

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

17627

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.N	Sub	Answer	Marking
0.	Q.N.		Scheme
1.		Answer any <u>FIVE</u> of the following:	20
	a)	State the salient features of 80386.	<i>4M</i>
	Ans.	Features of 80386:	
		1. It is a 132 PGA (pin grid array) with 32 bits non multiplexed data bus	
		and 32 bits address bus.	
		2. It works in 3 modes: real, protected and virtual 8086 mode (V-86).	
		3. It can address total 232 i.e., 4GB physical memory with the help of its	Any
		32 bits address lines.	eight
		4. The integrated memory management unit in 80386 supports	Features
		segmentation and paging of memory.	of 80386
		5. It supports the interface of 80387-DX coprocessor IC to perform the	processo
		complex floating point arithmetic operations.	$r: \frac{1}{2M}$
		6. It supports 64TB virtual memory.	each
		7. It has a integrated memory management unit which supports the	
		virtual memory and four levels of protections.	
		8. It has a on chip clock divider circuitry.	
		9. It has BIST (built in self test) feature which tests approximately one	
		half of the 80386 processor when RESET and BUSY are active.	
		10. It has breakpoint registers to provide the breakpoint traps on code	
		(instructions) execution or data access.	

WINTED 2016 EVAMINATION

WINTER – 2016 EAA	VIINATION [-
Model Answer	Subject Code:	17
	_	

	11. It instruct 12. It addres 13. It contro 14. It H 15. It interfa bits an 16. It o	supports instruction pipelining etion pre fetch queue. has 8,32 bit General Purpose bit s at the time of programming. has 8 debug registers DR0-DR l. has a 32 bit E flag register. supports the dynamic bus sizin ced to 16 bits devices effectively. d 32 bits operands. operates on 20 MHz and 33 MHz	g with the help of 16 byt s registers to store the data an 7 for hardware debugging an g by which the 80386 can l And also supports the 8bits, 1 frequency.	es nd nd De 16	
b)	Distin	guish between LDTR and $\overline{\mathbf{GDT}}$	R.		<i>4M</i>
Ans.	Sr No.	LDTR (LOCAL DESCRIPTOR TABLE REGISTER	GDTR (GLOBAL DESCRIPTOR TABLE REGISTER)		
	1	The Local Descriptor Table Register (LDTR) is a dedicated 48-bit register that contains, at any given moment, the base and size of the local descriptor table (LDT) associated with the currently executing task. Unlike GDTR, the LDTR register contains both a "visible" and a "hidden" component. Only the visible component is accessible, while the hidden component remains truly inaccessible to application programs.	The Global Descriptor Table Register (GDTR) is a dedicated 48-bit (6 byte) register used to record the base and size of a system's global descriptor table (GDT). Thus, two of these bytes define the size of the GDT, and four bytes define its base address in physical memory. LIMIT is the size of the GDT, and BASE is the starting address. LIMIT is 1 less than the length of the table, then the GDT is 16 bytes long.	d b 	Any 4 differen ces between LDTR and GDTR M each
	2	The visible component of the	There is no visible		
	3	LDTR is a 16- bit "selector" The dedicated, protected instructions LLDT and SLDT are reserved for loading and storing, respectively, the visible selector component of	To load the GDTR, LGDT instruction is used.		

WINTER - 2016 EXAMINATION

17627 **Subject Code:** Model Answer the LDTR register. Structure of LDTR : Structure of GDTR : 4 16 bit visible selector BASE(32 bit) 16 15 LIMIT 48 bit hidden descriptor cache Base (32 bif) Limit (16 bit) 16 15 c) **Explain branch prediction in Pentium.** 4MAns. Pre fetcher Correct Diagram : 2M Queue A Queue B Branch Target buffer (BTB) U pairing V pairing **Branch Prediction Logic:-**The Pentium processor includes branch prediction logic to avoid pipeline stalls, if correctly, predict whether or not branch will be taken Relevant when branch instruction is executed if branch prediction is not correct explanat recycle penalty is applicable to u pipeline & 4 cycle penalty if branch is ion 2M related to v pipeline. The prediction mechanism is implemented using 4 way set associative cache with 256 entries referred as branch target buffer. Whenever branch is taken CPU enters the branch instruction address & the destination address in BTB. When an instruction is decoded CPU searches the BTB to determine presence of entry. If its present CPU uses precious history to decide to take the branch. **Explain the RISC processor. d**) 4MRISC, or Reduced Instruction Set Computer is a type of microprocessor Ans. architecture that utilizes a small, highly-optimized set of instructions, rather than a more specialized set of instructions often found in other types of architectures.

WINTER – 2016 EXAMINATION

Model Answer Subject Code:

: 17627

	1. Simple instruction	n set: in a RISC machine. the instruction set	
	contains simple ba	sic instructions, from which more complex	
	instructions can be co	omposed. These instructions with less latency are	Descrint
	preferred.	1	ion/
	2. Same length instru	uctions: each instruction is of same length, so that	features
	it may be fetched in a	single operation. The traditional microprocessors	of RISC
	from intel or Motorola	a support variable length instructions.	<i>4M</i>
	3. Single machine cy	cle instruction: Most instructions complete in one	
	machine cycle, which	allows the processor to handle several instructions	
	at the same time.	RISC processors have unity CPI (clock per	
	instruction), which is	due to optimization of each instruction on the	
	CPU and massive pipe	elining embedded in a RISC processor.	
	4. Pipelining: usual	ly massive pipelining is embedded in a RISC	
	processor. The pipelin	ing is key to speed up RISC machines.	
	5. Very few addre	essing modes and formats: unlike the CISC	
	processors, where the	e numbers of addressing modes are very high. In	
	RISC processors the	addressing modes are much less and it supports	
	few formats.		
	6. Large number of	registers: the RISC design philosophy generally	
	incorporates a larger i	number of registers to prevent in large amounts of	
	interactions with mem	lory.	
	7. Micro-coding is n	ot required: Unlike in CISC machines, in RISC	
	architecture, instruction	on micro-coding is not required. This is because of	
	the availability of a s	set of simple instructions and simple instructions	
	may be easily built int	to the hardware.	
	8. Load and Store a	rchitecture: the RISC architecture is primarily a	
	Load and Store arch	itecture, implying that all the memory accesses	
	takes place using Load	d and Store type operations.	(7.6
e)	State the priority int	errupts of 80286.	<i>4M</i>
4 10 0	(Note: Any relevant a	escription of interrupts shall be considered).	
Ans.	n more than one in	a their priorities as shown below:	Connet
	Order	Interrupt	Correct Driority
	1	Interrupt exception	1 110111y interrunt
	2	Single step	s s
	-	NMI	3 4M
	4	Processor extension segment overrun	
	5	INTR	
	6	INT instruction	
	0		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2016 EXAMINATION Model Answer State

