

Subject code: 17560

Page 1 of 26

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

	Subject code: 17560	Page 2 of 26
Q No.	Answer	marks
1 A	Any three	12
1A-a	Fourier's law of conduction:	2
	It states that the rate of heat flow across an isothermal surface is proportional to	
	the temperature gradient at the surface.	
	$\frac{dQ}{dA} = -k\frac{\partial T}{\partial n}$	2
	Q- rate of heat transfer	
	A- Area perpendicular to heat flow	
	k- Thermal conductivity	
	T- Temperature	
1A-b	Nusselt Number $N_{NU} = hD/K$	1
	Where,	
	h - heat transfer coefficient	1
	D- diameter of pipe	
	K- thermal conductivity	
	Grashoff Number $N_{GR} = D^3 \rho^2 g \beta \Delta T / \mu^2$	1
	Where,	
	D- diameter of pipe	
	ρ - density	
	g – acceleration due to gravity	1
	β – coefficient of thermal expansion	
	ΔT – temperature difference	
	μ - viscosity	
1A-c	Kirchoff's law: It states that at temperature equilibrium, the ratio of total	2
	emissive power of any body to absorptivity depends only upon the temperature	

	Subject code: 17560	Page 3 of 26
	of the body.	
	Take to any two bodies in temperature equilibrium with surrounding.	
	$\mathbf{W}_1/\dot{\mathbf{a}}_1 = \mathbf{W}_2/\dot{\mathbf{a}}_2$	2
	If the first body is a black body then, $\dot{\mathbf{a}}_1 = 1$	
	$\mathbf{W}_1 = \mathbf{W}_b = \mathbf{W}_2 / \dot{\mathbf{d}}_2$	
	But $W_2/\dot{d}_2 = \varepsilon_2$	
	OR $\dot{\mathbf{d}}_2 = \varepsilon_2$	
	Thus when any body is at temperature equilibrium with its surrounding, its	
	emissivity and absorptivity are equal.	
A-d	Advantages of multi pass heat exchangers:	1 mark
	1. Floor space requirement is low	each for
	2. Heat transfer rates are high	any2
	3. Heat transfer coefficients are high	
	4. Fluid flow number of times through exchanger	
	5. Flow is parallel as well as counter current	
	Disadvantages of multi pass heat exchangers:	1 mark
	1. Complex in construction	each for
	2. Expensive	any2
	3. Frictional losses are high	
	Any one	6
1.В		

	Subject code: 17560	Page 5 of 26
	of individual resistances.	
1 B- b	Thermal recompression: To increase the economy of single effect evaporator,	3
	the principle of thermal recompression is used. Here the vapour from the	
	evaporator is compressed to increase its temperature so that it will condense at a	
	temperature higher enough to permit its use as heating media in the same	
	evaporator. In this method, vapour is compressed by means of jet ejectors	
	Properties of evaporating liquid	3
	1. concentration	
	2. foaming	
	3. scale	
	4. temperature sensitivity	
	5. material of construction	
2	Any four	16
2-a	Optimum thickness of insulation:	2
	The optimum thickness of an insulation is obtained by purely economic	
	approach. The greater the thickness, the lower the heat loss & the greater the	:
	initial cost of insulation & the greater the annual fixed charges.	
	It is obtained by purely economic approach. Increasing the thickness of an	
	insulation reduces the loss of heat & thus gives saving in operating costs but at	
	the same time cost of insulation will increase with thickness. The optimum	L
	thickness of an insulation is the one at which the total annual cost (the sum	Ļ
	values of heat lost and annual fixed charges) of the insulation is minimum.	

