vpg where V is the volume of the		
	alobule, p is density of alobule material and a is the		
	acceleration due to gravity. Gravitational force almost		
	negligible on small diameter droplets		
	(5) I orentz force. I orentz force is the result of interaction of the		
	arc current with its self-induced magnetic field. Lorentz force is		
	an electromagnetic force which exercises pinch effect on the		
	an electronagnetic force which exercises pinon electron the	l	

	 globule, aids in neck formation and drop detachment.the self-induced magnetic field of the plasma results in plasma streaming which carries the detached drop to th.5-3 mm diameter. Surface tension and viscosity of the liquid metal help droplet to grow in size, whereas electromagnetic forces constrict (i.e., neck) the molten end of the electrode to such an extent that the material at the thin neck gets easily atomized and the drop separates from the electrode. Besides other forces, the drop transfer rate also depends upon, arc current, arc length, type of polarity, electrode material and electrode extension (i.e., distance between the electrode tip and the point at which current is fed to it). The drop transfer rate increases, with DCRP, with the increase inarc current and electrode extension and with the decrease in arc length. 		
5	ATTEMPT ANY FOUR		16
	 1) Leftward Technique 2) Rightward Technique Leftward Welding 	(1 mark for diagm. (1 mark for explan)
	In this method of welding, the blowpipe should be grasped firmly, ensuring that the wrist is free to move. The weld is commenced on the right-hand side of the seam; working towards the left-hand side, as shown in illustration (a) below. The blowpipe is moved forward with the flame pointing in the direction of the welding, with the filler rod being held in front of the flame. The angles of inclination of the blowpipe and Eller rod are shown clearly in illustration (b). The blowpipe is given small sideways movements, while the filler red is moved		

b)	Advantages:- 1.Lower equipment cost than GTAW, FCAW and GMAW. (No bottle, gas hose, flowmeter, and tig rig/Wire feeder needed. 2.Quick Change from one material to another. 3.The process lends itself to welding in confined spaces and various positions with few problems. 4.Deposition Rates faster than GTAW Manual 5.Easy to move from one location to another. No Wire Feeder and Bottle. 6.Some special electrodes are made for cutting/gouging 7.Requires no outside shielding gas and can be used outdoors in light to medium wind. Limitations:- 1.Low deposition rate compared to GMAW/FCAW. 2.Filler metal cost per weld can be greater due to a low deposition efficiency that can vary greatly with stub length. 3.Production factor is typically lower (Unless welding on various materials) due to rod changes and chipping slag. 4.Needs more hand eye coordination than GMAW/FCAW. 5.Slag must be removed as compared to GTAW/GMAW Applications:- Because of its versatility and simplicity, it is particularly dominant in the maintenance and repair industry, and is heavily used in the construction of steel structures and in industrial fabrication	2M (ANY 2) 1M (ANY 1) 1M (ANY 1)	4M
c)	Arc Stability:-	2M	4M
	Arc is said to be stable if it is uniform and steady.		
	A stable arc will produce good weld bead and a defect free weld nugget.		
	Defects commonly introduced by unstable arcslag entrappment, porosity, blow holes and lack of poor fusion.		
	Stable arc can be maintained by following factors:	2M (ANY 2)	
	 Suitable matching of arc and power source characteristics. 		
	 Continious and proper emmisiion of electrons from the electrode and thermal ionisation in the arc column. 		

		1	1
	 Position and movements of cathode and anode spots. 		
	Arc length and arc current		
	Electrode tip geometry in TIG welding.		
	 Steadiness of current as regards its magnitude and wave shape. 		
	Presence of dampness, oil, grease, etc.on the surface of the workpiece		
d	Various processes used for welding stainless steels are Oxy-acetylene welding Shielded metal arc welding Inert gas metal arc welding Gas tungsten arc welding Plasma arc welding Plasma arc welding Resistance welding Brazing. Oxy-acetylene Welding - Since gas welding generally heats rather slowly and does not confine the heat to a narrow zone, it is not particularly suitable for welding austenitic stainless steels. oxy-acetylene welding can be employed to some extent to weld materials less than about 3 mm thick. - Nozzle tip one or two sizes smaller than that used for ordinary steel with neutral just slightly reducing flame is employed for welding austenitic stainless steels. Since austenitic stainless steel has 50% higher coefficient of expansion and lower thermal conductivity than carbon steel one important factor is the control of expansion and contraction by the use of suitable jigs, fixtures, and chill plates as well as the use of tack welding. Properly designed joints help this control and avoid warping. - Filler rods for welding may either (i) be obtained by cutting strips from the base metal, or (ii) they may be of columbium 18-8 type. The filler rod should contain 1 to 1.5% more chromium (than the parent metal] to compensate any oxidation losses that occur during welding. OR	2M (ANY 1)	4M
	- Shielded metal arc welding is probably the most widely		