Subject Code:

: 17627

f)	Describe any four DOS interrupts.	<i>4M</i>
Ans.	INT21	
	1) 3CH : to create file	
	Registers to be used before calling the function using INT 21H:	Descript
	CX=File Attribute DS: DX - full file path (zero terminated) – an	ion of
	ASCIIZ String file descriptor;	any four
	a start variable in data segment loaded to DX	DOS
	Syntax: mov ah,3Ch; function 3Ch - create a file	interrupt
	int 21h ; transfer to DOS	s 1M
		each
	2) 3DH: to open file	
	This function opens the indicated file	
	Registers to be used before calling the function using INT 21H:	
	DS: DX - an ASCIIZ String file descriptor	
	AL=Access Code and sharing modes are as follows	
	00H- Open for reading mode	
	01H- open for writing mode	
	02H – open for read/write mode	
	Syntax: mov ah,3Dh; function 3Dh - open the file	
	int 21h; transfer to DOS	
	3) 3EH: to close the file This function closes the indicated file	
	Registers to be used before calling the function using INT 21H ·	
	BX - file handle	
	Syntax: mov ab 3Eb: function 3Eb - close a file	
	int 21h: transfer to DOS	
	4) 3FH: to read the file	
	This function reads up to CX bytes from the Indicated file into	
	the specified memory buffer. On successful return, the AX Register	
	contains the number of bytes actually read.	
	Registers to be used before calling the function using INT 21H:	
	BX = file handle	
	CX = number of bytes to read	
	DS:DX -> buffer for data	
	Syntax: mov ah,3Fh; function 3Fh – read the file	
	int 21h; transfer to DOS	
	5) 40H: to write to the file	
	This function writes the specified number of bytes from a buffer	
		1

WINTER – 2016 EXAMINATION

Model Answer Subject Code:

to a file or device.	
Registers to be used before calling the function using INT 21H:	
BX = file handle	
CX = number of bytes to write	
DS:DX -> data to write	
Syntax: moy ah.40h; function 40h - write to file	
int 21h: transfer to DOS	
6) 41H: to delete the file	
This function deletes the specified file	
Registers to be used before calling the function using INT 21H.	
ASCIIZ filename DS: DX - zero terminated full paths	
Syntax mov ab 41h: delete file int 21h: transfer to DOS	
7) 56H: to rename the file	
This functions renames the given file with new name specified by	
ES: DI	
Registers to be used before calling the function using INT 21H.	
DS: DX address of ASCIIZ filename of existing file ES : DI –	
ASCIZ new filename	
Syntax: mov ah. 56h: delete file int 21h: transfer to DOS	
8) 43H: Set/Get file attribute	
This function gets or sets the file attributes	
Registers to be used before calling the function using INT 21H:	
AL = 00H to get attributes 01H to set attributes $CX = file attributes.$	
if AL=01H. Bits can be combined DS: $DX =$ segment: offset of	
ASCIIZ pathname	
Syntax: mov ah. 43h: set/get file attributes int 21h: transfer to DOS	
9) 57H: Set/Get file time & date	
This function gets or sets the file date and time.	
Registers to be used before calling the function using INT 21H:	
$AL = 00h \ 0r \ 01H \ (0 - get \ 1 - set)$	
BX = file handle	
DS: DX = segment: offset of ASCIIZ pathname	
Syntax: mov ah. 57h: set/get file date and time int 21h: transfer to	
DOS	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

	INT 26H	
	INT26H Absolute Disk Write On entry: AL Drive number (0=A, 1=B) CX Number of sectors to write DX Starting sector number DS:DX Address of sectors to write	
	Returns:AXError code (if CF is set; see below)FlagsDOS leaves the flags on the stackThis interrupt reads one or more sectors from a disk drive, and iscomparable to the service provided by the ROM BIOS in Interrupt 13	3h.
	INT 25hAbsolute Disk Readeads one or more sectors on a specified logical disk.	
	On entry:ALDrive number (0=A, 1=B)CXNumber of sectors to readDXStarting sector numberDS:DXBuffer to store sector readReturns:AXError code (if CF is set; see below)	
(n	Flags DOS leaves the flags on the stack State any four differences between COM and EXE program	
Ans.	State any rout unterences between .COW and .EXE program. Sr. .COM No. .EXE	Any 4
	1 .COM file does not .EXE file contains header contain any header	differen ces
	2 .COM file cannot contain .EXE file may contain relocation items.	between .com
	3 Maximum size is 64k No limit on size; Can be of minus 256 bytes. For PSP and 2 bytes for stack	and .exe program s 1M each
	4 Entry point is PSP:0100 Entry point is defined by END directive.	
	5 Stack size is 64K minus Stack size is defined in a 256 bytes for PSP and size program with STACK of executable data and directive code.	
	6 Size of file is exact size of Size of file is size of program	

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

		program.	plus header (Multiple of 256	
			bytes)	
2.	a) Ans.	Attempt any FOUR of the fol Explain the super scalar exect In case of Pentium hardware be such a processor multiple instreact the execution unit. For execute Pentium microprocessor issue independent integer pipelines be Pre-fetc Decode If generate Generate data memory address Access data cache Calculate ALU result	Big the field of t	16 4M Correct Diagram 2M
		Write back result U Pipe First stage of the pipe-li instructions are prefetched memory. Because the Penti instructions and data, prefetch for access to the cache. If the memory reference is made. If line-size (32-byte) prefetch. Buffers operate in conjuncti allows one pre fetch buffer to the other pre fetches accordin The pre fetch buffers alternate The second pipe-line stage	Write back result V Pipe The is Prefetch (PF) stage in which from the on chip instruction cache or ium processor has separate caches for the ne is not in the code cache, a in the PF stage, two independent pairs of ion with the branch target buffer. This o pre fetch instructions sequentially, while ing to the branch target buffer predictions. the their pre fetch paths. is Decode1 (D1) in which two parallel	Descript ion 2M