Sub	ject code: 17560	Page 7 of 26
of fluid and maintain its motion against the	force of friction. There are	-
two types of convection- natural and forced. I	If the currents are the result	
of buoyancy forces generated by differen	ices in density and the	:
differences in density are in turn caused by	y temperature gradient the	
action is called natural convection.		
Example: heating of water by hot surface		
Forced convection : If the currents are set in	n motion by the action of a	
mechanical device such as a pump or agitato	or, the flow is called forced	
convection		
Example: heat flow to a fluid pumped throug	sh a heated pipe	
3) Radiation: Radiation is transfer of en	ergy through space by	
electromagnetic waves. If radiation is passing	g through empty space, it is	
not transformed into other forms of energy,	nor is it diverted from its	
path. If matter appears in its path, the radi	iation will be transmitted,	
absorbed or reflected. It is only the absorbed e	energy that appears as heat.	
Fused quartz transmits all radiation falling	on it, a polished opaque	:
surface will reflect all the radiation and a blac	ck surface will absorb most	
of the radiation receiving.		
Example : Loss of heat from unlagged pipe.		
2-c Stefan-Boltzmann Law :		
It states that the total energy emitted (emissive po	ower) by a black body is	2
proportional to fourth power of its absolute temperatu	ure.	
$W_b \alpha T^4$		
$W_b = \sigma T^4$		2
Where $W_b = \text{total energy emitted (emissive power) b}$	by a black body	
σ = Stefan Boltzman constant= 5.67*10 ⁻⁸ W/s	$m^2 K$	
T = absolute temperature		

		Subject code:	17560	Page 8 of 26
t	Co current and counter current flow:			1 mark
	Co current flow	Counter current flow		each for
	i) Both hot fluid & cold fluid enter at	i) Both hot fluid & co	ld fluid ente	er at any 4
	same end & come out from other end	different ends & come	out from	
		Different ends.		
	ii) Both fluid flow in the same	ii) Both fluid flow in o	pposite	
	direction.	direction.		
	iii) LMTD is low	iii)) LMTD is	s more.	
	Thick	Thi		
		2 ·	F	
	7 7000 -	Teol	t ho	
	Teo Teo		Tr.	
	· Cr]	1 N	- TI	
	x			
	This The	Th, ->	- lu	
		4		
		10		
		Teo		
;	Plate and frame heat exchanger:			

	Subject code: 17560 P	Page 10 of 26
	head frames. The plates have corner ports and are sealed by gaskets around the	
	ports and along the plate edges. The plates are having corrugated faces. These	
	plates serve as heat transfer surfaces and are of stainless steel It is provided	
	with inlet and outlet nozzles for fluids at ends.	
	Working:	
	The hot fluid passes between alternate pairs of plates, transferring heat to cold	1
	fluid in the adjacent spaces. The plates can be readily separated for cleaning and	
	heat transfer area can be increased by simply adding more plates.	
3	Any two	16
3-a	Film coefficient: In the case of convective heat transfer taking place from a	
	surface to a fluid, the circulating currents die out in the immediate vicinity of	1
	the surface and a film of the fluid, free of turbulence, covers the surface. Heat	
	transfer through this film takes by thermal conduction. Since the thermal	
	conductivity of most fluids is low, the main resistance to heat transfer lies in the	
	film. Therefore, an increase in the velocity of the fluid over the surface results	
	in improved heat transfer mainly because of reduction in the thickness of the	
	film.	
	If the resistance to heat transfer is considered as lying within the film	
	covering the surface, the rate of heat transfer Q is given by	
	$Q = kA \Delta T/x$	1
	The effective thickness x is not generally known and therefore this	
	equation is usually rewritten in the form:	
	$Q = h A \Delta T$	1
	This is the basic equation for the rate of heat transfer by convection under	
	steady state conditions, where 'h' is called the film heat transfer coefficient or	
	surface coefficient or simply film coefficient. The value of 'h' depends upon	
	the properties of the fluid within the film region, hence it is called the film heat	
		1

Subject code: 17560	Page 11 of 26
transfer coefficient. It depends upon the various properties of the fluid, line	ar
dimension of surface and fluid velocity (i.e. the nature of flow).	
Numerically, heat transfer coefficient (h) is the quantity of he	at
transferred in a unit time through a unit area at a temperature difference of or	ne
degree between the surface and surrounding. h has the units o W/ (m2.K) in the	ne
SI system.	
When heat is flowing from hot liquid to cold liquid across a metal wa	11,
there are three resistances in series.	1
1) Resistance of stagnant film on hot side	
2) Resistance of metal wall	
3) Resistance of stagnant film on cold resistance	
$R_i = \frac{1}{\dots}$	
hIAI	
$R_m = \frac{1}{KmAm}$	1
$Ro = \frac{1}{hoAo}$	
Rate of heat transfer = $\frac{T1-T2}{Pi+Pm+Po}$	
$\Omega = \frac{\Delta T}{\Delta T}$	
$\sim -\frac{1}{\text{hiAi}} + \frac{\text{Lm}}{\text{KmAm}} + \frac{1}{\text{hoAo}}$	1
$Q = \frac{\Delta T Ai}{\frac{1}{2} + \frac{Lm Ai}{2} + \frac{1}{2} Ai}$	
hi ' KmAm 'hoAo	
we define,	

