

WINTER-16 EXAMINATION

Model Answer

Subject Code:

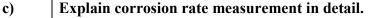
17543

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		A	nswer		Marking		
No.	Q. N.					Scheme		
1.	(A)	Attempt any THREE.				12		
	a)	List any four mechanical	l properties of b	iomaterial.				
		Ans:						
		Mechanical properties o	f biomaterial :					
		1. It should be compatible	with the tissue n	nechanically, che	mically and pharmacologically			
		2. It should have adequate mechanical strength, fatigue and physical properties.						
		3. It should be chemically	inert & stable an	d should not elic	it allergenic,	each		
		carcinogenic and toxic re	eactions.					
		4. Biomaterials may be of	natural origin.					
	b)	List any four properties	of carbon.					
		Ans:						
		Properties of Carbon :						
		1. The carbons are inert ceramic materials.						
		2. In the quasi-crystalline	forms, the degree	e of perfection of	the crystalline			
		structure and the morph	ological arranger	nents of the crys	tallites and pores			
		are important in determ	ining the propert	ies of carbons.				
		3. All the carbons, current	ly of interest for	use in medical de	evices have the			
		quasi -crystalline turbos	static structure.					
		4. Carbon has good biocompatibility with bone and other tissues.						
		5. It also has high strength and an elastic modulus close to that of bone and						
		so do not suffer from fatigue.						
		OR						
		N	Aechanical prope	rties of carbon:				
		Property	Graphite	Glassy	Pyrolytic			
		Density (g/ml)	1.5-1.9	1.5	1.5-2.0			
		Elastic modulus (GPa)	24	24	28 517 (575ª)			
		Compressive strength (MPa)	138	172	517 (575 ^a)			
		Tabl	e: Mechanical pr	operties of carbo	n			
				-r				

c)				the body.				
	Ans :							
	[vena cava]	pruspid mules - C	Jimonary Nalve	Pulmenary [L. atrium] (Biene (Biene Aroterrioles) the body	Jahre Jahre Arsta Arsta Arsteries	04		
d)	State mechanica	l properties of	f teeth.					
	Ans:	no forma tha m	noise part of the tas	th				
	Enamel and dentine forms the major part of the teeth. Mechanical properties of enamel and dentin are:							
	Mechanical prope			Young's Modulus (GPa)	Thermal conductivity (W/mk)	04		
	Mechanical prope	erties of ename	I and dentin are:	-	conductivity	04		
	Mechanical prope	erties of ename Density (g/cm ³) 2.2 1.9	I and dentin are: Compressive Strength (MPa) 241	Modulus (GPa) 48 13.5	conductivity (W/mk) 0.82	04		
(B)	Mechanical prope	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1	l and dentin are: Compressive Strength (MPa) 241 138	Modulus (GPa) 48 13.5	conductivity (W/mk) 0.82	04		
(B) a)	Mechanical prope	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E.	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope	Modulus (GPa) 48 13.5	conductivity (W/mk) 0.82			
	Mechanical property Enamel Dentin Attempt any ON Explain the use of Ans :	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E. of collagen in o	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope dentistry.	Modulus (GPa) 48 13.5 erties of teeth	conductivity (W/mk) 0.82			
	Mechanical proper Enamel Dentin Attempt any ON Explain the use of Ans : 1. Collagen is use	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E. of collagen in o ed for preventio	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope dentistry. on of oral bleeding	Modulus (GPa) 48 13.5 erties of teeth	conductivity (W/mk) 0.82			
	Mechanical proper Enamel Dentin Attempt any ON Explain the use of Ans : 1. Collagen is use 2. It is used to su	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E. of collagen in of ed for prevention pport of regener	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope dentistry. on of oral bleeding eration of periodon	Modulus (GPa) 48 13.5 erties of teeth	conductivity (W/mk) 0.82			
	Mechanical proper Enamel Dentin Attempt any ON Explain the use of Ans : 1. Collagen is use 2. It is used to su 3. It is used for p	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E. of collagen in of ed for prevention pport of regener romotion of he	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope dentistry. on of oral bleeding eration of periodon valing of mucosal li	Modulus (GPa) 48 13.5 erties of teeth tal tissues. ining.	conductivity (W/mk) 0.82			
	Mechanical proper Enamel Dentin Attempt any ON Explain the use of Ans : 1. Collagen is use 2. It is used to su 3. It is used for p 4. It is also used	erties of ename Density (g/cm ³) 2.2 1.9 Fig: 1 E. of collagen in of ed for prevention pport of regener romotion of he for prevention	l and dentin are: Compressive Strength (MPa) 241 138 Mechanical prope dentistry. on of oral bleeding eration of periodon caling of mucosal li of migration of epi	Modulus (GPa) 48 13.5 erties of teeth 48 13.5 14 15 15 15 15 15 15 15 15 15 15 15 15 15	conductivity (W/mk) 0.82			



