

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

Subject Code:

17553

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Su	Answer	Marking
No	b		Scheme
•	Q.		
	N.		
1		Attempt any FIVE of the following:	5X4=20
	a)	Design data book:-	2m
		When a designer wants to design & develop a product he requires lot of information such as material specifications, physical & mechanical properties of materials, standards, different manufacturing processes, empirical relations, tool data etc. so a book which contains all this information is called data book.	
		Use:-	
		1) The standard dimensions of nut, bolts, shafts, bearings etc. are available in the design data book.	2m
		2) Use of design data book makes easy for a designer engineer to collect the above data from a single book.	(any 2)
		3) Also it saves the time of a designer, so the design process becomes simple & easy	
	b)	Causes:- It may occurs due to-	2m
		1) Change in cross section such as stepped axle, grooves, keyways, threaded holes etc.	(any2)
		2) Concentrated load applied at minimum areas of machine parts such as contact between gear teeth.	
		3) Variation in mechanical properties of materials from point to point due to cavities, cracks etc.	

Page	N	o:	/	۱ ا	N
------	---	----	---	-----	---

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

4) Surface irregularities or poor surface finish.

Remedies:-

1) By fillets, undercutting & notches

2m (any2)

2) Additional notches & holes

3) Reducing stress concentration in threaded members

- c) •Keyway is a slot machined either on the shaft or in the hub to accommodate the key.
- 4m

- It is cut by vertical or horizontal milling cutter.
- The keyway cut into the shaft reduces the load carrying capacity of shaft.
- This is due to stress concentration near the comers of the keyway and reduction in the cross sectional area of shaft.
- In other words, the torsional strength of shaft is reduced.
- The following relation of reduction factor is used to analyze the weakening effect of keyway is given by H. F. Moore.

$$e = 1 - 0.2 (w/d) - 1.1(h/d)$$

Where, e = shaft strength factor = Strength of shaft with keyway/Strength

Of shaft Without keyway

w = Width of keyway, d = Diameter of shaft

h = Depth of keyway = 112 x thickness of key = 1/2 x t

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

• It is usually assumed that strength of keyed shaft is 75% of solid shaft.

• Thus, after finding out dimensions of key, the reduction factor 'e' is
Calculated and for safe design, its value should be less than 0.75.

d) Caulking:
Caulking tool

Caulked rivet

In order to make the joints leak proof or fluid tight in pressure vessels like steam boilers, air receivers and tanks etc. a process known as **caulking** is employed.

In this process, a narrow bunt tool called caulking tool about 5 mm thick and 38 mm in breadth is used. The edge of the tool is ground to an angle of 80°.

Fullering:-

A more satisfactory way of making the joints staunch is known as **fullering** which has largely superseded caulking.

In this case, a fullering tool with a thickness at the end equal to that of the plate is used in such a way that the greatest pressure due to the blows occur near the joint, giving a clean finish, with less risk of damaging the plate.

e) | following stresses are induced in a bolt, screw or stud when it is screwed up tightly

4m

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

1. Tensile stress due to stretching bolt

Since none of the above mentioned stresses are accurately determined, therefore bolts are designed on the basis of direct tensile stress with a large

Factor of safety in order to account for the indeterminate stresses. The initial tension in a bolt, based on experiments, may be found by the relation Pi = 2840 dN

Pi = Initial tension in a bolt, and

d = Nominal diameter of bolt, in mm.

2. Torsional shear stress caused by the frictional resistance of the threads during its tightening

The torsional shear stress caused by frictional resistance of the threads during its tightening may be obtained by using the torsion equation. We know that

 $T/J = T_s/r$

$$T_s = T/J \ x \ r = \{ \ T/(\pi/32) \ x \ d_c^{\ 4} \ \} \ x \ \{ \ d_c \ /2 \} = 16 \ T/ \ \pi(d_c)^3$$

Where $T_s = Torsional$ shear stress,

T = Torque applied, and

d_c= Minor or core diameter of thread

3. Shear stress across the threads. The average thread shearing stress for the screw(T_s) is obtained by using the relation:

$$T_s = p/(\pi d_c x b x n)$$

Where b = Width of the thread section at the root.

The average thread shearing stress for the nut is

$$T_n = p/(\pi d x b x n)$$

Where d = Major diameter.

4. Compression or crushing Stress on threads. The compression or crushing stress between the threads (\mathfrak{G}_c) may be obtained by using the relation :

$$G_c = p/\pi[d^2 - (d_c)^2]n$$

Where d = Major diameter,

 $d_c = Minor diameter, and$

n = Number of threads in engagement.

