

Subject code : (17423)

Page **1** of **27**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

Page 2 of 27

Q No.	Answer	marks	Total marks
1a-i	Isobaric: A process which is carried out at a constant pressure is called isobaric	1	2
	process.		
	Isochoric: A process which is carried out at a constant volume is called an	1	
	isochoric process.		
1a-ii	Lyophilic sol: Colloidal systems in which the dispersed phase has a great	1	2
	affinity for the dispersion medium are called lyophilic solutions.		
	Lyophobic sols : colloidal systems in which the dispersed phase has no affinity		
	for the dispersion medium are called lyophobic sols.		
1a-iii	Electrochemical series: the electrode potential of all metals is measured using	1	2
	standard hydrogen electrode. When metals are arranged in order to their		
	standard electrode potentials, a series obtained is called an electrochemical		
	series.		
1a-iv	Degree of freedom : it is the number of degree of a system is the number of	2	2
	independent intensive variables such as temperature, pressure and composition		
	that must be specified so that the remaining variables are fixed automatically		
	and state of the system is completely defined. which is expressed in phase rule		
	as a ,		
	F=C-P+2.		
1a-v	The second law of thermodynamics:	Any of the	2
	All the statements are equivalent	one statment	
	• Heat or in general any type of energy flows from a higher level to a	carry 2	
	lower level.	marks	
	• When two bodies are at different temperatures, heat flows from a hot		
	body to a relatively cold body.		

ect code	e: (17423)	Page	3 of 27
	All natural or spontaneous processes are not thermodynamically		
	reversible.		
	• Complete conversion of heat into work is impossible without producing		
	some changes in the system or its surroundings.		
	• Its impossible to transfer heat from a cold body to a hot body without		
	the aid of external work.		
1a-vi	Elements used for alloying iron are:	Any 8	
	Carbon	elements	
	Manganese		
	Chromium		
	Nickel		
	Molybdenum		
	Titanium		
	Phosphorus		
	Sulphur		
	Selenium		
	Niobium		
	Nitrogen		
	Silicon		
	Cobalt		
	Tantalum		
	Copper		
1a-vii	Dry corrosion: dry corrosion occurs by direct chemical attack/action of	2	
	atmospheric gases like oxygen, halogen sulphide etc. In a dry environment on		
	the surface of a metal.		
1b-i	Aggregation method of preparing of colloidal solution:		4

ject cod	e : (17423)	Pa	ge 4 of 27
	The methods of preparing sols involve chemical reactions, such as double		
	decomposition, reduction, etc, by which the atoms or molecules of the		
	dispersed phase appearing first, coalesce or aggregate to form colloidal		
	particles.		
	1. double decomposition:		
	an arsenious sulphide sol is prepared by passing hydrogen sulphide gas	Any 1	
	through a cold, dilute solution of arsenious oxide and removing excess	method	
	hydrogen sulphide (electrolyte) by boiling.	carry 4	
	$Ar_2O_3 + 3H_2S \longrightarrow Ar_2S_3 + 3H_2O$	marks	
	2. reduction :		
	a sol of silver or gold is prepared by treating an aqueous solution of		
	silver nitrate or gold chloride with an organic reducing agent such as		
	tannic acid.		
	$AgNO_3 + tannic acid \rightarrow Ag sol$		
	$AuCl_3 + tannic acid \rightarrow Au sol$		
	3. oxidation :		
	a sol of sulphur is prepared by the oxidation of an aqueous solution of		
	hydrogen sulphide with sulphur dioxide.		
	$2H_2S + SO_2 \rightarrow 3S \text{ sol} + 2H_2O$		
1b-ii	Caustic embrittlement : it is the phenomenon in which the material of a boiler	4	
	becomes brittle due to local accumulation/ decomposition of sodium hydroxide		
	at high temperature $(200-250^{\circ}C)$.its occurs at the stressed parts of the boiler		
	such as cracks, bends, rivets and joints. The accumulated sodium hydroxide		
	attack the material of the boiler and dissolves iron as sodium ferrite.		
	Sodium carbonate is used for the softening water by lime soda process. residual		
	sodium carbonate left behind in the water undergoes hydrolysis to produce		

