

17352

16117										
3 Hours / 100 M	arks	Seat No.								
Instructions :	 All qui Answei Answei Illustri Figure Assumi Assumi Use of permix Mobili device Use of 	estions are com er each next man ate your answer es to the right in the suitable data, f Non-program ssible . e Phone, Pager es are not permis f Steam tables, la	pulson in que is with dicate if nec mable and as ssible	r y . stion o neat s e full n essary . e Elect ny othe in Exar hmic, I	n a 1 ketci nark. troni troni mina Molli	new p hes wh s. c Poo ectron tion I ier's c	age. hereve cket Co. tic Co. Hall. hart i.	e r nec Calcul mmun s pern	essary ator iicatio nitted.	v. is m
									ľ	Marks
1. Attempt any five of the	e following :									20
a) What do you mean	by extensive	and intensive pr	operti	es?Giv	ve tw	o exa	mples	ofeac	h.	4
b) State Zeroth law, fi	rst law and se	econd law (both s	tatem	ent) of t	thern	nodyn	amics			4
c) Write generalised s to nozzle and write	teady flow er final equation	nergy equation. S n.	tate m	eaning	of ea	ich ter	m in it	.Appl	y SFE	E 4
d) CO ₂ passing throu 50°C. Write SFEE. and potential are n	gh a heat exc Determine r egligible. Tal	whanger at a rate of heat removiate of heat removiate $Cp = 1.08 \text{ KJ}/2000$	of 100 al, ass Kg.K.	Kg/hr	is coo that c	oled d change	own f e in pre	rom 8 essure,	00°C t , kineti	to ic 4
e) Difference between	n heat engine	and refrigerator (any fo	ur).						4
f) 1.5 Kg of air is con constant. If initial v	npressed in q volume of air	uasi static proces is 1.3 m ³ , find we	ss from orkdov	n 0.1 m wn by P	pa to Pistor	0.7 m n to co	pa for mpres	which s the a	n (pv) : ir.	is 4
g) State Charles law a	nd Boyle's la	w and also write	its ma	themat	ical e	equation	ons.			4

17352 [2] Marks 2. Attempt any four of the following : 16 a) One Kg mass of air expands reversibly from 6.5 bar and 0.0135 m^3 to 9 final volume of 0.1 m^3 , find final pressure, final temperature and work done if the expansion is adiabatic. 4 b) 0.1 Kg of nitrogen gas is confined in a vessel. Initial volume of gas is 0.1 m³. Heat is transformed to nitrogen at constant pressure of 1.2 bar till volume changes to 0.075 m³. Determine final temp. of gas and work transferred. 4 c) Draw a neat sketch of simple carburettor and label its components. 4 d) With the help of T-S and P-h diagram, state the effect of subcooling and superheating on COP of VCR cycle. 4 e) Draw a neat labelled sketch of shell and tube heat exchanger and explain. 4 3. Attempt **any four** of the following : 16 a) Define: i) Free air delivered ii) Isothermal efficiency also give the equation for them. 4 b) Draw a neat sketch of vane compressor and state its working principle. 4 c) Represent multistage compression with intercooling (perfect) on P-V diagram. State advantages of multistage compression. 4 d) Draw a neat schematic block diagram of vapour compression refrigeration system and state the function of each component. 4 e) With neat sketch explain working principle of natural draught cooling tower. 4

[3]

4.	Att	emptany four of the following:	16
	a)	Represent Rankine cycle on P-V diagram. State various processes in it. Write down the formula	
		for calculating thermal efficiency of Rankine cycle.	4
	b)	State the function of condenser in steam power plant. Draw a neat sketch of surface condenser.	4
	c)	State the necessity of mountings and accessories used in boiler with their functions.	4
	d)	Read steam table and write the following values.	
		i) Liquid enthalpy and vapour enthalpy at 4 bar.	
		ii) Saturation pressure for 150°C.	
		iii) Enthalpy of steam at 1.5 bar and 350°C.	
		iv) Liquid entropy at 130°C.	4
	e)	Determine the amount of heat, which should be supplied to 2 Kg of water at 25°C to convert	
		it into steam at 5 bar and 0.9 dry.	
		Take, $C_{pw} = 4.18 \text{ J/Kg K}$ and	
		at 5 bar $h_f = 640 \text{ KJ/Kg}$ and	
		$h_{fg} = 2107 \text{ KJ/Kg}.$	4
5.	Att	empt any four of the following :	16
	a)	Consider a composite wall made up of three materials having different thickness and different	
		thermal conductivities. Assume temp. at interface and prepare electrical analogy circuit and	
		hence write equation for the heat transfer through the wall.	4
	b)	The inner surface of a plane brick wall is at 60°C and outer surface is at 35°C. Calculate heat	
		transfer per m^2 of surface area of wall. Which is 220 mm thick ? Thermal conductivity for brick	
		wall is 0.51 W/m°C.	4

17352

[4]

Marks

	c)	Hot air at temp. of 60°C is flowing through a steel pipe of 10 cm diameter. The pipe is covered	
		with a layer of insulation of 5 cm thickness and thermal conductivity 0.23 W/mK. The inside	
		and outside heat transfer coefficients are 58 and $12 \text{ W/m}^2\text{K}$ Atmospheric temperature is 25°C .	
		Find rate of heat loss from 50 m length pipe. Neglect steel pipe resistance.	4
	d)	Define : Absorptivity, Transmissivity and Reflectivity.	4
	e)	State Fourier's alw of heat conduction and its equation. State Stefan-Boltzman law.	4
6.	Att	empt any four :	16
	a)	Difference between two stroke and four stroke engine.	4
	b)	The stroke and cylinder diameter of C.I. engine are 250 mm and 150 mm respectively. If clearance volume is 0.0004 m^3 and volume at cut-off is 0.000621 m^3 . Determine compression, ratio, cut off ratio and thermal efficiency of engine.	4
	c)	The minimum pressure and temperature is an otto cycle are 100 Kpa and 27°C. The amount of heat added to air per cycle is 1500 KJ/Kg. Determine pressure and temperatures at all points in cycle.	4
	d)	Draw value timing diagram for 4-stroke petrol engine. Represent all salient point on it.	4
	e)	Compare Spark Ignition (SI) engines with Compression Ignition (CI) engines.	4
	f)	Draw a neat sketch of two stroke engine and state the function of each part and crankcase in it.	4