5. Bending stress if the surfaces under the head or nut are not perfectly parallel to the bolt axis. When the outside surfaces of the parts to be connected are not parallel to each other, then

	the bolt will be subjected to bending action. The bending stress (\mathfrak{S}_b) induced in the shank of the bolt is	
	given by	
	$G_b = x.E/21$	
	where	
	where $x = Difference$ in height between the extreme corners of the nut or	
	head,	
	I = Length of the shank of the bolt, and	
	E = Young's modulus for the material of the bolt.	
f)	Advantages:-	2m
	 The welded structures are usually lighter than riveted structures. This is due to the reason that in welding, gussets or other connecting components are not used. The welded joints provide maximum efficiency (may be 100%) which is not possible in 	(any2)
	case of riveted joints. 3. Alterations and additions can be easily made in the existing structures	
	4. As the welded structure is smooth in appearance, therefore it looks pleasing.	
	5. In welded connections, the tension members are not weakened as in the case of riveted joints.	
	6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.	
	7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded.	
	8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames.	
	9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance.	
	10. The process of welding takes less time than the riveting.	
	Disadvantages:- 1. Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop.	2m (any2)
	2. It requires a highly skilled labour and supervision.	
	3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it.	
	4. The inspection of welding work is more difficult than riveting work.	
g)	Perfect frame: A pin-jointed frame which has got just sufficient number of members to resist the loads	2m