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

	instruction	attempt to decode and issue	the next two sequential	
	can be iss	used contingent upon the instruction	on pairing rules described in	
	the sectio	n titled "Instruction Pairing Rule	s" The Pentium processor	
	will deco	le near conditional jumps (long d	lisplacement) in the second	
	on code m	ap (OFh prefix) in a single clock i	n either pipe-line	
	The D1 s	tage is followed by third stage i	e Decode 2 (D 2) in which	
	the addres	s of memory resident operands an	e calculated	
	The fourt	h stage	e culculated.	
	Execute (EX) stage of the pipe line for bo	oth ALU operations and for	
	data cache	e access: therefore those instruction	ons specifying both an ALU	
	operation	and a data cache access will requ	ire more than one clock in	
	this stage	. In EX all u-pipe instructions	and all v-pipe instructions	
	except co	nditional branches are verified for	r correct branch prediction.	
	Microcod	e is designed to utilize both	pipe-lines and thus those	
	instruction	ns requiring microcode execute.		
	The final a	and fifth stage is		
	Write ba	ck (WB) where instructions are e	nabled to modify processor	
	state and	complete execution. In this stage	v-pipe conditional branches	
	are verifie	d for correct branch prediction. A	ll the registers and memory	
	locations	are updated in this stage.		
	b) Describe d	ebug and test registers of 80386	microprocessor.	<i>4M</i>
A	ans. Debug Reg	gister:		
		31 0		
		Linear Breakpoint Address 0	DR0	
		Linear Breakpoint Address 1	DR1	Diagra
		1		Drugru
		Linear Breakpoint Address 2	DR2	m for
		Linear Breakpoint Address 2 Linear Breakpoint Address 3	DR2 DR3	m for Debug Registe
		Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved	DR2 DR3 DR4	m for Debug Registe rs 1M
		Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Intel Reserved	DR2 DR3 DR4 DR5	m for Debug Registe rs 1M
		Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Intel Reserved Breakpoint Status	DR2 DR3 DR4 DR5 DR6	m for Debug Registe rs 1M
		Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Intel Reserved Breakpoint Status Breakpoint Control	DR2 DR3 DR4 DR5 DR6 DR7	m for Debug Registe rs 1M
		Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Intel Reserved Breakpoint Status Breakpoint Control	DR2 DR3 DR4 DR5 DR6 DR7	m for Debug Registe rs 1M
	The same	Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Intel Reserved Breakpoint Status Breakpoint Control	DR2 DR3 DR4 DR5 DR6 DR7	m for Debug Registe rs 1M
	There are	Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Breakpoint Status Breakpoint Control eight debug registers DR0 to DR	DR2 DR3 DR4 DR5 DR6 DR7 27 for hardware debugging.	m for Debug Registe rs 1M
	There are The DR0	Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Breakpoint Status Breakpoint Control eight debug registers DR0 to DR to DR3 are used to store progr	DR2 DR3 DR4 DR5 DR6 DR6 DR7 R7 for hardware debugging. am controllable breakpoint	m for Debug Registe rs 1M
	There are The DR0 addresses.	Linear Breakpoint Address 2 Linear Breakpoint Address 3 Intel Reserved Breakpoint Status Breakpoint Control eight debug registers DR0 to DR to DR3 are used to store progr The DR4 and DR5 are not used and DR7 are used to hold	DR2 DR3 DR4 DR5 DR6 DR7	m for Debug Registe rs 1M Descript ion 1M

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

	breakpoint control information respectively.	
	Test registers of 80386:	
	31 0	
	Test Control TR6	Diagram
	Test Status TR7	for Test registers 1M
	The 80386 has two test registers for page caching. The registers are TR6 – Test Control and TR7 – Test Status. TR6 & TR7 are used for translation look aside buffer (TLB). TLB holds page table address translation to reduce the no of memory required for page table	Descript
	translation. The test registers are used to perform the confidence checking on the paging. TR6 is the TLB testing command register. By writing into this	ion 1M
	register, you can either initiate a write directly into the TLB or perform a mock TLB lookup. TR7 is the TLB testing data register. When a program is performing writes, the entry to be stored is contained in this	
	register, along with cache set information.	
$\begin{array}{c} c \\ \Delta ns \end{array}$	Explain with neat diagram DOS-BIOS interface.	<i>4M</i>
71113.		
	DOS BIOS	DOS- BIOS interface
	Hardware/ Devices	diagram : 2M
	BIOS contains a set of routines in a ROM to provide the device supports. The BIOS tests and initializes attached devices and provide services that are used for reading to and writing from the devices	Descript
	One task of DOS is to interface with BIOS when there is a need to access its facilities.	ion: 2M
	request to BIOS which in turn accesses the requested device. Sometimes, a program makes a direct request to BIOS, especially for keyboard and screen services.	

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

d)	Describe the basic features of RISC processor.	<i>4M</i>
Ans.	RISC, or Reduced Instruction Set Computer is a type of microprocessor	
	architecture that utilizes a small, highly-optimized set of instructions,	
	rather than a more specialized set of instructions often found in other	
	types of architectures.	Descript
	1. Simple instruction set: in a RISC machine, the instruction set	ion/
	contains simple basic instructions, from which more complex	features
	instructions can be composed. These instructions with less latency are	of RISC
	preferred.	<i>4M</i>
	2. Same length instructions: each instruction is of same length, so that	
	it may be fetched in a single operation. The traditional microprocessors	
	from intel or Motorola support variable length instructions.	
	3. Single machine cycle instruction: most instructions complete in one	
	machine cycle, which allows the processor to handle several instructions	
	at the same time. RISC processors have unity CPI(clock per	
	instruction), which is due to optimization of each instruction on the	
	CPU and massive pipelining embedded in a RISC processor.	
	4. Pipelining: usually massive pipelining is embedded in a RISC	
	processor. The pipelining is key to speed up RISC machines.	
	5. Very few addressing modes and formats: unlike the CISC	
	processors, where the number of addressing modes are very high. In	
	RISC processors the addressing modes are much less and it supports	
	few formats.	
	6. Large number of registers: the RISC design philosophy generally	
	incorporates a larger number of registers to prevent in large amounts of	
	interactions with memory.	
	7. Micro-coding is not required: Unlike in CISC machines, in RISC	
	architecture, instruction micro-coding is not required. This is because of	
	the availability of a set of simple instructions and simple instructions	
	may be easily built into the hardware.	
	8. Load and Store architecture: the RISC architecture is primarily a	
	Load and Store architecture, implying that all the memory accesses	
	takes place using Load and Store type operations.	
e)	Give important features of sun ultra SPARC.	<i>4M</i>
Ans.	It contains an integer unit, a FPU and a optional coprocessor.	
	The 64 bits Ultra SPARC architecture has following features:	
	1. It has 14 stages non-stalling pipeline.	
	2. It has 6 execution units including two for integer, two for floating	
	point, one for load/store and one for address generation units.	
	3. It has a large number of buffers but only one load/store unit, it	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