Subject code: 17560	Page 12 of 26
$\frac{1}{\text{Ui}} = \frac{1}{\text{hi}} + \frac{\text{Lm}}{\text{Km}}\frac{\text{Ai}}{\text{Am}} + \frac{1}{\text{ho}}\frac{\text{Ai}}{\text{Ao}}$	
$Q = \frac{Ai\Delta T}{1}$	
Ūi	1
Or	
$\mathbf{Q} = \mathbf{U}\mathbf{i}\mathbf{A}\mathbf{i}\Delta\mathbf{T}$	
Thus surface coefficients play important role is finding out rate of hea	1 1
transfer in combined construction & convection.	
3-b MFR of thermic fluid = $21*950 = 19950$ kg/hr	1
MFR of cold fluid = $15*1000 = 15000$ kg/hr	1
Heat gained by cold fluid = $15000*4.187(328-303)$	1
Heat given out by thermic fluid = $19950*2.93(388-T_2)$	1
Equating, $T_2 = 361.2 \text{ K}$	1
For counter current flow	
LMTD = 60-58.2/ln(60/58.2)	1
= 59.1	
Q=U.A.LMTD	1
1570125*1000/3600 = 3490*A*59.1	
$A = 2.11 m^2$	1
3-c Kettle Reboiler Heat Exchanger:	
In distillation operation, a reboiler is used to meet the latent heat requirements	
at the bottom of a column. It consists of an enlarged shell containing a	3
relatively small tube bundle. At one end of the bundle, the tubes are expanded	
into a stationery tube sheet clamped between shell and channel flange. In the	
channel pass partition is incorporated so that inlet and outlet for the tube side	

	Subject code: 17560	Page 14 of 26
	$R_1 = B_1 / K_1 A$	1
	= 0.23/1.0 = 0.23 K/W	
	$B_2 = 0.01 m$	
	$K_2 = 0.4 W/mK$	
	A=1 m^2	
	$\mathbf{R}_2 = \mathbf{B}_2 / \mathbf{K}_2 \mathbf{A}$	1
	= 0.01/0.4 = 0.025 K/W	
	$R = R_1 + R_2 +$	1
	= 0.23 + 0.025 = 0.255 K/W	
	Temp.drop ΔT = 30 K	
	Heat loss $Q = \Delta T / R$	1
	= 30 / 0.255	
	= 117.65W	
4A-b	(i)Evaporator for concentrating viscous solution is forced circulation	1
	evaporator.	
	Due to the high velocity obtained by the use of pump, viscous liquids can be	1
	treated in forced circulation evaporator.	
	(ii)Evaporator for concentrating foaming solution is long tube vertical	1
	evaporator.	
	The vapour deflector placed in the vapour space acts as a primary separator and	1
	foam breaker.	
4A-c	Absorptivity :	2
	It is the fraction of radiation falling on a body which is absorbed.	
	Reflectivity :	
	It is the fraction of radiation falling on a body which is reflected.	
	Transmissivity :	
	It is the fraction of radiation falling on a body which is transmitted.	

	Subject code: 17560	Page 15 of 26
	Kirchoff's law states that at temperature equilibrium, the ratio of total emissive	
	power of any body to absorptivity depends only upon the temperature of the	2
	body.	
	Take to any two bodies in temperature equilibrium with surrounding.	
	$\mathbf{W}_1/\dot{\mathbf{a}}_1 = \mathbf{W}_2/\dot{\mathbf{a}}_2$	
	If the first body is a black body then, $\dot{\mathbf{d}}_1 = 1$	
	$W_1 = W_b = W_2/\dot{a}_2$	
	But $W_2/\dot{a}_2 = \varepsilon_2$	
	OR $\dot{\mathbf{d}}_2 = \varepsilon_2$	
	Thus when any body is at temperature equilibrium with its surrounding, its	
	emissivity and absorptivity are equal.	
4A-d	Baffles are commonly used on shell side to increase rate of heat transfer by	4
	increasing the turbulence of shell side liquid. They also support the tubes	
	against vibration. The baffles cause the fluid to flow through the shell at right	
	angles to the axis of tube. Clearance between baffles & shell should be	
	minimum to avoid by passing of fluid. Common types of baffles are segmental	
	baffle. Segmental baffle is drilled circular disc of sheet metal with one side cut	
	away when the height of baffle is 75% of inside dia of the shell it is called as	
	25% cut segmental baffle.	
	Shell	
	Drilling	
4 B	Any one	6