	without undergoing appreciable deformation in shape is called rigid or perfect frame. The perfect frame obeys the following condition viz.	
	n = 2j - 3	
	where, $n=$ no. of links and $j=$ no. of joints	
	Deficient frame:	2m
	A frame is said to be deficient if the number of members in it is less than that required for a	2111
	perfect frame. Such frames can't retain their shape when loaded.	2.0.16
6)	Attempt any TWO of the following:	2x8=16
a)	Let	6M
	I, = effective diameter of circle touching bolt holen	(procedure
	di=diameter of bolt hole	,
	Dp = pitch circle diameter	
	D, = Dp - d,	
	:- Force trying to Seperate two Hanger	
	$F = \frac{II}{9} (01)^2 \cdot P \qquad \cdots \qquad 0$	
	Let n= number of bolts	
	de = Core diameter of the bolton	
	6t = Permissible Streve for bolt material	
	. Resistance of tearing botter	
	$= \frac{\pi}{4} (d_c)^2 d_t \times \eta - \mathcal{O}$	
	the value of n may be obtained by psuating OfO	
	The Circumferencial pitch of the boltor	
	$Pc = \frac{77 \operatorname{Jp}}{\mathfrak{D}}$	
	Following emperical relations	
	Nominal dia of bolta d = 0.75 E + 10 mm	
	No of bolto n=0.02752+1.6	
	Thicknews of flange to = 1.51 +3 mm	
	width of flange B= 2.3d	
	outside dia of flange Do = 3 + 2 + +28 mm	
		1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Service Factor: It is the ratio of maximum load (torque) to the average load (torque). This = Service factor x Taverage c) Color To Minma T = 42 N/mm² lock = 70 N/mm²² 1) To find Torque Transmitted by shaft T = \frac{17}{16} \tau 43 \\ = \frac{17}{16} \tau 42 \tau 50^3 \tau = 100 \tau 100 \tau 100 \tau 100 2) Thickness of key = \tau = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 mm width of key = \tau = \frac{d}{1} = \frac{50}{9} = 12.5 = 14 mm \tau 19 mm \tau 19 mm \tau 19 mm \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 100 \tau 10	Service Factor: It is the ratio of maximum load (torque) to the average load (torque). That = Service factor x Taverage 2m c) d = 50 mm T = 42 N/mm² b(k = 70 N/mm² 1) To Find Torque Transmitted by shaft T = 11 t d3 = 17 x 42x 50³ T = 1.03x 10 6 N.mm 2) Thicknever of key = t = d = 50 = 8.33 = 10mm width of key = w = d/1 = 50 = 12.5 = 14 mm width of key = w = d/1 = 50 = 12.5 = 14 mm c) Considering Shear failure of key. T = 1x w x x x d/2 1.03x106 = 1x 14 x 42x 50/2 1	c _{v=} Velocity factor		
It is the ratio of maximum load (torque) to the average load (torque). Tmax = Service factor x Taverage c) Queen d = 50 mm T = 42 N/mm² bck = 70 N/mm² lok = 70 N/mm² lok = 16 t d3 = 17	It is the ratio of maximum load (torque) to the average load (torque). $T_{max} = \text{Service factor } x T_{average}$ 2m $T = \frac{42 \text{N/m} \text{m}^2}{6 \text{lk} = 70 \text{N/mm}^2}$ 1) To Find Torque transmitted by shaft $T = \frac{11}{16} \text{td}^3$ $= \frac{11}{16} \text{td}^3 \text{so}^3$ $T = 1 \cdot 0.3 \text{klo}^6 \text{N.mm}$ 2) Thickneur of key = t = $\frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{mm}$ width of key = $\omega = \frac{d}{7} = \frac{50}{4} = 12.5 = 14 \text{mm}$ $\omega = 14 \text{mm}$ 3) Considering shear failure of key. $T = \frac{1}{16} \text{klo} \text{xlo} \text{xlo} \text{so}^2$ $\frac{1}{16} = \frac{1}{16} \text{so}^2 \text{so}^3$ $\frac{1}{16} = \frac{1}{16} \text{so}^2 \text{so}^3$ $\frac{1}{16} = \frac{1}{16} \text{so}^2 \text{so}^3$ $\frac{1}{16} = \frac{1}{16} \text{so}^3 \text{so}^3 \text{so}^3 \text{so}^3$ $\frac{1}{16} = \frac{1}{16} \text{so}^3 \text{so}$			
c) diven d=50 mm T = 42 N/mm² l(k=70 N/mm²²) l) To Find Torque Transmitted by shaft T = \frac{11}{16} \tau d^3 = \frac{11}{16} \tau 42x 50^3 \[T = 1.03 \tau 10^6 \text{ N.mm} \] 2) Thickneur of key = \tau = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 mm width of key = \text{W} = \frac{d}{7} = \frac{50}{9} = 12.5 = 14 mm \[\text{W} = 14 mm \] 2) Considering Shear failure of key. \[T = \frac{1}{16} \text{W} \times \times \frac{d}{2} \] 1.03 \(\text{X} 10^6 = \frac{1}{16} \text{X} 12 \text{X} 20 \text{m} \] 1) Considering Convolving failure of loey \[T = \frac{1}{16} \text{X} \frac{1}{16} X	c) alven d = 50 mm T = 42 N/mm²- 6(k = 70 N/mm²- 1) To Find Torque Transmitted by shaft T = \frac{11}{16} \tau d^3 = \frac{17}{16} \tau 42 \tau 50^3 \tau = \frac{17}{16} \tau 42 \tau 50^3 \tau = \frac{1}{16} \tau 42 \tau 50^3 \tau \tau \tau \tau \tau \tau \tau \tau		load (torque) to the average load (torque).	
d=50 mm T=42 N/mm² d(k=70 N/mm²) 1) To Find Torque Transmitted by shaft T=\frac{11}{16} \tau d^3 =\frac{17}{16} \tau 42x \left	d=50 mm 7 = 42 N/mm² 6ck = 70 N/mm² 1) To Find Torque Transmitted by shaft T= II	$T_{\text{max}} = $ Service factor x	C T _{average}	2m