17627

		dispatches them one instruction at a time from the instruction stream.	
		4 It contains 32KB I 1 instruction cache 64KB I 1 data cache 2KB	Anv
		prefetch cache and 2 KB write cache It also has 1MB on chin I 2 cache	eight
		5 Like Dentium MMV it also contains the instructions to support	features
		5. Like Pentium MINIX it also contains the instructions to support	of sun
		multimedia. These instructions are helpful for the implementation of	oj sun
		image processing codes.	uuru SDADC
		6. One of the major limitations of SPARC system is its low speed	SPARC
		compared to most of the modern processors.	processo
		7. SPARC stores multi-byte numbers using BIG endian format, i.e. the	r 1/2M
		MSB will be stored at the lowest memory address.	each
		8 It supports a pipelined floating point processor. The FPU has 5	
		separate functional units for performing the floating point operations	
		The floating point instructions can be issued per avala and avaguted by	
		the EDL unit	
		The source and data moults are stored in 22 mainter files. Mainter of	
		The source and data results are stored in 52 register files. Majority of	
		the floating point instructions have a throughput of one cycle and a	
		latency of three cycles. Although the single precision (32 bit) or double	
		precision (64 bit) floating point computations can be performed by	
		hardware, quad precision i.e. 128 bits operation can be performed only	
		in the software	
3.		Attempt any <u>TWO</u> of the following:	16
3.	a)	Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment	16 8M
3.	a)	Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management.	16 8M
3.	a) Ans.	Attempt any TWO of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage of	16 8M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode.	16 8M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactly	16 8M Explana
3.	a) Ans.	Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode.	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any TWO of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory that	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of80386. Like 80386 real mode, the addresses in virtual 8086 mode lie	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of80386. Like 80386 real mode, the addresses in virtual 8086 mode liewithin 1Mbytes of memory. In virtual mode, the paging mechanism and	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any TWO of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of80386. Like 80386 real mode, the addresses in virtual 8086 mode liewithin 1Mbytes of memory. In virtual mode, the paging mechanism andprotection capabilities are available at the service of the programmers	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any TWO of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of80386. Like 80386 real mode, the addresses in virtual 8086 mode liewithin 1Mbytes of memory. In virtual mode, the paging mechanism andprotection capabilities are available at the service of the programmers(note the 80386 supports multiprogramming; hence more than one	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environmentmemory management.The virtual 8086 mode of operation of 80386, offers an advantage ofexecuting 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactlyidentical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory thatmay be anywhere in the 4Gbytes address space of the protected mode of80386. Like 80386 real mode, the addresses in virtual 8086 mode liewithin 1Mbytes of memory. In virtual mode, the paging mechanism andprotection capabilities are available at the service of the programmers(note the 80386 supports multiprogramming; hence more than oneprogrammer may use the CPU at a time).	16 8M Explana tion: 4M
3.	a) Ans.	 Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time). Paging unit may not be necessarily enable in virtual mode, but may 	16 8M Explana tion: 4M
3.	a) Ans.	Attempt any <u>TWO</u> of the following:Illustrate with diagram the concept of virtual 8086 environment memory management.The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode.The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode.1. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time).2. Paging unit may not be necessarily enable in virtual mode, but may be needed to run the 8086 programs which require more than 1Mbyts of	16 8M Explana tion: 4M
3.	a) Ans.	 Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time). Paging unit may not be necessarily enable in virtual mode, but may be needed to run the 8086 programs which require more than 1Mbyts of memory for memory management function. 	16 8M Explana tion: 4M
3.	a) Ans.	 Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time). Paging unit may not be necessarily enable in virtual mode, but may be needed to run the 8086 programs which require more than 1Mbyts of memory for memory management function. 	16 8M Explana tion: 4M
3.	a) Ans.	 Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time). Paging unit may not be necessarily enable in virtual mode, but may be needed to run the 8086 programs which require more than 1Mbyts of memory for memory management function. In virtual mode, the paging unit allows only 256 pages, each of 4Kbytes 	16 8M Explana tion: 4M
3.	a) Ans.	 Attempt any <u>TWO</u> of the following: Illustrate with diagram the concept of virtual 8086 environment memory management. The virtual 8086 mode of operation of 80386, offers an advantage of executing 8086 programs while in protected mode. The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode. In virtual mode, 8086 can address 1Mbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 80386. Like 80386 real mode, the addresses in virtual 8086 mode lie within 1Mbytes of memory. In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers (note the 80386 supports multiprogramming; hence more than one programmer may use the CPU at a time). Paging unit may not be necessarily enable in virtual mode, but may be needed to run the 8086 programs which require more than 1Mbyts of memory for memory management function. In virtual mode, the paging unit allows only 256 pages, each of 4Kbytes size. Each of the pages may be located anywhere in the maximum 4Gbytes a physical memory. 	16 8M Explana tion: 4M

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

le: 17627

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

	c)	Explain the hybrid architecture (i.e. RISC and CISC) of processors.	<i>8M</i>
	Ans.	State of the art processor technology has changed significantly since	
		RISC chips were first introduced in the early '80s. Because a number of	
		advancements (including the ones described on this page) are used by	
		both RISC and CISC processors, the lines between the two architectures	Relevant
		have begun to blur.	explanat
		The two architectures almost seem to have adopted the strategies of the	ion of
		other. Because processor speeds have increased, CISC chips are now	hybrid
		able to execute more than one instruction within a single clock.	architect
		This also allows CISC chips to make use of pipelining.	ure /
		With other technological improvements, it is now possible to fit many	RISC
		more transistors on a single chip. This gives RISC processors enough	/CISC
		space to incorporate more complicated, CISC-like commands.	8M
		RISC chips also make use of more complicated hardware, making use	
		of extra function units for superscalar execution.	
		The two styles have become so similar that distinguishing between them	
		is no longer relevant. However, it should be noted that RISC chips still	
		retain some important traits.	
		RISC chips strictly utilize uniform, single-cycle instructions.	
		They also retain the register-to-register, load/store architecture.	
		And despite their extended instruction sets, RISC chips still have a	
		large number of general purpose registers.	
		The most popular hybrid architecture has processors are the Pentium	
		and AMD Athlon family processors which are compatible with software	
		written for their CISC predecessors.	
		Modern RISC processors have become CISC like by supporting more	
		functions and support more instructions than old CISC design.	
		Using the CISC architecture as more instructions , some applications	
		may be run much faster such as multimedia applications, such as	
		telecommunications encoding/ decoding , image conversions and video	
		processing.	
4.		Attempt any FOUR of the following:	16
	a)	Draw the architecture of Pentium processor.	<i>4M</i>
	Ans.	*	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