	Subject code: 17560 P	age 16 of 26
IB-a	Consider the thick walled hollow cylinder as shown in fig.(a). The inside	
	radius of cylinder is r_1 and the outside radius is r_2 and length of cylinder is L.	
	Assume that thermal conductivity of the material of which cylinder is made be	
	k.	
	Let the temperature of the inside surface be T_1 and that of the outside surface	
	be T_2 . Assume that $T_1 < T_2$, therefore the heat flows from the inside of	
	cylinder to outside. It is desired to calculate the rate of heat flow for this case.	
	(a)Heat flow through thick walled cylinder	
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the	
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr.	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = - k 2 \prod L (dT / dr)(i)$	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = - k 2 \prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2 \prod rL$	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = - k 2 \prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2 \prod rL$ and dx of eqn (a) is equal to dr.	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = -k 2\prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2\prod rL$ and dx of eqn (a) is equal to dr. Rearranging the eqn (i), we get	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = -k 2\prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2\prod rL$ and dx of eqn (a) is equal to dr. Rearranging the eqn (i), we get $dr / r = -k (2\prod L) / Q.dT(ii)$	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = -k 2\prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2\prod rL$ and dx of eqn (a) is equal to dr. Rearranging the eqn (i), we get $dr / r = -k (2\prod L) /Q.dT(ii)$ Only variables in eqn (ii) are r and T (assuming k to be constant).	1
	(a)Heat flow through thick walled cylinder Consider a very thin cylinder (cylindrical element), concentric with the main cylinder, of radius r, where r is between r_1 and r_2 . The thickness of wall of this cylindrical element is dr. $Q = -k 2 \prod L (dT / dr)(i)$ Equation (i) is similar to eqn (a). Here area perpendicular to heat flow is $2 \prod rL$ and dx of eqn (a) is equal to dr. Rearranging the eqn (i), we get $dr / r = -k (2 \prod L) / Q.dT(ii)$ Only variables in eqn (ii) are r and T (assuming k to be constant). Integrate the eqn (ii) between the limits	1

	Subject code: 17560	Page 17 of 26
When $r = r$	$_{2}$,T = T ₂	
	$_{r2} \int r^{r1} dr /r = -k (2 \prod L) / Q_{T1} \int r^{12} dT \dots$ (iii)	1
	ln $r_2 - r_1 = -k (2 \prod L) (T_1 - T_2)(iv)$	
	ln ($\mathbf{r}_2 / \mathbf{r}_1$) = k (2 \prod L) ($\mathbf{T}_1 - \mathbf{T}_2$) / Q(v)	
Rate of hea	t flow through thick walled cylinder :	
	$\therefore Q = k (2 \prod L) (T_1 - T_2) / \ln (r_2 / r_1)(vi)$	
Equation (a	a) can be used to calculate the flow of heat through a thick walled	
cylinder.		
It can be pu	at into more convinient form by expressing the rate of heat flow as :	
	$Q = k (2 \prod r_m L) (T_1 - T_2) / (r_2 - r_1)(vii)$	1
Where r _m is	s the logarithmic mean radius & is given by	
	$\mathbf{r}_{\mathrm{m}} = (\mathbf{r}_{2} - \mathbf{r}_{1}) / \ln (\mathbf{r}_{2} / \mathbf{r}_{1})$	
	= $(r_2 - r_1) / 2.303 \log (r_2 / r_1)(viii)$	
	$A_m = 2 \prod r_m L(ix)$	
A_m is call	ed as logarithmic mean area.	
Equation (viii) becomes	
	Q = $\mathbf{k} \mathbf{A}_{m} (\mathbf{T}_{1} - \mathbf{T}_{2}) / (\mathbf{r}_{2} - \mathbf{r}_{1})(\mathbf{x})$	1
	$Q = (T_1 - T_2) / [(r_2 - r_1)/k A_m] = \Delta T / R$	
Where	$R = (r_2 - r_1)/k A_m$	
B-b Basis: 2000	00 kg/hr feed is fed to the evaporator.	
Material ba	lance of solids:	
Solids in fe	ed= solids in the thick liquor	1
0.05x2000	0=0.2xm'	