T = 42 N/mm² \[\begin{align*} \lambda \text{K} = 70 N/mm² - \\ \begin{align*} \lambda \text{T} = \frac{11}{16} \text{t} d^3 \\ &= \frac{17}{16} \text{K} 42 \text{So}^3 \end{align*} \[\begin{align*} \lambda \text{T} = \text{1.03 \text{N} 106 N.mm} \end{align*} \] 2) Thickneur of key = \text{t} = \frac{d}{6} = \frac{50}{6} = 8.33 = 10mm \\ \text{width of key} = \text{w} = \frac{d}{7} = \frac{50}{9} = 12.5 = 14mm \] 2m \[\begin{align*} \text{T} = \text{10 mm} \\ \text{w} = 14 mm \end{align*} \] 3) Considering shear failure of key. \[\text{T} = \text{d} \text{W} \text{X} \text{\frac{d}{2}} \\ \text{d} = 70.06 mm \text{m} \text{\frac{50}{2}} \\ \text{d} = 70.06 mm \text{\frac{50}{2}} \\ \text{d} = \text{2 x \text{lck x \frac{d}{2}}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{x} \text{lck x \frac{d}{2}} \\ \text{1.03 x 106} = \text{d} \text{1.00 x 70x 50} \\ \end{align*}	T = 42 N/mm ² O(k = 70 N/mm ² 1) To Find Torque Transmitted by shaft T = II t d3 = II x 42x 50 ³ T = 1.03x10 ⁶ N.mm 2) Thickneur of key = t = d = So = 8.33 = 10mm Width of key = W = d = So = 12.5 = 14mm it = 10mm W = 14mm 3) Considering, shear failure of key. T = 1x w x 7x d = 1.03x10 ⁶ = 1x 14x 42x 50 = 1 d mm i) Considering chushing failure of key T = 4x t x 6cx d = 1.03x10 ⁶ = 4x 10 x 70x 50			
1) To Find Torque Transmitted by shaft $T = \frac{11}{16} t d^{3}$ $= \frac{11}{16} \times 42 \times 50^{3}$ $T = 1 \cdot 0.3 \times 10^{6} \text{ N.mm}$ 2) Thickness of key = $t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{ mm}$ Width of key = $w = \frac{d}{7} = \frac{50}{9} = 12.5 = 14 \text{ mm}$ $= \frac{1}{16} \times 42 \times 50^{3}$ $= \frac{1}{16} \times 42 \times 50^{3}$ $= \frac{1}{16} \times 42 \times 50^{3} = \frac{1}{16} \times 14 \times 14 \times 14 \times 14 \times 16 \times 16 \times 16 \times 16$	1) To Find Torque Transmitted by shaft $T = \frac{11}{16} t d^{3}$ $= \frac{17}{16} \times 42 \times 50^{3}$ $T = 1.03 \times 10^{6} \text{ N.mm}$ 2) Thickneur of key = $t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{ mm}$ width of key = $w = \frac{d}{7} = \frac{50}{4} = 12.5 = 14 \text{ mm}$ $= \frac{14 \text{ mm}}{100}$ 3) Considering shear failure of key. $T = 100 \times 7 \times \frac{d}{2}$ $1.03 \times 10^{6} = 100 \times 14 \times 42 \times \frac{50}{2}$ $= 100 \times 14 \times 14 \times 42 \times \frac{50}{2}$ 1) Considering chushing failure of loey $T = 100 \times 14 $			
7 = 1 t d3 = 1 x 42x 503 T = 1.03x106 N.mm 2) Thickness of key = t = d = 50 = 8.33 = 10mm Width of key = W = d = 50 = 12.5 = 14mm - t = 10 mm W = 14 mm 3) Considering shear failure of key. T = 1 x w x 7x d = 1.03x106 = 1 x 14 x 42x 50	T = TT	BCK = 70 N/mm²-		
= TT x 42x 503 [T = 1.03 x 10 6 N.mm] 2) Thickness of key = t = d = So = 8.33 = 10 mm width of key = w = d = So = 12.5 = 14 mm -: [t = 10 mm] w = 14 mm] 3) Considering shear failure of key. T = 1x w x 7x d = 1.03 x 10 6 mm & 72 mm] 1) Considering conshing failure of key T = dx \(\frac{1}{2}\) x \(\frac{1}{2}	= T	1) To Find Torque Tro	ansmitted by shaft	2m
T=1.03×106 N.mm 2) Thickness of key = $t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{ mm}$ Width of key = $W = \frac{d}{7} = \frac{50}{4} = 12.5 = 14 \text{ mm}$ T=10 mm W=14 mm 3) Considering shear failure of key. T= $\frac{1}{2}$ = $\frac{1}{2$	T=1.03×106 N.mm 2) Thickneur of key = t = $\frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{ mm}$ width of key = $\omega = \frac{d}{7} = \frac{50}{4} = 12.5 = 14 \text{ mm}$ 2m T=14 mm 3) Considering whear failure of key. T= $\frac{1}{2}$ T=	7 = 11 t d3		
2) Thickness of key = t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10mm Width of key = \psi = \frac{d}{7} = \frac{50}{9} = 12.5 = 14mm \[\begin{align*} \text{-14 mm} & -1	2) Thickness of key = t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10mm Width of key = \w = \frac{d}{7} = \frac{50}{9} = 12.5 = 14mm \[\frac{1}{9} = \frac{10}{9} = 12.5 = 14mm \] 2m \[\frac{1}{9} = \frac{10}{9} = 12.5 = 14mm \] 2m \[\frac{1}{9} = \frac{10}{9} = 12.5 = 14mm \] 2m \[\frac{1}{9} = \frac{10}{9} = 12.5 = 14mm \] 2m \[\frac{1}{10} = \frac{10}{9} = 12.5 = 14mm \] 2m \[\frac{1}{	= 11 x42x 500	3	
in the 10 mm we 14 mm 3) Considering shear failure of key. The drew to the text of the	-: \frac{t}{z} = 10 mm \text{W} = 14 mm 3) Considering shear failure of key. \tau = \lambda \text{W} \times \tau \frac{d}{2} \lambda = \lambda \text{V} \text{V} \frac{d}{2} \lambda = \frac{1}{70.06 mm} \times \frac{72 mm}{2} \text{T} = \lambda \times \frac{d}{2} \text{mushing failure of locey} \tau = \frac{1}{1.03 \times 106} = \lambda \text{V} \frac{d}{2} \text{V}			