ect code	e : (17423)	Page !	5 of 27
	sodium hydroxide at high temperatures and pressures.		
	Effects: it may cause failure of boilers. it can be prevented by reducing		
	pH,using sodium sulphate as a softening reagents and by increasing passivity of		
	mild steel.		
1b-iii	Properties of Teflon:	¹ / ₂ marks for	
	1. It is hydrophobic.	any 4	
	2. It is a fluorocarbon solid.		
	3. It is a white solid at room temperature.		
	4. It has a density of 2200 kg/m ³		
	5. It is tough, non- sticking and good insulating material.		
	6. It can be easily machined, punched or drilled.		
	7. Excellent corrosion resistance.		
	Properties of PVC :		
	1. It is a white brittle solid material.	¹ ∕₂ marks for	
	2. It is fire retardant and extinguishable.	any 4	
	3. It has good resistance to weather.		
	4. It has good resistance to acids and alkalies and inorganic chemicals.		
	5. It is non-flammable and low cost material.		
	6. It has greater stiffness and rigidity than polyethylene.		
2-a	An isothermal process is a change of a <i>system</i> , in which the temperature	4	
	remains constant: $\Delta T = 0$. This typically occurs when a system is in contact		
	with an outside thermal reservoir (heat bath), and the change occurs slowly		
	enough to allow the system to continually adjust to the temperature of the		
	reservoir through heat exchange		

Subject code : (17423)

Page 6 of 27

the internal energy decreases. Conversely, if the environment does work on the system so that its internal energy increases, the work is counted as negative. It is also worth noting that, for many systems, if the temperature is held constant, the internal energy of the system also is constant, and so $\Delta U = 0$. From <u>First</u> <u>Law of Thermodynamics</u> , $\Delta U = Q - W$, so it follows that $Q = W$ for this same isothermal process. When no heat flows into or out of the gas because its container is at the same temperature, then there is no work done. Thus,	tive.It is stant, om <u>First</u> W_{for} because
also worth noting that, for many systems, if the temperature is held constant, the internal energy of the system also is constant, and so $\Delta U = 0$. From <u>First</u> <u>Law of Thermodynamics</u> , $\Delta U = Q - W$, so it follows that $Q = W$ for this same isothermal process. When no heat flows into or out of the gas because	stant, om <u>First</u> W _{for} because
the internal energy of the system also is constant, and so $\Delta U = 0$. From <u>First</u> <u>Law of Thermodynamics</u> , $\Delta U = Q - W$, so it follows that $Q = W$ for this same isothermal process. When no heat flows into or out of the gas because	$\frac{\text{First}}{W_{\text{for}}}$
<u>Law of Thermodynamics</u> , $\Delta U = Q - W$, so it follows that $Q = W_{\text{for}}$ this same isothermal process. When no heat flows into or out of the gas because	W _{for}
this same isothermal process. When no heat flows into or out of the gas because	because
its container is at the same temperature, then there is no work done. Thus,	18,
work=0 which means external pressure on any moving surface is zero. This is	This is
called free expansion.	

	de : (17423)	Pa	age 8 of 27
2-b	Galavanic series of metals:	2marks	
	The galvanic series (or electro potential series) determines the nobility of		
	metals and semi-metals. When two metals are submerged in an electrolyte,		
	while electrically connected, the less noble (base) will experience galvanic		
	corrosion. The rate of corrosion is determined by the electrolyte and the		
	difference in nobility. The difference can be measured as a difference in voltage		
	potential. Galvanic reaction is the principle upon which batteries are based.		
	GALVANIC SERIES Metals	2marks	
	Largest, corrosive part, positive 1 - Magnesium 2 - Zinc 3 - Cadmium 4 - Aluminum 5 - Steel 6 - Iron 7 - Stainless-Steel 8 - Solder 9 - Lead 10 - Tin 11 - Nickel		
	12 - Brass 13 - Copper 14 - Bronze 15 - Silver-Solder 16 - Silver 17 - Titanium 18 - Graphite 19 - Gold		
	12 - Brass 13 - Copper 14 - Bronze 15 - Silver-Solder 16 - Silver 17 - Titanium 18 - Graphite		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