	14 bits		Code cache	CISC M	colon	Branch prediction		
	d mont	256	bits	- Loniopon	1	d decodo stage i		
	a <mark>me</mark> mor	Pre	efetch buffers	1395 A	order (o	Pipelined floating-point		
	he data c	U pipe	V	pipe 64 l	bits	unit		
		Integ	er Integer J ALU					
	a other for the	32 bits	32 bit	s and and a	euizis	contents or the i		
	or ulin	F	Register set		tan p	Autiplior		
	Pentiun	enousura	32 bits	all of all	103	Multiplier		
	LAAdel	¥.	+	Ceche -	1636	Adder		
	14 bits		Data cache	ode/data o		Divider		
b) Ans.	Explain the co pentium proce Separate 8K B The following f cache.	ssors. instruc	of separate ction and Da nows the org	ata Cach	nd d ne: 1 of i	lata cache mo	emory in data	<i>4M</i>
			Way 0			Way I		
	Set 0	Tag	Data	Т	ag	Data		
	Set 1	Tag	Data	Т	ag	Data	1	
			•			•	-	Diagram 2M
	•							
	5 0		8	5 A				
			•			•		
	Set 126	Tag	Data	Т	ag	Data		
	Set 127	Tag	Data	Т	ag	Data	1	
		Ì	◀— 32 bytes	- →	1	← 32 bytes−	→	
	The Pentium pr they need more Both the cache to convert the li	rocessor bandwi s have T near ado	• has 2 separ dth than the TLB's assoc dresses to th	rate 8KB unified c iated wit e respect	data cache ch th ive <u>p</u>	a and code Ca e. em. The TLBs physical addres	ches. But s are used sses.	

WINTER - 2016 EXAMINATION

Model Answer	Subject Cod

e: 17627

	As the data cache stores only 8KB data and code cache stores only	
	instructions, the look up process speed for Pentium increases.	Explana
	Advantages of separate instruction and data caches :	tion of
	1. Separate code and data cache memories effectively and efficiently	Concept
	executes the branch prediction.	of
	2. Simultaneous cache look up is achieved by Pentium processor due to	separate
	the separate data and code cache.	code
	3. The separate cache memories raise the system performance i.e. an	and data
	internal read request is performed more quickly than a bus cycle to	cache in
	memory.	Pentium
	4. They reduce the use of processor's external bus when the same	<i>2M</i>
	locations are accessed multiple times.	
c)	Describe enabling and disabling of paging in 80386.	<i>4M</i>
Ans.	Enabling and disabling the paging in 80386 is done with the help of	
	CR0 register . the layout of CR0 is as shown in the figure below:	
	31 2423 1615 87 0	Enablin
		g and
	G G G G G G G G G G G G G G G G G G G	disablin
		g of
		paging
	MSW	:diagra
	NOTE: 0 indicates Intel reserved: Do not define;	<i>m</i> :2M
	Control Register 0	
	By setting the PG bit (Most significant Bit or bit 31) of CR0 to 1,	
	paging can be enabled.	
	This bit cannot be set until the processor is in protected mode.	
	When PG is set, the PDBR (Page Directory Base Register – CR3)	Explana
	should already be initialized with a physical address that points to a	tion
	valid page directory.	:2M
	To enable paging, use MOV instruction to set most significant bit of	
	CR0,	
	<i>E.g.</i> MOV CR0, EAX	
	After this bit is set, page translation takes effect on the next instruction.	
	Paging can be disabled by making the PG bit of CR0 as zero.	
d)	Which function is used to "Delete file"? Explain in detail with	<i>4M</i>
	example.	
Ans.	Function 41h under DOS interrupt 21h is used to delete a file.	Delete
	AH = 41H - "UNLINK" - DELETE FILE	function
	Entry:	: 2M

WINTER – 2016 EXAMINATION

	WINTER – 2016 EXAMINATION	
	Model Answer Subject Code: 176	27
	 DS:DX -> ASCIZ filename (no wildcards, but see notes) CL = attribute mask for deletion (server call only, see notes) Return: CF clear if successful, AX destroyed (DOS 3.3) AL seems to be drive of deleted file CF set on error AX = error code (02h,03h,05h) Example program to delete a file abc.txt from c:\tasm Code segment Movax,data Mov ds, ax Mov ah,41h Lea dx, filename Int 21h Mov ah, 4ch Int 21h Code ends Data segment Filename db "c:\tasm\abc.txt",00 Data ends 	syntax, usages and example : 2M
e) Ans.	Explain the structure of MS-DOS with respect to its layers. MS DOS structure is as shown below :	4M Structur e of MS- DOS diagram : 2M

WINTER - 2016 EXAMINATION

Model Answer	Subject Code:	17627	
MS DOS is divided in to 3 lowers wh	ich ana		
1 PIOS	icii are:		
1. DIOS 2. DOS karnal			
2. DOS Kellel 3. Command processor (shell)			
1 BIOS.		F	vnlana
It is provided by the manufacturer		<i>L</i> .	tion ·
It is provided by the manufacturer.	ependent device drivers fo	or the	2M
devices like	ependent device drivers it	JI LIC	2111
1 Console display and keybo	ard (CON)		
2 Line printer (PRN)			
3 Auxiliary devices (AUX)			
4 date and time (CLOCK)			
5 Boot disk device (Block de	vice)		
Kernel communicates with these devi	ce drivers through the I/Ω r	equest	
packets and then the drivers trans	late these requests into t	oroper	
commands for various controllers	fate these requests into p	Joper	
BIOS is read into RAM at the time of	of initialization as a part of	a file	
named IO SYS. This file is marked w	with the special attribute as l	hidden	
and system	fui die special attroute as h	naacn	
2. DOS Kernel			
Functions :			
1. file and record management			
2. memory management			
3. character device I/O			
4. swapping of programs			
5. access to real time clock			
The DOS kernel is read into memory	during system initialization	1 from	
the MSDOS.SYS file on the be	oot disk. (The file is	called	
IBMDOS.COM in PC-DOS.) This f	ile is marked with the attr	ibutes	
hidden and system.			
3. Command processor:			
Functions:			
1. User interface with OS.			
2. Parsing and carrying out user comm	ands.		
3. Loading and execution of other prog	grams from disk or other me	mory.	
The default shell that is provided with	MS-DOS is found in a file	called	
COMMAND.COM. Although CO	OMMAND.COM prompts	and	
responses constitute the ordinary us	er's complete perception of	f MS-	
DOS, it is important to realize that	t COMMAND.COM is no	ot the	
operating system, but simply a specia	l class of program running	under	
the control of MS-DOS.	0		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