in the 10 mm we 14 mm 3) Considering shear failure of key. The drew to the text of the	-: \frac{t}{z} = 10 mm \text{W} = 14 mm 3) Considering shear failure of key. \tau = \lambda \text{W} \times \tau \frac{d}{2} \lambda = \lambda \text{V} \text{V} \frac{d}{2} \lambda = \frac{1}{70.06 mm} \times \frac{72 mm}{2} \text{T} = \lambda \times \frac{d}{2} \text{mushing failure of locey} \tau = \frac{1}{1.03 \times 106} = \lambda \text{V} \frac{d}{2} \text{V}	2) Thickness of key.	$= t = \frac{d}{6} = \frac{50}{6} = 8.33 = 10 \text{ mm}$	
in the 10 mm we 14 mm 3) Considering shear failure of key. The drew to the text of the	-: \frac{t}{2} = 10 mm \text{W} = 14 mm 3) Considering shear failure of key. \tau = \frac{1}{2} \text{W} \times 7 \times \frac{d}{2} \text{I-03} \times 106 = \frac{1}{2} \text{V} \times \frac{4}{2} \text{SO} \text{U} = \frac{70.06 mm}{2} \times 72 mm \text{I} 1) Considering coushing failure of locy \text{T} = \frac{1}{2} \times \text{Ock} \times \frac{d}{2} \text{I-03} \times 106 = \frac{1}{2} \times 70 \times 50	width of key = u	$J = \frac{d}{3} = \frac{50}{9} = 12.5 = 14 \text{ mm}$	2m
3) Considering shear failure of key. $T = 1 \times 14 \times 7 \times \frac{1}{2}$ 1.03×106 = $1 \times 14 \times 42 \times \frac{50}{2}$ 2m i) Considering crushing failure of loey $T = 1 \times \frac{1}{2} \times 10 \times 10 \times 10 \times 10$ 1.03×106 = $1 \times 10 \times 10 \times 10 \times 10$	3) Considering shear failure of key. $T = 1 \times 14 \times 7 \times \frac{1}{2}$ 1.03×106 = $1 \times 14 \times 42 \times \frac{50}{2}$ 2m i) Considering crushing failure of key $T = 1 \times \frac{1}{2} \times 10 \times 1$	-: [t = 10 mm]	e	
$T = \int_{\infty}^{\infty} x \times 7 \times \frac{d}{2}$ $1.03 \times 10^{6} = \int_{\infty}^{\infty} 14 \times 42 \times \frac{50}{2}$ $1 = 70.06 \text{ mm} \approx 72 \text{ mm}$ $1 = \int_{\infty}^{\infty} \frac{d}{dt} = \frac{1}{10} \times \frac{10}{100} \times \frac{10}{100} = \frac{1}{100} \times \frac{10}{100} = \frac{1}{100} \times \frac{10}{100} \times$	$T = \int_{\infty}^{\infty} x \times 7 \times \frac{d}{2}$ $1.03 \times 10^{6} = \int_{\infty}^{\infty} 14 \times 42 \times \frac{50}{2}$ $1 = 70.06 \text{ mm} \approx 72 \text{ mm}$ $1 = \int_{\infty}^{\infty} \frac{d}{dt} = \frac{10^{2} \times 10^{4} \times 42 \times \frac{d}{2}}{1.03 \times 10^{6}} = \int_{\infty}^{\infty} \frac{d}{dt} = \frac{10^{4} \times 10^{4} \times 42 \times \frac{d}{2}}{1.03 \times 10^{6}} = \int_{\infty}^{\infty} \frac{d}{dt} = \frac{10^{4} \times 10^{4} \times 10^{4} \times 10^{4}}{1.03 \times 10^{6}} = \frac{10^{4} \times 10^{4}}{$			
1.03×106 = $d \times 14 \times 42 \times \frac{50}{2}$ $d = 70.06 \text{ mm} \approx 72 \text{ mm}$ i) Considering coushing failure of local T = $d \times \pm \times 600 \times 400$ $T = d \times \pm \times 600 \times 400$	1.03×106 = $d \times 14 \times 42 \times \frac{50}{2}$ $d = 70.06 \text{ mm} \approx 72 \text{ mm}$ i) Considering coushing failure of local T = $d \times \pm \times 600 \times 400$ $T = d \times \pm \times 600 \times 400$			
d = 70.06 mm \approx 72 mm i) Considering convoling failure of local T = $d \times \pm \times bck \times d$ 1.03 ×106 = $d \times 10 \times 70 \times 50$	d = 70.06 mm \approx 72 mm i) Considering convoling failure of local T = $dx \neq x$ $\delta c \times x \neq x$ 1.03 ×106 = dx 10 x 70 x 50	2		
i) Considering convoling failure of local T = dx \pm x dck x \frac{d}{2} 1.03 × 106 = dx 10 x 70 x 50	i) Considering convoling failure of local T = dx \pm x dck x \frac{d}{2} 1.03 × 106 = dx 10 x 70 x 50			2m
$T = dx \pm x \delta c k x \neq 10 \times 70 \times 50$	$T = dx \pm x \delta c k x \neq 10 \times 70 \times 50$	d= 70.06 mm 2	72 mm	
1.03 ×106 = dx 10 x 70x 50	1.03 ×106 = dx 10 x 70x 50	())	failure of Icey	
$1.03 \times 10^{6} = d \times \frac{10}{2} \times 70 \times \frac{50}{2}$ $2m$ Taking larger Value = $d = 120 \text{ mm}$	$1.03 \times 10^{6} = d \times \frac{10}{2} \times 70 \times \frac{50}{2}$ $1 = 117.7 \approx 120 \text{ mm}$ $7 \text{ aking larger Value} = 120 \text{ mm}$	T= dx \pm x orkx s	2	
J= 117.7 ~ 120 mm) Taking larger Value : [d= 120 mm]	J=117.7 ~ 120 mm) Taking larger Value : [l=120 mm]	1.03 ×106 = dx 10 × 70	× <u>50</u>	
Taking larger value : [l=120mm]	Taking larger value : [l=120mm]	1 1 = 117.7 2 120 x	$\frac{2}{mm}$	
Taking larder value - [cl-1201115]	Taking larger value - [cl-12011]		1/2/2000	2m
		Taking larger Valu	(- 10 m)	