	Subject code: 17560	Page 18 of 26
	m'=5000kg/h.	-
	overall Material balance:	
	kg/h feed= kg/h water evaporated + kg/h thick liquor	1
	water evaporated= mv=20000-5000=15000kg/h	
	enthalpy balance over evaporator(assuming no heat loss)	
	$Q=ms \lambda s=mf.Cpf.(T-Tf)+mv \lambda$	1
	Ms x 2185 = 20000 x 4 (380-298) + 15000 x 2257	
	ms=18496.57kg/h.	
	steam consumption= 18496.57 kg/h	1
	steam economy= kg/h water evaporated/kg/h steam consumed	
	= 15000/18496.57= 0.811	1
	Heat load= Q= ms λs= 18496.57 x 2185= 40415000KJ/hr	
	= 11226388.89 W	1
5	Any two	16
5-a	Heat transfer in boiling liquids :	
		2

the liquid to increase the velocity of the circulation currents and coefficient of heat transfer becomes greater than that in undisturbed natural convection. This is called nucleate boiling . In the segments CD the flux decreases as the temperature drop raises and reaches a minimum at point D. As the temperature drop is raised , more and more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling . In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling . Methods of increasing the economy of an evaporator: 2 1. Using multiple effect evaporator 2 2. Vapour recompression 6 marks in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. 6 more and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		Subject code: 17560 P	age 20 of 26
 heat transfer becomes greater than that in undisturbed natural convection. This is called nucleate boiling. In the segments CD the flux decreases as the temperature drop raises and reaches a minimum at point D. As the temperature drop is raised , more and more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling. Methods of increasing the economy of an evaporator: Using multiple effect evaporator Vapour recompression A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		the liquid to increase the velocity of the circulation currents and coefficient of	
 is called nucleate boiling. In the segments CD the flux decreases as the temperature drop raises and reaches a minimum at point D. As the temperature drop is raised , more and more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling. Methods of increasing the economy of an evaporator: Using multiple effect evaporator Vapour recompression Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		heat transfer becomes greater than that in undisturbed natural convection. This	
In the segments CD the flux decreases as the temperature drop raises and reaches a minimum at point D. As the temperature drop is raised , more and more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling . Methods of increasing the economy of an evaporator: 2 1. Using multiple effect evaporator 2 2. Vapour recompression 6 marks for explorator series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. 6 marks Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		is called nucleate boiling .	
reaches a minimum at point D. As the temperature drop is raised , more and more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling. 0 Methods of increasing the economy of an evaporator: 1. Using multiple effect evaporation 2. Vapour recompression A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		In the segments CD the flux decreases as the temperature drop raises and	
 more bubbles are present that they tend to coalesce on the heating surface to formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling. Methods of increasing the economy of an evaporator: Using multiple effect evaporator Vapour recompression Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system:		reaches a minimum at point D. As the temperature drop is raised , more and	
formed and layer of insulating vapour. This type is called transition boiling. In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling. D Methods of increasing the economy of an evaporator: 2 1. Using multiple effect evaporator 2 2. Vapour recompression 6 marks in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. 6 marks in on of any on of any pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		more bubbles are present that they tend to coalesce on the heating surface to	
In DE the flux again increases with ΔT and at large temperature drop surpasses the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling.DMethods of increasing the economy of an evaporator: 1. Using multiple effect evaporator 2. Vapour recompression2A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on.6 marksIncreasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects.0Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		formed and layer of insulating vapour. This type is called transition boiling.	
the previous maximum reached. The hot surface becomes covered with a film of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling.2Methods of increasing the economy of an evaporator: 1. Using multiple effect evaporator 2. Vapour recompression2A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on.6 marks on of anyIncreasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects.Omeganetic field to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		In DE the flux again increases with ΔT and at large temperature drop surpasses	
of vapour through with heat is transferred by conduction and by radiation .This is known as film boiling.2Methods of increasing the economy of an evaporator: 1. Using multiple effect evaporator 2. Vapour recompression2A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on.6 marks on of anyIncreasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects.0Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.1		the previous maximum reached. The hot surface becomes covered with a film	