lyophilic	lyophobic		points,each
They have a definite affinity for	They have no affinity for		carry 1
the dispersion medium	dispersion medium		mark
These are organic substances	These are of inorganic		
like starch, gum& proteins	substances like gold,		
	platinum, iron & arsenic.		
These can be prepared directly	These can be prepared directly		
by mixing solid material with	by mixing and special methods		
liquid dispersion medium.	are used for their preparation.		
Viscosity is higher than that of	Viscosity of sols is same as that		
the dispersion medium	of the medium.		
Their particles are not visible	These particles are visible under		
even under ultra microscope	ultra microscope		
The sols are quite stable	The sols are less stable.		
These are highly hydrated	These are not much hydrated		
They are reversible in nature	These are irreversible in nature		
The particles in sols do not	The particles of these sols carry		
carry charges.	either positive or negative		
	charge.		
They do not show Tyndall	These exhibit Tyndall effect.		
effect			
They will not show any	Particles usually migrate		
action, when placed in an	towards anode or cathode		
electric field.	depending upon their nature of		
	charge.		
election criteria for material of	construction on property of cher	nical:	Any 4 types

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

				each carry 1	
	Mild steel	Used for storage of	f	mark	
		oleum, methanol, ac	etone,benzen		
		e,toluene,ether etc			
	Nickel stainless steel	Hot oleum			
	Lead	Hot sulphuric acid			
	Rubber lined mild steel	Dilute sulphuric ac	id		
	SS-316,SS-304	Mixed acid, soda a	sh, sodium		
		carbonate			
	Nickel	Concentrated alkal	ies		
	Aluminium	Fuming nitric acid	organic		
		aliphatic acids			
	Plypropylene,teflon	NaCl solution			
2-f	Mechanism of wet corrosion: we	t corrosion is a two	step process. One is	4	4
	anodic or oxidation reaction and the	ne other is cathodic of	or reduction process.		
	1) anodic reaction involves di	ssolution of metal			
	$[M \rightarrow M^{n+} + ne^{-}]$ the anode	e are absorbed at the	cathode.		
	2) There are different cathodi	c reactions in which	the electrons are		
	consumed depending upon	the nature (acidic /	basic / neutral) of the		
	corrosion environment.				
	i) Hydrogen evolution ty	pe wet corrosion: it	occurs in the acidic		
	environment containing no oxyger	n or very less oxyger	l.		
	ii) Oxygen absorption ty	be wet corrosion.: it	occurs when the		
	environment is alkaline / basic or h	neutral, and contains	more oxygen, OH^- ion	s	
	will be given out.				
3-a	Reversible Process		Irreversible Pro	cess 1 mark each	4
	1. It takes place in infinite infinitesimally small steps and if finite time to occur.		akes place infinite time	for any four	
	2. It is imaginary as it assumes	the presence 2. It i	s real and can be perfor	med actually.	

Page **11** of **27**

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

Page 12 of 27

	of frictionless and weight less piston.			
	3. It is in equilibrium state at all stage of the operation.	It is in equilibrium state only at final stage of the operation.	the initial and	
	4. All changes are reversed when the process is carried out in reversible direction.	4. After this type of process had changes do not return to the in themselves.		
	5. It is extremely slow.	5. It proceeds at measureable sp	eed.	
	6. Work done by a reversible process is greater than the corresponding irreversible process.		-	
3-b	Assumptions of Langmuir Isotherm		4	4
	Langmuir proposed his theory by making follow	ving assumptions.		
	1. Fixed number of vacant or adsorption sites	are available on the surface of		
	solid.			
	2. All the vacant sites are of equal size and sha	ape on the surface of adsorbent.		
	3. Each site can hold maximum of one gaseous	molecule and a constant amount		
	of heat energy is released	during this process.		
	4. Dynamic equilibrium exists between adsort	bed gaseous molecules and the		
	free gaseous molecules.			
	A(g) + B(S) desorptio	AB		
	Where A (g) is unadsorbed gaseous molecule, H	B(s) is unoccupied metal surface		
	and AB is Adsorbed gaseous molecule.			
	5. Adsorption is monolayer or unilayer.			