)	Attempt any TWO of the following:	2x8=16
a)	Given	Given 1m
	T= 200 N.m = 200 x 103 N.mm	
	M 2 350 N.m = 350 X103 N.mm	
	Tyield = 300 N/mm²	
	Fo 5 = 3	
	km = 2 kt = 1.5	
	1) Io Find working Shear others	2m
	T= Trield = 300 Fos	
	[T = 100 N/mm ²]	
	2) To Find Equivalant Twisting Moment	
	Te = Jkm. m2 + kt. 72	3m
	$= \sqrt{2} \times (350 \times 10^{3})^{2} + 1.5 \times (200 \times 10^{3})^{2}$	
	= ((2.45×10")+(6×1010)	
	Te = 552.26 × 103 N. mm	
	we also know that	
	Te = II T d3	for dia -2
	55226×103= TT 100 × d3	
	id= 30.41 mm	
	d 2 35 mm)	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

d : diameter of shaft b) D = diameter of hub = 2d di = Nominal dia of-bolt Die diameter of bolt circle = 3d n = no of polta to = thicknew of flange = 0.5d Ts, Tb, 12k - Allowasie Shear Strewer for Shaft, Solt & Key. To = Allowable Shear Streve for Hange material Eck fles = Allowable crushing street for bolt of loey. 1) Design of hub Design of hub 2m T = II To 33 (1- K9) ... (1) where $t = \frac{\partial}{\partial t}$ here $\partial = 2d$ $\int_{0}^{\infty} L = 1.5d$. From equation (1) the diameter of hub can be checked It To Tainen design is safe 2) Jesign of key Design of key 2m t = d l= L=1.5 d 3) Design for flange T= TXDX tf x Tc x D Design of here to = 0.5 d. flange 2m In above equation it te < The design safe 4) Dearly of Polta load on each bolt = TT x (d1)2 x Tb Design of .. Total load on boltu = nx II (d,)2 x Tb bolts 2m : Torque fransmitted 7 = mx # (d, 2 x Tb from above equation d, can be calculated. checking of bolt under couching. T = Mxd, xtf x deb x D1 It les < besjiven design iv safe