is known as film boiling. 2 0 Methods of increasing the economy of an evaporator: 2 1. Using multiple effect evaporator 2 2. Vapour recompression 6 marks A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. 6 marks Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. 0 Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		of vapour through with heat is transferred by conduction and by radiation .This	
 Methods of increasing the economy of an evaporator: Using multiple effect evaporator Vapour recompression Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		is known as film boiling .	
 Using multiple effect evaporator Vapour recompression Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 	5-b	Methods of increasing the economy of an evaporator:	2
 2. Vapour recompression A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		1. Using multiple effect evaporator	
 A. Multiple effect evaporation: In this system, evaporators are arranged in series so that the vapour produced in first effect is fed to the steam for chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		2. Vapour recompression	
in series so that the vapour produced in first effect is fed to the steam chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on.explanati on of anyIncreasing the number of effects between steam supply and condenser increases the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects.oneMethods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		A. Multiple effect evaporation: In this system, evaporators are arranged	6 marks
 chest of second effect as heating medium in which boiling takes place at low pressure and temperature and so on. Increasing the number of effects between steam supply and condenser increases one the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		in series so that the vapour produced in first effect is fed to the steam	for
low pressure and temperature and so on.on of anyIncreasing the number of effects between steam supply and condenser increasesonethe amount of evaporation per kg of steam fed to the first effect and also theoperating cost will be less, but capital cost, maintenance and repair chargesincreases with increase in number of effects.Methods of feeding multiple effect evaporation system:1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		chest of second effect as heating medium in which boiling takes place at	explanati
 Increasing the number of effects between steam supply and condenser increases one the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		low pressure and temperature and so on.	on of any
 the amount of evaporation per kg of steam fed to the first effect and also the operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		Increasing the number of effects between steam supply and condenser increases	one
 operating cost will be less, but capital cost, maintenance and repair charges increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		the amount of evaporation per kg of steam fed to the first effect and also the	
 increases with increase in number of effects. Methods of feeding multiple effect evaporation system: Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		operating cost will be less, but capital cost, maintenance and repair charges	
Methods of feeding multiple effect evaporation system: 1. Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		increases with increase in number of effects.	
 Forward feed arrangement: In this, the liquid feed flows in the same direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable. 		Methods of feeding multiple effect evaporation system:	
direction as the vapour flows. Fresh feed and steam are fed to the first effect. For effectively utilizing temperature potentials, this arrangement is preferable.		1. Forward feed arrangement: In this, the liquid feed flows in the same	
effect. For effectively utilizing temperature potentials, this arrangement is preferable.		direction as the vapour flows. Fresh feed and steam are fed to the first	
is preferable.		effect. For effectively utilizing temperature potentials, this arrangement	
		is preferable.	

	Subject code: 17560 Pa	age 22 of 26
	B.Methods of increasing economy by vapour recompression methods are:	
	1. Mechanical recompression	
	2. Thermal recompression	
	Vapor-recompression evaporation is the evaporation method by which	
	a <u>blower</u> , <u>compressor</u> or jet ejector is used to <u>compress</u> , and thus, increase	
	the pressure of the vapor produced. Since the pressure increase of the vapor	
	also generates an increase in the condensation temperature, the same vapor	
	can serve as the heating medium for its "mother" liquid or solution being	
	concentrated, from which the vapor was generated to begin with. If no	
	compression was provided, the vapor would be at the same temperature as	
	the boiling liquid/solution, and no heat transfer could take place.	
	If compression is performed by a mechanically driven compressor or blower,	
	this evaporation process is usually referred to as MVR (Mechanical Vapor	
	Recompression). In case of compression performed by high pressure	
	motive steam ejectors, the process is usually	
	called Thermocompression or Steam Compression.	
5-c	For parallel flow	
	$\Delta T1 = 423 - 311 = 112K$, $\Delta T2 = 367 - 339 = 28 \text{ k}$	1
	Δ Tlm= (112-28)/ln(112/28) = 60.59 K	2
	For counter current	
	$\Delta T1 = 423 - 339 = 84K, \Delta T2 = 367 - 311 = 56 \text{ k}$	1
	Δ Tlm= (84-56)/ln(84/56) = 69.06 K	2
	Since the value of Δ Tlm is higher for counter current flow, it is preferred.	2
6	Any two	16
б-а	Wilson Plot:	2

