17538

16117 3 Hours / 100 Marks

Instructions :	(1)	All questions are compulsory.						
	(2)	Illustrate your answers with neat sketches wherever necessary.						
	(3)	Figures to the right indicate full marks.						
	(4)	Assume suitable data, if necessary.						
	(5)	Use	of	Non-programmable	Electronic	Pocket	Calculator	is

permissible.(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Seat No.

1. (A) Attempt any THREE :

- (a) Define control system and explain it with the help of suitable example.
- (b) Define :
 - (i) Transient response
 - (ii) Steady state response
- (c) Define stability. Explain the importance of stability in a system.
- (d) Explain why derivate action cannot be used alone.

(B) Attempt any ONE :

- (a) Explain any three rules of block diagram reduction technique.
- (b) What is frequency response analysis ? State its advantages. (any four)

2. Attempt any TWO :

(a) A system has $G(s) \cdot H(s) = \frac{K}{S(S+2)(S+4)(S+8)}$,

where K is positive. Determine the range of K for stability.

(b) Draw and explain synchro as error detector. State its applications.

Marks

12

6

(c) Obtain the transfer function for system in fig. (1) using block reduction technique.

3. Attempt any FOUR :

16

12

- (a) Compare open loop and closed loop control system. (four points)
- (b) What is damping ? Explain the effect of damping on the response of second order system.
- (c) Determine the stability of a system using Routh's criterion.

 $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 5 = 0$

- (d) Draw and explain potentiometer as an error detector.
- (e) Draw the op-amp based PI controller. Derive its output equation.

4. (A) Attempt any THREE :

- (a) Explain proportional controller. Draw its response graph.
- (b) What is gain margin & phase margin ? What should be the values of gain margin & phase margin for a good system ?
- (c) A unity feedback system has $G(S) = \frac{40 (S+2)}{S(S+1)(S+4)}$.

Determine :

- (i) Type of system
- (ii) All error coefficients
- (d) Compare stepper motor with DC servo motor. (Any four points)

(B) Attempt any ONE :

- (a) Explain the characteristics of D.C. servomotor.
- (b) Explain the different standard input test signal. Give their laplace transform.

5. Attempt any FOUR :

- (a) What is AC servomotor ? Explain its torque speed characteristics.
- (b) What is composite controller ? State their applications.
- (c) $S^3 + 4S^2 + S + 6 = 0$, state how many roots are in right half of s-plane.

(d) A second order system is given by
$$\frac{C(S)}{R(S)} = \frac{25}{S^2 + 6S + 25}$$
.

Find its

- (i) wn
- (ii) wd
- (iii) Rise time
- (iv) Peak time
- (e) Define (i) peak overshoot (ii) settling time of a second order system and label it on time domain response.
- (f) Draw bode plot for the system with open loop transfer function

$$G(S)H(S) = \frac{20}{S(1+2S)}.$$

6. Attempt any FOUR :

- (a) Define poles and zero. How system stability is affected by location of poles and zeros in s-plane ?
- (b) Analyze the first order system for an unit step function.
- (c) What is Type O system ? Derive the steady state error and error coefficients for step input.
- (d) What is the difference between critically stable and unstable system.
- (e) For unity feedback system $G(s) = \frac{K}{S(1 + 0.4S)(1+0.25S)}$. Find the marginal value of K.

16