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

c)

Fig 2m

Sometimes unsymmetrical sections such as angles, channels-sections etc., welded on the flange edges are loaded axially as shown in Fig. In such cases, the lengths of weld should be proportioned in such a way that the sum of resisting moments of the welds about the gravity axis is zero. Consider an angle section as shown in Fig.

Derivation 6m

Let l_a = Length of weld at the top,

 l_b = Length of weld at the bottom,

 $l = Total length of weld = la + l_b$

P = Axial load,

a = Distance of top weld from gravity axis,

b = Distance of bottom weld from gravity axis, and

f = Resistance offered by the weld per unit length

Moment of the top weld about gravity axis

$$= l_a \times f \times a$$

and moment of the bottom weld about gravity axis

$$= l_b x f x b$$

Since the sum of the moments of the weld about the gravity axis must be zero, therefore,

$$l_a x f x a - l_b x f x b$$

or
$$l_a X a = I_b x b \dots (i)$$

We know that

$$l = l_a + l_b \dots (ii)$$

From equations (i) and (ii), we have

$$l_a = 1 \times b / a + b$$
 and $l_b = 1 \times a / a + b$

4)	Attempt any TWO of the following:	2x8=16
a)	Given w = 80 mm t = S = 10 mm bt = 70 N/mm ² T = 50 N/mm ²	Given 1m
	W= SSKN= SSX103 N. 1) To Find length of single transverse filled weld l= W=12.5 = 80-12.5 L= 67.5 mm	1m
	2) Load Carried by single Transverse filletweld $W_{6t} = W_{1} = 0.707 \times S \times d_{1} \times \delta t$ $= 0.707 \times 10 \times 67.5 \times 70$ $W_{1} = 33.40 \times 10^{3} \text{ N}$	2m
	3) Load Carried by double Parallel Allet weld WT = W2 = 2x0.707 x 8x Lex T = 2x0.707 x lox lex 50 [W2 = 707 d2]	2m
	We know that total load Carried by Plate $W = W_1 + W_2$ $55 \times 10^3 = 33.90 \times 10^8 + 707 d_2$ $55 \times 10^3 - 33.40 \times 10^3 = 707 d_2$ $21.6 \times 10^3 = 707 d_2$ $11.6 \times 10^3 = 707 d_2$ For Starting of weld run 12.5 mm should be added	2m

b)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Failure 6m

(any 3 types)

Failure of a Rivetted doint

1) Tearing of the plate at an edge!

A doint may fail due to tearing of the plate at an edge shown in fig.

This can be avoided by keeping the margin

m=1.5d
where dir the diameter of the rivet hole.

2) Tearing of the plate across a row of rivets:

The resistance offred by the plate against tearing is known as tearing resistance of the plate Let p = pitch of rivels

d = diameter of rivet hole

t = thickness of plate

lt = permissible tensile show

Pt = (P-d).t. 8t)

3) Shearing of the rivetu

Let d = diameter of the rivet hale T = Safe permissible Stress

T = Sate Permissible Stresson = number of rivels

Shearing resistance offred by Plate

Ps = $n \times \frac{\pi}{4} \times d^2 \times \tau$. Single shear = $n \times 2 \times \frac{\pi}{4} \times d^2 \times \tau$. Double shear

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(ISO/IEC - 27001 - 2005 Certified)

```
1) Thickness of boiler Shell
```

t = thicknews of boiler shell

P = Steam preovere in boiler

D= Internal diameter of boiler Shell

6t= Permissible tensile stresu

Me = Efficiency of the Soint

2) Diameter of rivetu

d= 6 Jt . - When t > 8 mm

If t < 8 m them equating Ps=Pc

3) Number of Rivetu

Ps = nx IT d2x T

4) Pitch of Riveto

P. Can be obtained from this relationship

& Pmax = Cxt + 41.28 mm

t= thicknew of shell plate

c = Constant

5) Distance between rows of rivets.

0.33p + 0.67d -- Zig Zay Rivetting 2d ----- For chain Riveting

6) Marzin:

m= 1.5 d.

6m derivation

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Attempt any TWO of the following:	2x8=16
a)	Advantages:-	2m
	 Screwed joints are highly reliable in operation. Screwd joints are convenient for assembling & dissembling. A wide range of scred joints may be adopted to various operating conditions. Screws are relatively cheap to produce. 	(any2)
	Disadvantages:-	2m
	1) The main disadvantage of the screwed joints is the stress concentration in the threaded	
	portions.2) It becomes loose because of machine vibrations.3) Its strength can not be compared with other joints.	(any2)
	Bolts of Uniform strength:-	
	If the shank of the bolt is turned down to a diameter equal or even slightly less than the core diameter of the thread (D) as shown in Fig. (b), then shank of the bolt will undergo higher stress. This means that a shank will absorb a large portion of the energy, thus relieving the material at the sections near the thread. The bolt, in this way, becomes stronger and lighter and it increase shock absorbing capacity of the bolt because of an increased modulus of resilience. This gives us bolts of uniform strength . The resilience of a bolt may also be increased by increasing its length.	4m
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