	used process for stainless steels. Its principal advantage is		
	flexibility. The disadvantages, however, are		
	(i) The slag blanket constitutes a potential source of		
	inclusions.		
	(ii) Visibility during welding is impaired by slag.		
	- If the molten pool is not adequately protected from		
	atmospheric oxidation, certain essential alloving elements		
	(such as chromium) may be oxidized and pass into the slag		
	thereby rendering weld metal deficient in corrosion-resisting		
	properties electrodes generally contain a higher percentage		
	of chromium as compared to base motal		
	The flux should not contain carbonaceup meteriale		
	-The flux should not contain carbonaceous materials		
	(because they will add carbon in weld metal). Moreover, the		
	flux must have adequate fluidity and dissolving power to fuse		
	undesirable oxides from the molten metal.		
	Surface preparation		
	- Edges to be welded need no preparation unless they are		
	more than 3.2 mm thick.		
	Sheets 4.8 mm thick need only a single bead to be deposited		
	from one side and should be given a Vee angle of 45° to 60°		
	leaving about 1.6 to 2.4 mm (root face) unbevelled at the		
	bottom, and a root gap as wide as the sheet is thick.		
	Sheets over 4.8 mm thick need two beads or more, and about		
	2.4 mm distance as the root face (or, for double Vees, in the		
	centre).		
	- Depending upon plate thickness, square butt, single V (with		
	or without root face), single U, and double V joints with or		
	without copper chill bar (placed at the bottom of the plates to		
	be welded) may be employed for welding purposes		
	- For welding thinner sheets tack welds may be employed the		
	tacks being 50-150 mm apart, according to the thickness of the		
	shoot: closer specing being used with thinper pieces. The		
	tack wolds should popetrate, right through and he flat on the		
	auface as that it is possible to deposit weld matel upon		
	them without coucing irregularity of the wold		
	them without causing irregularity of the weld.	484	414
e)	Preneating involves neating the base metal, either in its entirety or	4111	4 1VI
	just the region surrounding the joint, to a specific desired		
	temperature, caned the preneat temperature, prior to weiging. Heating		
	may be continued during the welding process, but frequently the heat		
	trom welding is sufficient to maintain the desired temperature		
	without a continuation of the external heat source.		
	The interpass temperature, defined as the base metal temperature		
	between the first and last welding passes, cannot fall below the		
	preheat temperature.		
	Interpass temperature will not be discussed further here. Preheating		
	can produce many beneficial effects; however, without a working		

	knowledge of the fundamentals involved, one risks wasting, or even		
	worse, degrading the integrity of the weldment.		
f)	 BRAZING PROCEDURE The brazing procedure includes the following steps: Cleaning and preparing the surface to be brazed. Fluxing both the base metal and filler metal surfaces. Aligning the base metal parts to be joined. Heating the joint. Applying brazing filler metal onto the joint. Cooling of the brazed joint. Removing flux residue from the completed joint The Properties of filler metals. (a) Ability to wet the base metals on which it is used in order to make a strong, sound bond. (b) Proper melting temperature and flow properties that permit distribution in properly prepared joints by capillary action, (c) A composition of sufficient homogeneity and stability to minimize separation by liquation under the brazing conditions to be encountered and free of excessivelyvolatile constituents. (d) Desirable mechanical and physical properties in the joint, such as strength and ductility. 	2M 2M	4M
6)	ATTEMPT ANY FOUR		16
-			10
a)		4M (ANY 4)	4M
a)	A = B = C = D $B = C = D$ $A = D$ $A = B = C$ $C = D$ $A = D$	4M (ANY 4)	4M
a)	$ \begin{array}{c} 1 \\ \hline \\ A \\ \hline \\ B \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	4M (ANY 4)	4M
a)	A Butt weld. B, Single vee. C, Double vee (heavy plates.)	4M (ANY 4)	4M
a)	A, Butt weld. B, Single vee. C, Double vee (heavy plates.) D, U-shaped (heavy casting).	4M (ANY 4)	4M
a)	A, Butt weld. B, Single vee. C, Double vee (heavy plates.) D, U-shaped (heavy casting). E, Flange weld (thin metal).	4M (ANY 4)	4M
a)	A, Butt weld. B, Single vee. C, Double vee (heavy plates.) D, U-shaped (heavy casting). E, Flange weld (thin metal). F, Single strap butt joint	4M (ANY 4)	4M

