16117

3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Figures to the right indicate full marks.
- (3) Assume suitable data, if necessary.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (6) Use of Steam tables, logarithmic, Mollier's chart is permitted.

Marks

1. Attempt any TEN of the following:

- 20
- (a) Find the point on the curve $y = x^2 4x + 2$ where the slope of tangent is 10.
- (b) Find the radius of curvature of $y^2 = 4x$ at point (1, 2).
- (c) Evaluate $\int \frac{1}{25 9x^2} dx.$
- (d) Evaluate $\int \log x \, dx$.
- (e) Evaluate $\int \frac{x}{(x+1)(x+2)} dx.$
- (f) Evaluate $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx.$
- (g) Evaluate $\int_{1}^{2} \frac{1}{3x 2} dx.$

[1 of 4]

P.T.O.

17349 [2 of 4]

- (h) Find the area bounded by the curve $y = \sin x$ and x-axis from x = 0 to $x = \pi$.
- (i) Find order and degree of differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$
- (j) Form a differential equation if $y = A \sin x + B \cos x$.
- (k) If two unbiased dice are rolled, what is the probability that sum is equal to 9?
- (l) An unbiased coin is tossed 6 times. Find the probability of getting 2 heads.

2. Attempt any FOUR:

16

- (a) Find the equation of tangent and normal to the curve $4x^2 + 9y^2 = 40$ at point (1, 2).
- (b) Find maximum and minimum value of $x^3 18x^2 + 96x$.
- (c) Show that the radius of curvature at any point on the curve $y = a \log (\sec (x/a))$. Where 'a' is constant is 'a $\sec (x/a)$.
- (d) Evaluate $\int \frac{dx}{x \cdot \sin^2(\log x)}$
- (e) Evaluate $\int \frac{x \cdot \sin^{-1} x}{\sqrt{1 x^2}} dx.$
- (f) Evaluate $\int \frac{x^2 + 1}{(x+1)(x+2)(x-3)} dx$.

3. Attempt any FOUR:

16

- (a) Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx.$
- (b) Evaluate $\int_{0}^{\pi/2} \frac{\cos x}{4 \sin^2 x} dx.$
- (c) Find the area bounded between the parabolas $y^2 = 9x$ and $x^2 = 9y$.

- (d) Solve $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$.
- (e) Solve $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$.
- (f) Solve $x \frac{dy}{dx} y = x^2 \cos x$.

4. Attempt any FOUR:

16

- (a) Evaluate $\int_{1}^{3} \frac{\sqrt{x}}{\sqrt{4-x} + \sqrt{x}} dx.$
- (b) Evaluate $\int_{0}^{1} \tan^{-1} x \, dx.$
- (c) Evaluate $\int \frac{dx}{5 + 4 \cos 2x}$
- (d) Solve $\frac{dy}{dx} = (4x + y + 1)^2$.
- (e) Solve $(2x^2 + 6xy y^2) dx + (3x^2 2xy + y^2) dy = 0$
- (f) Verify that $y = \log x$ is a solution of the differential equation

$$x\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

5. Attempt any FOUR:

16

- (a) A problem of mathematics is given to three students A, B, C whose chances of solving it are $\frac{1}{3}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that
 - (i) The problem will be solved?
 - (ii) The problem will be solved by each of them?

P.T.O.

17349 [4 of 4]

- (b) On an average 10% of the products manufactured by a certain machine are defective. If from these products 4 are chosen at random, find the probability that one of them is defective.
- (c) The probability of getting an item defective is 0.005. What is the probability that exactly 3 items in a sample of 200 are defective? (Given $e^{-1} = 0.3679$)
- (d) Evaluate $\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$.
- (e) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$
- (f) Find the area of circle $x^2 + y^2 = 25$ by integration.

6. Attempt any FOUR:

16

- (a) A box contains 10 red, 5 white, 5 black balls, two balls are drawn at random. Find the probability that they are not of the same colour.
- (b) If a random variable has Poisson's distribution P(2) = P(3), find P(5).
- (c) The mean weight of 500 students at a certain college is 50 kg and S.D. is 6 kg. Assuming the weights are normally distributed. Find the no. of students weighing between 40 kg and 50 kg. (Given A(1.67) = 0.4525)
- (d) Find the area bounded by the parabola $y = 4 x^2$ and x-axis.
- (e) The perimeter of a rectangle is 100 metres. Find the length of its sides when area of rectangle is maximum.
- (f) Find the equation of tangents to the curve $y = x^2 2x 3$, where it cuts x-axis.