f)	Explain floating point exceptions.	<i>4M</i>
Ans.	The Pentium provides 6 floating point exceptions:	
	1. Invalid operation	
	2. Divide by zero	
	3. De-normalized operand	Any
	4. Numeric overflow	four
	5. Numeric underflow	floating
	6. Inexact result	point
	All these exceptions classes have a corresponding flag bit in the FPU	exceptio
	status word and a mask bit in FPU control word.	ns
	The exception summary (ES) flag in the status word of Pentium	<i>4M</i>
	indicates when any of these exceptions have been detected.	
	It also has a stack fault (SF) flag in the status word which distinguishes	
	between the 2 types of invalid operation exceptions.	
	When the FPU detects a floating point exception, it sets the appropriate	
	flags in the FPU status word, then takes one of the two possible actions :	
	1. Handles the exceptions automatically, producing a predefined result	
	and allow program to continue its execution without any disturbance.	
	2. Invokes a software exception handler to handle the exception.	
	1. Invalid operation	
	The floating point invalid exception occurs in response to two general	
	types of operations :	
	1. Stack overflow or underflow	
	2. Invalid arithmetic operand.	
	When the SF is set to 1, a stack operation has resulted in stack overflow	
	or underflow.	
	When the flag is cleared to 0, an arithmetic instruction has encountered	
	an invalid operation.	
	The FPU explicitly sets the SF flag when it detects a stack overflow or	
	under flow condition, but it does not explicitly clear the flag when it	
	detects an invalid arithmetic operand condition.	
	As a result the state of the SF flag can be 1 following an invalid	
	arithmetic operation exception, if it was not cleared from the last time a	
	stack overflow or under flow condition occurred.	
	2. Divide by zero:	
	The FPU reports a floating point zero divide exception, whenever an	
	instruction attempts to divide the operand by 0.	
	The flag ZE for this exception is bit 2 of the FPU status word, and the	
	mask bit ZM is bit2 of the control word.	
	The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, FIDIVR instructions and	
	the other instructions that perform division internally can report the	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

		divide by zero exception.	
		3. De-normalized operand	
		The FPU signals the de-normal operand exception under the following	
		conditions :	
		1. If an arithmetic instruction attempts to operate on a denormal	
		operand.	
		2. If an attempt is made to load the denormal single or double real value	
		into an FPU register.	
		The flag DE for this exception is bit 1 of the FPU status word, and the	
		mask bit (DM) is the 1 of the FPU control word.	
		4. Numeric overflow	
		This exception occurs when the rounded result of an arithmetic	
		instruction exceeds the largest allowable finite value that will fit into the	
		real format of the destination operand.	
		5. Numeric underflow	
		This exception occurs when the rounded result of an arithmetic	
		instruction is less than the smallest possible normalized, finite value that	
		will fit into the real format of the destination operand.	
		6. Inexact result	
		This exception occurs if the result of an operation is not exactly in	
		representable in the destination format.	
5.		Attempt any <u>FOUR</u> of the following:	16
	a)	State the functions of the following pins of 80386 μ p (microprocess)	<i>4M</i>
		(i) $\overline{BE_3} - \overline{BE_0}$	
		(ii) BS_{16}	
		(iii) $D/\overline{\overline{C}}$	
		$(iv) \overline{ADS}$	
		(i) $\overline{BE_3} - \overline{BE_0}$ (Bus/byte enable signal)	
	Ans.	The 32-bit Data bus supported by 80386 and the memory system of	
		80386 can be viewed as a 4-byte wide memory access mechanism.	
		The four byte enable lines, $\overline{BE_2} - \overline{BE_0}$, may be used for enabling	
		these four banks. Using these four enable signal lines, the CPU may	1M per
		transfer 1 byte/2bytes/3bytes or 4bytes of data simultaneously.	function
			of each
		(ii)BS ₁₆ (bus size 16: active low :input signal)	oj cuch
		(ii)BS ₁₆ (bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices	pin
		(ii)BS ₁₆ (bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles	pin
		(ii)BS ₁₆ (bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles may be executed to read a 32-bit data from a peripheral.	pin
		(ii)BS ₁₆ (bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles may be executed to read a 32-bit data from a peripheral. (iii) D/\overline{C} :Output signal	pin
		 (ii)BS₁₆(bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles may be executed to read a 32-bit data from a peripheral. (iii)D/C:Output signal Data/ Control is a bus cycle definition pin that distinguishes data 	pin
		 (ii)BS₁₆(bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles may be executed to read a 32-bit data from a peripheral. (iii)D/C:Output signal Data/ Control is a bus cycle definition pin that distinguishes data cycles either memory or I/O from control cycles which are interrupt. 	pin
		 (ii)BS₁₆(bus size 16: active low :input signal) The bus size-16 input pin allows the interfacing of 16-bit devices with the 32-bit wide 80386 data bus. Successive 16-bit bus cycles may be executed to read a 32-bit data from a peripheral. (iii)D/C:Output signal Data/ Control is a bus cycle definition pin that distinguishes data cycles, either memory or I/O, from control cycles which are interrupt acknowledge halt and instruction fatching 	pin

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

17627

		(iv) ADS (address strobe signal :a	ctive low : output signal)		
		The address status output pin in	ndicates that the address bus and bu	8	
		cycle definition (w/R#, D/C#,	M/IO#, BE_0 #-BE ₃) are carrying the	e	
		respective valid signals. The 8	0386 does not have any ALE signa	1	
		and so this signal may be used	l for latching the address to externa	1	
		latches.			
	b)	List any four difference betw	veen real addressing mode and	1 <i>4M</i>	[
		protected virtual (PVAM) addres	ssing mode of 80286.	,	
		(Note: Any other relevant descript	tion of real addressing and protected	t	
		virtual adaressing mode shall be c	onstaerea)		
	Δns	Bool addressing mode	Protocted Virtual Addressing		
	1115.	Keal autoressing moue	Mode		
		80286 works as fast 8086and	This is a normal addressing	An	v
		prepares 80286 for protected	mode of 80286.	fou	r
		mode		points	s of
		Features of 80286 like memory	All the features of 80286 are	differ	ren
		management, virtual memory	used	ce – 1	1M
		and protection are not used		eac	h
		It uses only 20 address lines A_0 -	It uses all 24 address lines A_0 -		
		A ₁₉	A ₂₃		
		It accesses only 1MB memory	It can access 16MB physical		
			memory and 1GB virtual		
			memory		
		Physical address calculation is	Segment register acts as selector		
		simple. Four 0's are appended	to point to the descriptor. These		
		on RHS of segment address and	descriptors provide the 24 bit		
		offset value is then added to get	base address to which offset		
		physical address	value is added.		
	c)	State any four salient features of	Pentium.	<i>4M</i>	[
A	Ans.	Following are the features of Pen	tium:		
		1) It is based on net burst micro arc	chitecture.		
		2) Superscalar architecture			
		3) Dynamic branch prediction			
		4) Pipelined Floating-Point Unit		Any forte	4
		5) Separate code and data caches		jeaiur 1M or	res:
		6) 64-bit data bus		1111 60	ich
		7) Address parity			
		8) Support for Intel MMX technolo	ogy		
		9) Dual power supplies—separate	VCC2 (core) and VCC3 (I/O)		