		Subject code: 17	7560	Pa	ige 24 of 26
	For turbu	lent flow we can write Nnu α NRe ^{0.8}			
	hi $\alpha v^{0.8}$				
	$hi=a \cdot v^0$.8			
	therefore	$1/U=1/a \cdot v^{0.8}+C$			2
	where u	is the linear velocity of the cold fluid. A plot of $1/U$ vs $1/V$	v ^{0.8} results	s in	
	a straight	t line with the slope equal to $1/a$ and intercept equal to Xw_a	V/K + 1/h0.		
	The value	es of h0 is obtained from the intercept and a represents the	e value of		
	film coef	ficient hi for a unit velocity of cold fluid.			
					2
6-b	NRe =D	υρ /μ			
	Where D	= 16mm $= 0.016$ m, u $= 3$ m/s			
	$\mu = 485 x$	10^{-6} Pa.s or N.s/m ²			
	ρ= 984.1	kg/m ³			
	NRe = (0)	$0.016x3x984.1)/485x10^{-6} = 97395$			1
	NPr = Cp	$p \mu/k = (4187x485x10^{-6})/0.657 = 3.09$			1
	(i)	It is a cooling process as the temperature of water is redu	luced.		
		The Dittus –Boelter equation for cooling is			
		$NNu = 0.023(NRe)^{0.8}(NPr)^{0.3}$			1
		$hD/k = 0.023(NRe)^{0.8}(NPr)^{0.3}$			
		$h = 0.023(NRe)^{0.8}(NPr)^{0.3}x$ (K/D)			
		$h=0.023(97395)^{0.8}(3.09)^{0.3}x(0.656/0.016)$			2
		h= 12972.6 W /(m ² . k)			
		The Sidder Tota equation is			
	(11)	The Sieder – Late equation is			

 at centre of tube bundle for circulating cooler liquid back to to tubes. Solution to be evaporated is inside the tubes and steam tubes in the steam chest. Baffles are incorporated in steam of uniform distribution of steam. The condensate is withdrawn lower tube sheet, while non condensable gas is vented to atmost near top tube sheet. Working: Thin liquor is introduced to the tube side and steam 	the bottom of flows outsic chest to pro- n at a point sphere from	of the le the omote near point	
 tubes. Solution to be evaporated is inside the tubes and steam tubes in the steam chest. Baffles are incorporated in steam uniform distribution of steam. The condensate is withdrawn lower tube sheet, while non condensable gas is vented to atmost near top tube sheet. Working: Thin liquor is introduced to the tube side and steam 	flows outsic chest to pro n at a point sphere from	le the omote near point	
tubes in the steam chest. Baffles are incorporated in steam uniform distribution of steam. The condensate is withdrawn lower tube sheet, while non condensable gas is vented to atmost near top tube sheet.Working: Thin liquor is introduced to the tube side and steam	chest to pro n at a point sphere from	omote near point	
uniform distribution of steam. The condensate is withdrawn lower tube sheet, while non condensable gas is vented to atmost near top tube sheet.Working: Thin liquor is introduced to the tube side and steam.	n at a point sphere from	near point	
lower tube sheet, while non condensable gas is vented to atmost near top tube sheet. Working: Thin liquor is introduced to the tube side and steam	sphere from	point	
near top tube sheet. Working: Thin liquor is introduced to the tube side and steam			
Working: Thin liquor is introduced to the tube side and steam			2
	n into steam	chest	
. The liquor covers top of tubes. Heat transfer to boiling liquid	d inside the	tubes	
take place from condensing steam on outside of tubes. Vapour	s formed will	ll rise	
through the tubes, come to the liquid surface from which the	ey are diseng	gaged	
into the vapour space and removed from the vapour outlet	. Thick liqu	or is	
removed from the bottom of the evaporator.			