		OR	0
	Material	Observation	
	Collagen	Collagen sponges decreased seepage of blood during periodontal mucoginvival surgery	
	Collagen	Collagen membranes have capacity to support regeneration of periodontal tissues	
	Collagen gel-allogeneic bone	Collagen gel-allogeneic bone implant encouraged ingrowth of regenerative tissue and new bone	
	Collagen tricalcium phosphate	Collagen-tricalcium phosphate grafts resulted in less soft tissue recession	
	Collagen coated root implants	Long lasting retention of collagen coated acrylic root implants	
	Collagen solution	Collagen solution applied to root surface suppressed epithelial migration and new tissue formation	
	Collagen graft Collagen allogenic bone	Collagen graft promoted formation of normal mucous membrane Bone collagen grafts reduced probing	
	Collagen solution	depths and gained new attachment Application of collagen solution to root surface suppressed epithelial	
	Collagen film + tetracycline	migration and promoted new cementum formation Topical administration of tetracycline	
		on a collagen film remains active for two to three weeks	
	Table: Use of c		
b)	Table: Use of c Draw and explain structure of typical bo	two to three weeks ollagen in dentistry	
b)		two to three weeks ollagen in dentistry	
b)	Draw and explain structure of typical bo Ans :	two to three weeks ollagen in dentistry	
b)	Draw and explain structure of typical bo Ans :	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line	
b)	Draw and explain structure of typical bo Ans : BONE ST	two to three weeks ollagen in dentistry ne. RUCTURE	
b)	Draw and explain structure of typical bo Ans : BONE ST	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line Spongy bone	
b)	Draw and explain structure of typical bo Ans : BONE ST	two to three weeks ollagen in dentistry ne. FRUCTUBRE Articular cartilage Ephiphyseal line Spongy bone Compact bone Nutrient foramen	
b)	Draw and explain structure of typical bo Ans : BONE ST Proximal epiphysis	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line Spongy bone Compact bone Nutrient foramen Endosteum Medullary cavity	
b)	Draw and explain structure of typical bo Ans : BONE ST Proximal epiphysis	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line Spongy bone Compact bone Nutrient foramen Endosteum Medullary cavity	0
b)	Draw and explain structure of typical bo Ans : BONE ST Proximal epiphysis	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line Spongy bone Compact bone Nutrient foramen Endosteum Medullary cavity	0
b)	Draw and explain structure of typical bo Ans : BONE ST Proximal epiphysis	two to three weeks ollagen in dentistry ne. TRUCTURE Articular cartilage Ephiphyseal line Spongy bone Compact bone Nutrient foramen Endosteum Medullary cavity	0
b)	Draw and explain structure of typical bo Ans : Proximal pipphysis Diaphysis Diaphysis	two to three weeks ollagen in dentistry ne.	0

		Long bone consists of two major regions. Compact or cortical bone and cancellous or trabecular bone. The location of these bone types in a femur shown in above fig. cortical and compact bone is a dense material with a specific gravity of about 2. The external surface of bone generally smooth and is called the periosteum. The interior surface is called endosteal surface, which is roughened. Cancellous bone which exists in epiphysical & metaphysical regions of long bone, is also	03
		called spongy or trabecular bone because it is composed of short struts of bone material called trabeculae. The connected trabeculae give cancellous bone a spongy appearance & a vast surface area. From a microscopic view point there are three types of cortical bones, these are woven, laminar, and haversian.	
2.		Attempt any FOUR.	16
	a)	List any four features of surface of material. Ans: 1. Crystalline order 2. Surface roughness 3. Surface domain structure 4. Heterogeneties: Lateral and Vertical surfaces. 5. Overlayers.	1 mark each
	b)	Draw neat labelled stress-strain curve for ductile material. Ans : Maximum stress Vield Stress (N/m ²) Fracture Engineering Distribution Stress (N/m ²) Fracture Engineering Stress (N/m ²) Fracture Engineering Stress (N/m ²) Fracture Engineering Stress (N/m ²) Fracture Engineering Stress (N/m ²) Fracture Engineering Stress (N/m ²) Stress (N/m ²)	04

Ans :

The rate of corrosion can be assessed using various methods.

1) The traditional test for the corrosion rate is the measurement of weight change of a sample in a solution with time. On passivation weight loss is minimum. However when the passivation breaks down metal corrodes rapidly which is shown in fig below.

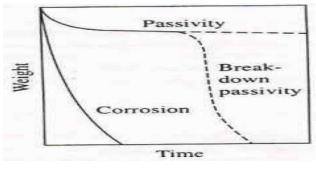


Fig: Weight loss in corrosion

OR

2) Another method employs a potentiostat to impose external potential to a specimen, which is made anodic under conditions of slowly increasing polarization. The technique of linear polarization is utilized for measuring the very small corrosion rate of implant materials in vitro and in vivo. A small current is passed from the implant material (working electrode), at a fixed potential (voltage) through an electrolyte solution to an auxiliary electrode and back through an ammeter to the power supply. The potential difference between the implant material and a reference electrode is measured directly with a potentiometer. In a general a linear relation between current and potential is observed to 10 mV. The corrosion rate is determined from the slope of this line, using the appropriate equation. This technique is very sensitive and accurate for small rates with very small applied current(0.001 A/cm^2).