	H, Joggled lap joint (single or double weld,		
	I, Tee joint (fillet welds).		
	J, Edge weld (used on thin plates).		
	K, Corners weld metal).		
	L, Plug or rivet butt joint		
b)	An Electrode is a piece of wire or a rod (of a metal or alloy), with or without flux covering, which carries current for welding. At one end it is gripped in a holder and an arc is set up at the other	1 M	4M
	WELDING ELECTRODES may be categorized as follows: Welding Electrodes Non-consumable (refractory) Carbon or graphite electrodes Pure Thoriated Zirconiated winerite	3M	
c)	Arc welding is a type of welding that uses a welding power supply to create an electric arc between an electrode and the base material to melt the metals at the welding point. They can use either direct (DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region is usually protected by some type of shielding gas, vapor, or slag. Arc welding processes may be manual, semi- automatic, or fully automated. First developed in the late part of the 19th century, arc welding became	- -1M 2M (Principle)	4M
	Advantages:-		
	Higher welding speeds	- 1:5-M -	
	2) Greater deposition rates	2M (any 4 adv	.)
	3) Less post welding cleaning (e.g. no slag to chip off weld)		
	4) Better weld pool visibility		

	 5) No stub end losses or wasted man hours caused by changing electrodes 6) Low skill factor required to operate M.I.G / M.A.G.S welding torch 7) Positional welding offers no problems when compared to other processes. (Use dip or pulsed mode of transfer) 8) The process is easily automated Limitations:- 		
	1)Higher initial setup cost		
	2) Atmosphere surrounding the welding process has to be stable (hence the shielding gasses), therefore this process is limited to draught free conditions	4: 5M	
	3) Higher maintenance costs due to extra electronic components		
	4) The setting of plant variables requires a high skill level		
	5) Less efficient where high duty cycle requirements are necessary		
	6) Radiation effects are more severe		
d)	-Soldering is a common process for joining steel, copper and other materials at a low temperature. - Soldering is defined as a group of joining processes wherein coalescence is produced by heating to a suitable temperature and by using a filler metal having a liquidus not exceeding 800 F (427°C) and below the solidus of the base metals. The filler metal (i.e., the solder) is usually distributed between the properly fitted surfaces of the joint by capillary attraction Advantages:- Since soldering does not melt the base metal of the joint, it allows much tighter control over tolerances and produces a clean joint without the need for secondary finishing. Additionally, dissimilar metals and non-metals (i.e. metalized ceramics) can be brazed In general, soldering also produces less thermal distortion than welding due to the uniform heating of a soldered piece. Complex and multi-part assemblies can be brazed cost- effectively	2M 1M	4M