WINTER – 2016 EXAMINATION

Model Answer Subject Code:

	voltage inputs	
	10) Separate 16-Kbyte, 4-way set-associative code and data caches,	
	each with improved fully associative TLBs	
	11) Pool of four write buffers used by both execution pipelines	
	12) Enhanced branch prediction algorithm	
	13) New Fetch pipeline stage between Prefetch and Instruction	
	Decode.	
d)	Explain non-maskable interrupts.	<i>4M</i>
Ans.	Non maskable interrupts: Non maskable interrupts provide a method	
	of servicing very high priority interrupts. NMI is an example of non	
	maskable interrupt. It is an external pin to the microprocessor. A	Correct
	common example of the use of non maskable interrupt (NMI) would be	explanat
	to activate a power failure routine. When a NMI is pulled high it causes	ion:4M
	an interrupt with an internally supplied vector value of 2. No interrupt	
	acknowledgement cycle is performed by the processor when NMI	
	occurs. While executing NMI, no further NMI is serviced until the next	
	IRET instruction is executed or the processor is reset. If NMI occurs at	
	the time of servicing a NMI, its occurrence will be saved and it will be	
	processed when the servicing of the first will be over. The IF bit is	
	cleared at the beginning of NMI interrupt to inhibit further INTR	
-)	requests.	
 e)	requests. Explain pentium pro-processor.	<i>4M</i>
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the part instructions can be executed earlier. As in our	<i>4M</i>
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second. 	<i>4M</i>
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed since the second	<i>4M</i>
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register which is loaded from	4M Relevant
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed.	4M Relevant explanat
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of	4M Relevant explanat ion-4M
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute	4M Relevant explanat ion-4M
e) Ans.	requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier.	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent bus architecture to get an enhanced system bandwidth. Pentium-Pro 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent bus architecture to get an enhanced system bandwidth. Pentium-Pro uses two separate and independent buses- one between the CPU and the 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent bus architecture to get an enhanced system bandwidth. Pentium-Pro uses two separate and independent buses- one between the CPU and the main memory and the other between the CPU and the cache memory. 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent bus architecture to get an enhanced system bandwidth. Pentium-Pro uses two separate and independent buses- one between the CPU and the main memory and the other between the CPU and the cache memory. The CPU can thus access both, the main memory and the cache 	4M Relevant explanat ion-4M
e) Ans.	 requests. Explain pentium pro-processor. 1. Speculative Execution: Which means that the CPU should speculate which of the next instructions can be executed earlier. As in our example just now cited, the CPU will not be able to execute the second instruction before the first instruction is executed, since the second instruction requires the value of the register, which is loaded from memory after the first instruction is executed. However, some of the next instructions may be executed earlier since they are independent of the previous instructions. The CPU may speculate this and may execute these next instructions earlier. 2. Out of Turn Execution: Naturally the consecutive instruction execution in a sequential flow will be hampered and the CPU should be able to execute out of turn instructions. 3. Dual Independent Bus: Pentium-Pro incorporates dual independent bus architecture to get an enhanced system bandwidth. Pentium-Pro uses two separate and independent buses- one between the CPU and the main memory and the other between the CPU and the cache memory. The CPU can thus access both, the main memory and the cache simultaneously. This obviously yields a high throughput. 	4M Relevant explanat ion-4M

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

	Pentium has been extended to achieve multiple branch prediction in	
	Pentium-Pro. Based on the past history of the branches taken, multiple	
	branch prediction logic enhances the performance of Pentium. The	
	processor uses an associative memory called branch target buffer for	
	implementing this algorithm.	
f)	Explain design issues of RISC processor.	<i>4M</i>
Ans.	1. Register Window :	
Ans.	 1. Register Window : The reduced hardware requirements of RISC processors leave additional space available on the chip for the system designer. RISC CPUs generally use this space to include a large number of registers (> 100 occasionally). The CPU can access data in registers more quickly than data in memory so having more registers makes more data available faster. Having more registers also helps reduce the number of memory references especially when calling and returning from subroutines. The RISC processor may not be able to access all the registers it has at any given time provided that it has many of it. Most RISC CPUs have some global registers which are always accessible. The remaining registers are windowed so that only a subset of the registers is accessible at any specific time. To understand how register windows work, we consider the windowing scheme used by the Sun SPARC processor. The processor can access any of the 32 different registers at a given time. (The instruction formats for SPARC always use 5 bits to select a source/destination registers are contained in the register window. The register window overlap. The overlap consists of 8 registers in SPARC CPU. Notice that the organizations of the windows are supposed to be circular and not linear; meaning that the last window overlaps with the first window. Example: the last 8 registers of window 1 are also the first 8 registers of window 2. Similarly, the last 8 registers of window 2 are also the first 8 registers of window 3. The middle 8 registers of window 2 are local; they are not shared with any other window. 2. Memory speed issue: Memory speed issues are commonly solved using caches. A cache is a section of fast memory placed between the 	Four design issues: 1M each
	using caches. A cache is a section of fast memory placed between the	
	processor and slower memory. When the processor wants to read a	
	In the cache.	
	Subsequent references to that location can come from the cache, which	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

17627

		will return a result much more quickly than the main memory.	
		Caches present one major problem to system designers and	
		programmers, and that is the problem of coherency. When the processor	
		writes a value to memory, the result goes into the cache instead of going	
		directly to main memory. Therefore, special hardware (usually	
		implemented as part of the processor) needs to write the information out	
		to main memory before something else tries to read that location or	
		before re-using that part of the cache for some different information.	
		······································	
		3. Instruction Latency issue: A poorly designed instruction set can	
		cause a pipelined processor to stall frequently. Some of the more	
		common problem areas are:	
		Highly encoded instructions such as those used on CISC machines that	
		require complex decoders. Those should be avoided	
		Variable-length instructions which require multiple references to	
		memory to fetch in the entire instruction. Instructions which access	
		main memory (instead of registers), since main memory can be slow.	
		Complex instructions which require multiple clocks for execution	
		(many floating-point operations, for example.)Instructions which need	
		to read and write the same register. For example "ADD 5 to register 3"	
		had to read register 3, add 5 to that value, then write 5 back to the same	
		register (which may still be "busy" from the earlier read operation.	
		causing the processor to stall until the register becomes available.)	
		Dependence on single-point resources such as a condition code register.	
		If one instruction sets the conditions in the condition code register and	
		the following instruction tries to read those bits, the second instruction	
		may have to stall until the first instruction's write completes.	
		4. Dependencies issues: One problem that RISC programmers face is	
		that the processor can be slowed down by a poor choice of instructions.	
		Since each instruction takes some amount of time to store its result, and	
		several instructions are being handled at the same time later	
		instructions may have to wait for the results of earlier instructions to be	
		stored. However, a simple rearrangement of the instructions in a	
		program (called Instruction Scheduling) can remove these performance	
		limitations from RISC programs	
6.		Attempt any TWO of the following:	16
0.	a)	Describe the eight stage pipeling mechanism in floating point unit of	8M
		Pentium.	
	Ans.		
I	1		