ect coo	le : (17423)	Pa	ge 13 of 27
3-c	Rubber Lining	2	
	Rubber Lining is the skilled application and bonding of rubber sheet to		
	specially prepared surfaces. The rubber can be applied as either unvulcanised		
	material which is then vulcanised and hot bonded – usually in a steam		
	autoclave; or as pre vulcanised material which is cold bonded using two part		
	adhesives. The fully bonded lining provides a durable and resilient protective		
	rubber coating that will withstand very aggressive process conditions and		
	applications.		
	Rubber Linings and Coatings can be from 2mm to 50mm thick depending on		
	the application, and can be bonded to mild steel, stainless steel, cast iron and		
	aluminium.		
	Purpose:	2	
	1. The principal benefits of rubber lining are its excellent resistance to		
	corrosive and abrasive chemicals and materials, e.g. acids, alkalis, salt		
	water, slurries, sand, shotblast media, crushed rock etc.		
	2. In addition rubber linings provide other benefits including noise and		
	vibration reduction, electrical and thermal insulation and product protection.		
	3. It is used to protect Chemical process tanks, agitators, mixers, pumps,		
	fans, Water treatment columns, Plating tanks (nickel, copper, cadmium) Pipe		
	and fittings, Pickling tank etc.		
3-d	$W=-nR \ln(P1/P2)$		
	W=-5900 J		
	For isothermal expansion	2	
	W=q=5900J		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

2 U=q+w=11800j 4 3-е 4 154C, 10⁺³ atm LIQUID MOTOCUTIC, Pressure (atm) _1 RHOMBIC 119C, 10⁻⁴ atm VAPOR 95C, 10⁻⁵ atm Temperature (C) 3-f The various industrial applications in which PVC compounds are used include 1 mark each 4 1. Petrol tubes, for any two 2. profiles, 3. co extrusion strap, 4. hoses for fuel & oils, gaskets, 5. 6. sleeves, 7. door & window profiles and sliding, 8. H-band, 9. fitting, 10. lip seals, 11. co-extrusion spiral hoses and all tailor made applications, etc.

Page 14 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

Page **15** of **27**

	Application of polypropylene:		
	1. for pumps	1 mark each	
	2. pipes	for any two	
	3. as scrubber		
	4.used for tanks		
	5.reaction vessels		
4-a	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 2.$	1	4
	The Degrees of Freedom [F] is the number of independent intensive variables	1	
	(i.e. those that are independent of the quantity of material present) that need to	-	
	be specified in value to fully determine the state of the system. Typical such		
	variables might be temperature, pressure, or concentration.		
	A Phase is a component part of the system that is immiscible with the other	1	
	parts (e.g. solid, liquid, or gas); a phase may of course contain several chemical		
	constituents, which may or may not be shared with other phases. The number of		
	phases is represented in the relation by P .		
	The Chemical Constituents are simply the distinct compounds (or elements)	1	
	involved in the equations of the system. (If some of the system constituents		
	remain in equilibrium with each other whatever the state of the system, they		
	should be counted as a single constituent.) The number of these is represented		
	as C.		
4-b	1. Forms a Protective Barrier	¹∕₂ mark	4
	2. Enhances Appearance	each for any	
	3. Reduces Friction	8	
	4. Conducts Electricity		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect coc	le : (17423)		Ра	ge 16 of 27
	5. Absorbs Excess Hydrogen			
	6. Prevents Formation of Whiskers	3		
	7. Resists Heat			
	8. Increases Hardness			
	9. Absorbs Light and Energy			
	10. Promotes Adhesion			
	11. Increases Thickness			
	12. Prevents Tarnishing			
4-c	Zeroth law of thermodynamics:		2	
	If two systems are in thermal equilibriu	m respectively with a third system, they		
	must be in thermal equilibrium with each	ch other. This law helps define the		
	notion of <u>temperature</u> .			
	Third law of thermodynamics:			
	The entropy of a system approaches a c	onstant value as the temperature	2	
	approaches absolute zero. With the exce	eption of glasses the entropy of a system		
	at absolute zero is typically close to zer	o, and is equal to the log of the		
	multiplicity of the quantum ground state	e.		
4.d	PHYSICAL ADSORPTION	CHEMISORPTIONS	1 mark each	
	The forces operating in these are	The forces operating in these cases	for any 4	
	weak vander Waal's forces.	are similar to those of a chemical		
		bond.		
	The heat of adsorption are low i.e.	The heat of adsorption are high i.e.		
	about $20 - 40 \text{ kJ mol}^{-1}$	about 40 – 400 kJ mol ⁻¹		
	No compound formation takes place	Surface compounds are formed.		
	in these cases.			
	The process is reversible i.e.	The process is irreversible. Efforts to		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