 Limitations:- 1)Size limitation of the parts to be SOLDERED is of major importance. since area to be brazed must be heated, large cast sections or large heavy plates cannot be easily brought up to temperature. 2. Soldering requires tightly mating parts to ensure capillary flow of the filler metal. This involves expensive machining to attain the desired fit. 3. Flux residues if not properly removed can cause corrosion. 4. Soldered joints do not give satisfactory results when used at elevated temperatures. 5. A certain degree of skill is required to perform the soldering 	1M	
I UKCH BRAZING - Torch brazing is the most versatile method and it finds wide	2M (Principle)	4M
 Torch brazing is the most versatile method and it finds wide application in industry in both fabrication and repair work. Heat is usually provided by ordinary gas welding equipment by burning gas combinations such as air and acetylene, oxygen and acetylene, oxygen and hydrogen and air and propane. Air-gas torches provide the lowest flame temperature as well as the least heat, depending on the size of the torch. Oxy-hydrogen torches are often used for brazing aluminium and other non-ferrous alloys. To braze, the operator plays the torch flame (which is neutral or slightly reducing) on the thoroughly cleaned parts, being careful to heat the heavier sections first. A flux is applied to the joint area to prevent oxidation of the parts during heating. As the flux becomes molten, it cleans the joint area of oxides etc., and prepares the surfaces for wetting by the filler metal. The filler metal is then hand-fed to the joint area as soon as the joint is up to the brazing temperature. 	(Principle)	
 In many cases filler rods instead of being hand-fed, are preplaced in the form of a ring, washer, or insert to fit the contour of the joint. Commonly used filler metals need a joint clearance(at brazing temperature) of 0.05 to 0.125 mm for capillary flow. Lap joints are usually preferred. To bring all members of the assembly to brazing temperature at the same time, torch may be directed more on the heavier member or on the member having greater thermal conductivity. Another method to achieve uniform heating in torch brazing is the employment of multi1lamc torches. Advantages (i) Initial cost of equipment is low. (ii) Localized healing can be obtained. (iii) It is a very flexible process. Disadvantages (i) The method is relatively slow. (ii) Flame cannot be easily applied to assemblies with inaccessible joints. 	1M	
	Limitations:- 1)Size limitation of the parts to be SOLDERED is of major importance. since area to be brazed must be heated, large cast sections or large heavy plates cannot be easily brought up to temperature. 2. Soldering requires tightly mating parts to ensure capillary flow of the filler metal. This involves expensive machining to attain the desired fit. 3. Flux residues if not properly removed can cause corrosion. 4. Soldered joints do not give satisfactory results when used at elevated temperatures. 5. A certain degree of skill is required to perform the soldering TORCH BRAZING - Torch brazing is the most versatile method and it finds wide application in industry in both fabrication and repair work Heat is usually provided by ordinary gas welding equipment by burning gas combinations such as air and acetylene, oxygen and acetylene, oxygen and hydrogen and air and propane Air-gas torches provide the lowest flame temperature as well as the least heat, depending on the size of the torch. Oxy-hydrogen torches are often used for brazing aluminium and other non-ferrous alloys To braze, the operator plays the torch flame (which is neutral or slightly reducing) on the thoroughly cleaned parts, being careful to heat the heavier sections first. A flux is applied to the joint area to prevent oxidation of the parts during heating. As the flux becomes molten, it cleans the joint area of oxides etc., and prepares the surfaces for wetting by the filler metal. The filler metal is then hand-fed to the joint area as soon as the joint is up to the brazing temperature Toring all members of the assembly to brazing temperature at the same time, torch may be directed more on the heavier member or on the member having greater thermal conductivity. Another method to achieve uniform heating in torch brazing is the ember stome method to achieve uniform heating in torch brazing is the employment of multi1lamc torches. Advantages (i) Initial cost of equipment is low. (ii) Localized healing can be obtained. (iii) It is a	Limitations:- 1)Size limitation of the parts to be SOLDERED is of major importance. since area to be brazed must be heated, large cast sections or large heavy plates cannot be easily brought up to temperature. 2. Soldering requires tightly mating parts to ensure capillary flow of the filler metal. This involves expensive machining to attain the desired fit. 3. Flux residues if not properly removed can cause corrosion. 4. Soldered joints do not give satisfactory results when used at elevated temperatures. 5. A certain degree of skill is required to perform the soldering TORCH BRAZING - Torch brazing is the most versatile method and it finds wide application in industry in both fabrication and repair work Heat is usually provided by ordinary gas welding equipment by burning gas combinations such as air and acetylene, oxygen and hydrogen and air and propane Air-gas torches provide the lowest flame temperature as well as the least heat, depending on the size of the torch. Oxy-hydrogen torches are often used for brazing aluminium and other non-ferrous alloys To braze, the operator plays the torch flame (which is neutral or slightly reducing) on the thoroughly cleaned parts, being careful to heat the heavier sections first. A flux is applied to the joint area to prevent oxidation of the parts during heating. As the flux becomes molten, it cleans the joint area a of oxides etc., and prepares the surfaces for wetting by the filler metal. The filler metal is then hand-fed to the joint area as soon as the joint is up to the brazing temperature In many cases filler rods instead of being hand-fed, are preplaced in the form of a ring, washer, or insert to fit the contour of the joint Commonly used filler metals need a joint clearance(at brazing temperature) of 0.05 to 0.125 mm for capillary flow. Lap joints are usually preferred To bring all members of the assembly to brazing temperature at the same time, torch may be directed more on the heavier member or on the member having greater thermal conductivity.

	1. Torch brazing can be used to join ferrous and non-ferrous metals, for maintenance as well as fabrication purposes)	1 M	
f)	Welding Processes 1. Oxy-acetylene Welding The type of filler rod employed depends upon the mechanical properties required. A high tensile steel rod will prove effective. For corrosion resistance, etc., the weld metal must match with the parent metal. - A flux is used to counteract the oxidation of alloying elements. - After welding, a post heat-treatment is necessary for the heat treatable low-alloy steels to refine the grain structure. OR 2. Flux-shielded Metal Arc Welding - Mild steel electrodes will work very well with steels having a Carbon content under 0.14%. Weld develops tensile strength as high as 80,000 psi (5600 kg/cm") as the result of alloy pick-up from the base steel. - Where higher strength at better ductility is desired, low alloy steel electrodes may be required. Because of greater crack sensitivity of the low alloy steel electrodes, preheating may be necessary. - Where corrosion is a factor, it may be advisable to use core wires of the same composition as the base steel. - Given below are the recommendations for welding some typical low alloy high strength steels. - Because of deep penetration characteristics of this process, mild steel filler rods are usually satisfactory. - Preheating is generally not necessary. - RR - Bub on steels. - Because of deep penetration characteristics of this process, mild steel filler rods are usually satisfactory. - Preheating is generally not necessary.	4 M	4M