WINTER - 2016 EXAMINATION 17627 Subject Code: **Model Answer** U-pipeline Instruction Diagram and data **4M** stream The pipelining stages in the floating point unit of Pentium are: PF Prefetch D1 Instruction decode D2 Address generation Memory and register read, floating-point data converted into memory format, EX **Descript** memory write ion 4M Floating-point execute, stage one. Memory data converted into floating-point X1 format, write operand to floating-point register file, bypass 1 (send data back to EX stage) X2 Floating-point execute stage two WF Round floating-point result and write to floating-point register file, bypass 2 (send data back to EX stage) ER Error reporting, update status word **Explanation eight stages:** 1. Prefetch: In this stage FPU fetches instructions from instruction cache and also aligns the code appropriately. 2. D1 stage: In this FPU decodes the instructions and generate and control word. 3. D2 stage: It is required there control word from D1 stage is again decoded from final execution. 4. Operand fetch stage: In this stage FPU fetches operands either from floating point register file or from data cache. 5. X1 stage: First execution stage 6. X2 stage: Second execution stage In these two stages FPU reads the data from data cache and executes the floating point computation. There are eight general purposes floating point registers in FPU. 7. Write back stage (WB): In this stage FPU writes result to the floating

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

	point register file.					
	8. Error reporting file: In this stage FPU reports the internal status					
	including errors which may require additional processing for					
	completion of floating point execution.					
b)	Describe the loading sequence of MS-DOS in memory with neat					
	sketch.					
Ans.	When the system is reset or started, the program execution begins at the					
	address 0FFFF0H. The control is transferred to system test code, power					
	on self-test (POST). Then the control is transferred to the ROM					
	bootstrap routine, which reads the bootstrap from the first sector of the					
	system startup disk into memory at some arbitrary address and transfers					
	control to it.	Descript				
	The disk bootstrap checks to see if the "boot" disk contains DOS by	lon 4111				
	checking the first sector of the root directory for the file IU.SYS and					
	MSDOS.SYS. If these are not found in the boot disk, the user gets a prompt for changing the disk. If the two files are found the disk					
	bootstrap reads the files into memory and transfers the control to					
	IO SYS					
	The IO.SYS file consists of two separate modules. The first is the BIOS.					
	which contains the linked set of resident device drivers for the console.					
	auxiliary port, printer, clock devices and some hardware specific					
	initialization code. Second module consists of system initialization					
	program, which determines the RAM size in the PC. Then it loads the					
	MSDOS.SYS program to its final memory location of the DOS Kernel					
	program.					
	The DOS Kernel initializes its tables and sets up its various work areas.					
	It sets up the various interrupt vectors for the DOS interrupts20H-2FH					
	pointing them to appropriate service routine. It then loads and executes					
	the device drivers. Now it returns the control to system initialization					
	program (SYSINIT). The SYSINIT calls MS DOS file service to open the CONFIG SYS file					
	It contains the list of additional device drivers that the user wants in his					
	system. The required drivers are loaded into the memory initialized by					
	calls to their INIT modules and linked into their device driver list					
	After SYSINIT calls the EXEC function to load the command					
	interpreter (shell). Once the interpreter is loaded, it displays a prompt					
	and waits for the user to enter the command.					
	Top of RAM					

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

		ROM Boo	otstrap routine				
				Diagram			
	Transparent part of Command.com			<i>4M</i>			
		Transient	program area				
		Resident	part of Command.com				
		File Contr	File Control Block				
		Disk Buff	er Cache				
		DOS Ker	nel				
		BIOS					
		Interrupt	Vector Table				
		(00000H	– 00400H)				
	c)	Draw and explain the internal architecture of 80386.					
	Ans. The internal architecture of 80386 can be divided into 3 sections such as						
		 Central processing unit (CPU) Memory management unit (MMU) 					
		3. Bus interface unit (BIU)					
		The Central processing unit consists of					
	Execution unit & Instruction unit						
		Instruction unit has Instruction pre-fetcher and instruction pre-decode					
		unit					
		The Instruction pre-fetcher fetches the 16 instruction bytes ahead of					
		time and stores them into the 16 byte instruction pre-fetch queue(16					
		byte code). This speeds up the program execution process.					
		The instruction pre-decode unit has the instruction decoder and 3					
		decoded instruction queue.					
		The instruction decoder decodes 3 instructions ahead of time and stores					
		them in the 3 decoded instruction queue.					
		Execution unit has ALU and control unit.					
		are generated at the time of decoding. The decode and sequencing unit					
		decodes the control signals and sends the control signals sequentially to					
		the ALU.					
		ALU (arithmetic and logic unit): ALU performs all the arithmetic and					
		And (anumene and logic unit). And performs an me anumene and					

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

17627

logical operations. It has a register file containing registers such as general purpose registers, control and flag registers, debug and test registers, special purpose registers etc. The barrel shifter is of 64 bits which can shift/rotate 64 bits at a time and hence can perform multiplication and divide operations within a microsecond. The memory management unit has segmentation unit and paging unit. The segmentation unit allows the use of two address components such as segment base address and offset address to calculate the physical address. It allows the size of the segment upto 4GB maximum. It provides the 4 level protection level mechanism for protecting and isolating the system's code and data from application programs and unauthorized access. This unit converts logical address spaces to the linear addresses. The Limit and Attribute PLA checks the segment limits and attributes at segment level to avoid invalid access to the code The paging unit converts the linear addresses to the physical addresses. The control and attribute PLA checks the privileges at page level. Each of the pages maintain the paging information of the task. The paging unit organizes the physical memory in the terms of pages of 4KB each. This unit works under the control of segmentation unit i.e., each segment is further divided into pages. The virtual memory is also organized in the terms of segments and pages by the MMU. The BIU has a bus control unit which has a request prioritizer which resolves the priorities of the various bus request operations. It also controls the access of the bus. The address drivers drives the bus (byte) enable signals BE0#-BE3# and the address signals A0-A31. The pipeline and bus size control unit handle the related control signals and supports the dynamic bus sizing feature. The data buffers (mux/ transceivers) interface the internal data bus with the system data bus.

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