Page 17 of 27

				-
	desorption of the gas occurs by	free the adsorbed gas give some		
	increasing the temperature or	definite compound.		
	decreasing the pressure.			
	It does not require any activation	It requires any activation energy.		
	energy.			
	This type of adsorption decreases	This type of adsorption first increases		
	with increase of temperature.	with increase of temperature. The		
		effect is called activated adsorption.		
	It is not specific in nature i.e. all	It is specific in nature and occurs		
	gases are adsorbed on all solids to	only when there is some possibility		
	some extent.	of compound formation between the		
		gas being adsorbed and the solid		
		adsorbent.		
	The amount of the gas adsorbed is	There is no such correlation exists.		
	related to the ease of liquefaction of			
	the gas.			
	It forms multimolecular layer.	It forms unimolecular layer.		
4-e	Effect of temperature on corre	osion	1 mark each	4
	For most chemical reactions, the	e reaction rate increases with increasing	for any 4	
	temperature.			
	1. Temperature affects the corrosi	on rate of metals in electrolytes primari		
	through its effect on factors whi	ch control the diffusion rate of oxygen.		
	2. The corrosion of iron and steel	is an example of this because		
	temperature affects the corrosio	n rate by virtue of its effect on the		
	oxygen solubility and oxygen d	iffusion coefficient.		
	3. As temperature increases the difference of th	ffusion coefficient of oxygen also		
L				1

ect coc	le : (17423)	Page 1	8 of 27
	increases which tends to increase the corrosion rate.		
	4. The net affect fo mild steel, is that the corrosion rate approximately		
	doubles for a temperature rise of 30°C up to a maximum temperature at		
	about 80°C, the rate then falls off in an open system because the		
	decreall in oxyben solubility becomes the most important factor.		
	5. In a closed system, where oxygen cannot escape the corrosion rate		
	continues to increase indefinitely with temperature until all the oxygen		
	is consumed.		
4-f	Caustic lye:	1	
	1. SS		
	Soda Ash:	1	
	1. Polyethylene		
	2. Woven plastic material + PE		
	Niric acid:	1	
	1. Cast iron		
	2. Stone ware		
	Hydrochoric acid:	1	
	1. Rubber line still tank		
5-a	Example of the Freundlich isotherm, showing the amount adsorbed, q (e.g., in	4	
	Example of the Freundlich Isotherm, showing the amount adsorbed, q (e.g., in mol/kg), as a function of equilibrium concentration in the solution, c (e.g., in mol/L).		