b) G	Given 1m
Given	
do = 20 mm	
J = 300 mm	
P = 0.65 N/mm²	
6t= 20 N/mm²	
1) Core diameter of bolt	
dc= 0.89 do	1m
[dc=16.8 mm]	
2) Total vertical load acting on the Cylinder	
$Wn = P \times \frac{11}{4} \times 3^2$	
= 0.65× Tx (300) =	2m
Wn = 45.94 X103 N	
3) Load acting on each bolt	
$W = \frac{W\eta}{\eta} \dots \qquad eg' \qquad (1)$	
4) We also know that	
$\delta_t = \frac{W}{T} (dc)^2$	2m
: W = bt x # (dc)2	
$\frac{-20 \times \pi}{4} (168)^{2}$ $W = 4.43 \times 10^{3} N - 2$	
Equating eg 1 4 1	
	- 2m
$n = \frac{Wn}{\omega} = \frac{45.94 \times 10^3}{4.43 \times 10^3}$	
Therefore $\underline{\mathbf{n}} = \underline{12}$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

c) Stresses in Pipes:

The stresses in pipes due to the internal fluid pressure are determined by Lame's equation. According to Lame's equation, tangential stress at any radius x

marks

for stresses

04

$$\mathsf{Gt} = \! \{ [p\ (ri)^2] \ / \ [(ro)^2 - \! (ri)^2] \ \} \ / \{ 1 + \! [(ro)^2 \ / \ x^2] \}$$

And Radial stress at any radius x

$$\mathsf{Gr} = \{ [\mathsf{p} \; (\mathsf{ri})^2] \; / \; [(\mathsf{ro})^2 - (\mathsf{ri})^2] \; \} \; / \{ 1 \; - \; [(\mathsf{ro})^2 \; / \; x^2] \}$$

where p = Internal fluid pressure in the pipe,

ri = Inner radius of the pipe, and

ro = Outer radius of the pipe

04

marks for sketch any 2 joints

The various types of pipe joints are as follows.

1. Socket or a coupler joint.

2. Nipple joint.

Nipple joint.

3.Union joint.

Union joint

4. Spigot and socket joint.

Spigot and socket joint

5. Expansion joint.

Expansion bends

Expansion joints

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

${\bf MAHARASHTRA~STATE~BOARD~OF~TECHNICAL~EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	loaded in a bending.	1m
	The specimen is subjected to completely reversed stresses. A record is kept of number of cycles required to produce a failure & results are plotted on Stress-cycle graph as shown in fig.	
	Endurance Limit:-	2m
	Endurance or fatigue limit is defined as the maximum value of completely reversed bending stress, which a standard specimen can withstand without failure for infinite number of cycles of loads.	
b)	Drawing FBD of an entire twour 40km 30km 40km 10km 72.60m HA 3m - 10km 72.60m RE 3m 20km	FBD 1r
		Suppor reaction 2m
	Taking & fx = 0 Taking & fx = 0 HA - 10 = 0 VA - 40 - 30 - 20 + Re = 0 [HA = 10 KN] VA + RE = 90 KN] - · (1)	
	Taking & MA = 0 (40×1.5) + (30×4.5) - (6×RE) - (10×2.60) + (20×3) = 0	Forces in any five members 5m
	Isolating doint A Taking Efr=0 Taking Efr=	(1m fo
	Joolating Joint B Taking & fy=0 Taking & fk=0 Fac + Faccouse - Fas cose=0 Fac + Faccouse - Fas cose=0 Fac + Faccouse + 31.67 Sinso=0 Fac + Faccouse + 31.67 Couse + 31.67 Couse + 31.67 Couse = 0 Fac + Faccouse - Fas cose=0 Fac + Faccouse - Fac	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

- 2. Decide which side of the cut frame will be easier to work with (minimize the number of forces you have to find).
- 3. If required, determine the necessary support reactions by drawing the FBD of the entire frame and applying the COE.
- 4. Draw the FBD of the selected part of the cut truss. You need to indicate the unknown forces at the cut members. Initially we assume all the members are in tension, as we did when using the method of joints. Upon solving, if the answer is positive, the member is in tension as per your assumption. If the answer is negative, the member must be in compression. (Please note that you can also assume forces to be either in tension or compression by inspection as was done in the figures above.)
- 5. Apply the COE to the selected cut section of the truss to solve for the unknown member forces. Note that in most cases it is possible to write one equation to solve for one unknown directly.

OR

 $F_{DF} = 13.08 \text{ KN}$

FBD

1m

Support reactions

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

19king Efr=0

VA-40-30-BeSM60=0

IMA + FCE + BF + FDE COUGO =0

31.83-40-80= BESM60

i FDE=-44.07KN C

FDE=-32.94KN C Taking Efy=0 Taking Section 3 - 3

Taking Ely=0

-20 + FGF SIMED=0

FGF 26-05KN T - FGE - FGF Cours =0 - FGE = -11. 37 KN (C

2m

Forces in members any 5

(1m for each)