Subject code : (17423)

Page **19** of **27**

Jeer cou	(17723)	T d	
	The Freundlich Adsorption Isotherm is mathematically expressed as		
	$\frac{x}{m} = K p^{1/m}$		
	It is also written as $\log \frac{x}{m} = \log K + \frac{1}{n} \log p$		
	Or $\frac{x}{m} - Kc^{1/n}$		
	It is also written as $\log \frac{x}{m} = \log K + \frac{1}{n} \log c$		
	where		
	x = mass of adsorb ate m = mass of adsorbent p = Equilibrium pressure of adsorbate c = Equilibrium concentration of adsorbate in solution.		
	<i>K</i> and <i>n</i> are constants for a given adsorbate and adsorbent at a particular temperature.		
	At high pressure $1/n = 0$, hence extent of adsorption becomes independent of pressure.		
	Slope = $\frac{1}{n}$ log x/m Intercept = $\log_e K$ O $\log_e P \rightarrow \bullet$		
5-b	Sacrificial anodic method:	2	4
	In this method, a more active metal is connected to the metal structure/surface		
	to be protected so that corrosion is concentrated at the more active metal and		
P			

ect cod	le : (17423)		Page 20 of	of 27
	thus protecting the metal structure	surface from corrosion. The more activ	e	
	metal is called sacrificial anode. T	The sacrificial anode is replaced by fresh	one,	
		ontinued corrosion protection of the meta		
	surface.	-		
			2	
	Ground level	/ /////		
	Mg			
	Pipe			
5-c	Differences:i) Isothermal process and adiabatic	c pr ocess	2	
	i) isothermal process and adiabati	e process.		
	Isothermal	adiabatic		
	A process which is carried out	A process is carried out in		
	at a constant temperature.	no heat enters or leaves the		
		system.		
	ii) open and closed system :			
	Open system	Closed system	2	
	In which exchange of energy or	In which exchange of energy		
	matter takes place across the	but not matter takes place		
	boundary with its surroundings	across the boundary with its		
		surroundings		
	Boundary will be open	Boundary will be closed.		
5-d	Properties of mild steel:		¹ / ₂ marks for	
	1) It is cheap.		any 8	

ect co	de : (17423)	Pa	ge 21 of 2 7
	2) it has good tensile strength and ductility		
	3) It is malleable.		
	4) it can be easily rolled, forged ,bent and drawn		
	5) It is durable.		
	6) it is easily machined and weld able		
	7) It is relatively hard and easily annealed.		
	8) It easily rusts.		
	9) Its corrosion resistance is limited.		
5-е	Langmuir's adsorption isotherm:	4	
	Derivation:		
	Langmuir Equation which depicts a relationship between the number of active		
	sites of the surface undergoing adsorption (i.e. extent of adsorption) and		
	pressure.		
	To derive Langmuir Equation and new parameter ' θ ' is introduced. Let θ the		
	number of sites of the surface which are covered with gaseous molecules.		
	Therefore, the fraction of surface which are unoccupied by gaseous molecules		
	will be $(1 - \theta)$.		
	Now, Rate of forward direction depends upon two factors: Number of sited		
	available on the surface of adsorbent, $(1 - \theta)$ and Pressure, P. Therefore rate of		
	forward reaction is directly proportional to both mentioned factors.		
	Rate of forward reaction $\propto P(1 - \theta)$		
	Rate of adsorption $\propto P(1 - \theta)$		
	Or, Rate of adsorption = $K_a P (1 - \theta)$		

bject co	de : (17423)	Page 22 of 2
	Similarly, Rate of backward reaction or Rate of Desorption depends upon	
	number of sites occupied by the gaseous molecules on the surface of adsorbent.	
	Rate of desorption $\propto \theta$	
	Or, Rate of desorption = $K_d \theta$	
	At equilibrium, rate of adsorption is equal to rate of desorption.	
	$K_a P (1 - \theta) = K_d \theta$	
	We can solve the above equation to write it in terms of θ .	
	$K_a P - K_a P \theta = K_d \theta$	
	$K_a P = K_a P \ \theta + K_d \ \theta$	
	$\mathbf{K}_{a}\mathbf{P}=(\mathbf{K}_{d}+\mathbf{K}_{a}\mathbf{P})\ \mathbf{\theta}$	
	$\theta = \frac{K_a P}{K_a + K_a P}$	
	Divide numerator and denominator on RHS by K _d , we get	
	$\theta = \frac{\frac{K_a}{K_d}P}{\frac{K_d}{K_d} + \frac{K_a}{K_d}P}$	
	$K = \frac{K_a}{K_d}$ Now put	
	in above equation we get $\theta = \frac{KP}{1+KP}$	
	Langmuir Adsorption Equation	
	This is known as Langmuir Adsorption Equation.	

ect coc	le : (17423)	Page 2 :	3 of 27
б-а	Electroplating:	2	
	First, a container is filled with a solution of a salt of the metal that is to form the		
	coating. For example, if copper is to form the coating, the solution will consist		
	of copper sulfate (a salt of copper) mixed with water. This solution is called the		
	electrolytic bath. The object to be plated is immersed in the bath. A metal bar,		
	composed either of the metal that is to form the coating or of a metal that is not		
	affected by the electrolytic bath, is also immersed in the bath. The entire		
	apparatus is called an electrolytic cell.		
	The object to be coated is connected to the negative terminal of an electric		
	battery or other source of direct current, and becomes the cathode (the electrode		
	through which negative charge enters an electrical device). The metal bar is		
	connected to the positive terminal of the electric power source and becomes the		
	anode (the electrode through which negative charge leaves).		
	When electric power is applied, electrolysis of the electrolytic bath occurs. The		
	bath gives up its metal content to the surface of the cathode. This coating forms		
	an alloy with the metal of the cathode, and adheres to the cathode after the		
	cathode has been removed from the bath. As the electroplating process		
	continues, the metal salts in the bath are used up. If the anode is a bar of the		
	coating metal, the bar dissolves in the bath at the same rate that the bath gives		
	up its metal to the cathode. If the anode is made of another metal, salts of the		
	coating metal must be added to the bath as metal becomes deposited on the		
	cathode.		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17423)

Page 24 of 27

ect cod	le : (17423)	Paç	ge 25 of 27
6-c	Define:	4	
	System: The specified portion of the universe containing a definite		
	quantity/amount of a specific substance or group of substances under		
	thermodynamic study is called a system.		
	Surrounding :		
	The part of the universe other than the system which is separated from the		
	system by a boundary is called the surroundings.		
	Everything external to the system is called surroundings.		
	Isolates system : a system which can exchange neither matter nor energy		
	through the boundaries with its surroundings is called an isolated system. The		
	combination of a system and its surroundings constitutes an isolated system.		
6-d	Work done in irreversible isothermal expansion of a gas:	4	
	Suppose we have a gas contained in a cylinder piston assembly. In this case, the		
	process of expansion of a gas is to be performed irreversibly, then the		
	expansion is to be carried out instantaneously reducing the external pressure P_{ex}		
	to the final pressure P ₂ throughout the expansion process. thus the irreversible		
	work done is given by		
	V_2		
	$W = P_{ex} \int dV$		
	V ₁		

Page 26 of 27

ect coo	de : (17423)	Paç	ge 27 of 27
6-е	Glass Lining : Glass lining is a typical example of fused lining. its general applications are for		
	equipments such as reactors, columns, pipes.etc.		
	There are mainly two types widely used.		
	1) Wet spray process:		
	The metal surface of a vessel on which glass lining is to be done is cleaned. a	2	
	suspension called slip consisting of enamel and emulsifying agent is sprayed	_	
	like paint on the metal surface. the coat is air dried. the vessel is then		
	transferred to a furnace and fired at temperatures that effect fusion of glass		
	particles. the vessel is then transferred to a cooling oven and allowed to cool.		
	2) Hot dust process:		
	After cleaning the metal surface, ground coat is applied in a manner similar to	2	
	that adopted in the wet spray process. After firing is completed, the component	_	
	is removed from the furnace and dry powder cover coat enamel is dusted over		
	its surface.		
6-f	Passivity of metals:	4	
	Metals that are normally prone to corrosion will sometimes exhibit passivity to		
	corrosion. Passivity is caused by the formation of a stable , non porous and self		
	healing film of metal oxide on the surface of metal. the oxide film formed by		
	corrosion on a clean metal surface. it acts as a barrier separating the metal		
	surface and the environment and thus prevent the metal from further corrosion		
	in the given environment.		