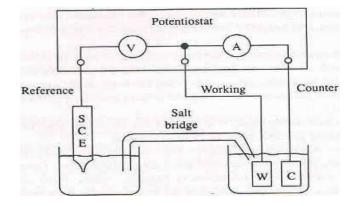


Fig: A typical three-electrode system for electrochemical testing of corrosion rates.

04

	The potential of test specimen or working electrode (W) is measured relative to a	
	saturated calomel electrode (SCE). The potential is controlled by the potentiostat, and the	
	current flow between the working electrode and counter electrode (C) associated with thus	
	potential is monitored.	
d)	Explain biological tolerance of any four implant metals.	
	Ans :	
	1. Iron : The adult human body contains approximately 4 to 5 g of iron. Metabolically	
	active iron is contained in circulating hemoglobin (about 66%), myoglobin (3%) and in	
	heme containing enzymes less than 10% or is attached to transferrin in transit through the	
	plasma. The remainder is held in storage either in ferritin, which is found in greater	
	quantities in the liver, spleen and bone, or it is stored as insoluble intracellular granules of	
	hemosiderin. The balance of iron in the body is maintained by adsorption at approximately	
	lmg/day, with a similar quantity being lost per day.	
	2. Cobalt: It is an essential trace element and the function is confined to its role in vitamin	
	B12. A daily intake of 3µm of vitamin B12 is adequate. Free cobalt has no obvious	
	function and there is no apparent mechanism for controlling its uptake into or loss from the	
	body. Eighty percent of dietary intake is unabsorbed and excreted in the faces unabsorbed	
	and urinary excretion of the remainder is relatively fast. In cases of raised dietary cobalt	
	levels it is possible for the cobalt absorbed to be located in the muscles of the heart leading	
	in some cases to cardiomyopathy. It is not a particularly toxic metal and although there are	
	theoretical and experimental grounds for assuming that cobalt based alloys could be quite	
	toxic upon implantation, there is little evidence that they have any adverse effects on	
	implantation in humans. Indeed these alloys offer very good biocompatibility properties,	
	largely on account of the excellent corrosion resistance.	1 mark
	3. Chromium: Like many of the transition metals, chromium is both an essential dietary	each
	element that is required in low concentrations (blood level average 2.8µg/IOO g) and also	
	a toxic substance if present in the raised amounts. Chromium compounds are only poorly	
	absorbed after oral ingestion and storage of chromium (III) is largely confined to the	
	reticuloendothelial systems. The hexavalent chromium ion is able to pass the plasma	
	membrane freely, both in and out of the cell and the reduction takes place mainly in the	
	mitochondria. The mechanism of chromium toxicity is not entirely clear but it has been	
	suggested that the in vivo reduction from hexavalent to trivalent states may be important.	

4. Molybdenum: It is an essential dietary element and has its highest concentration in the liver at I to 3 ppm. It is necessary for the function of certain enzymes. There are three principal molybdenum containing metallo-enzymes: xanthine oxidase, aldehyde oxidase and sulfite oxidase. In contrast to many metals, molybdenum is quite readily absorbed from the intestinal tract, excretion largely being via the kidneys. Molybdenum is toxic in large doses; the symptoms of toxicity include diarrhea, coma and cardiac failure, and inhibition of activity of ceruloplasmin, cytochrome oxidase, glutaminase, choline esterase and sulfite oxidase. High levels of molybdenum can also interfere with calcium and phosphorus metabolism.

5. Nickel: It is an essential element of limited biological activity with a wide-ranging distribution. In humans, it has a level of approximately 10 mg in adult human tissues. A normal blood level of nickel is around 5mg/l. In human inhalation of nickel may lead to renal effects but observation of toxicity are largely confined to carcinogenesis and hypersensitivity. It is sufficient to note here that nickel carcinogenesis in experimental animal is well established. While these facts are of some concern, their reference to implantation is not yet clear. Contact dermatitis for nickel and nickel alloys has been well established.

6. Manganese: It is at a level of 12 to 20 mg in a 70 kg man, and the normal blood level is 7.0 to 28.0 μ g/ml. A higher concentration of manganese occurs in pituitary gland, pancreas, liver, kidney and bones, and accumulation occurs in hair. Within the cell manganese is associated with the mitochondria and it is largely protein bound in plasma. It is a co-factor for a number of enzymes, among them are carboxylases and phosphatases. Manganese is one of the least toxic trace elements. The divalent form is supposed to be more toxic than trivalent form. It has been shown that injected manganese elimination from the human body can be described by a curve with two exponents, the more rapid pathway having a half life of 4 days while 70% of the manganese had an average half-life of 39 days.

7. Titanium: Unlike nickel, titanium has a very good reputation for biocompatibility. Titanium and its compounds are not carcinogenic in experimental animals or in humans.

e)

Explain two routes for blood clot formation. Ans :

A clot that has formed inside a blood vessel is referred as a thrombus or an embolus depending on whether the clot is fixed or floating, respectively. Two separate routes for activation of the cofactors leading to blood clotting are known as the extrinsic and intrinsic pathways. The extrinsic pathway is so named because it requires a substance not normally present in the blood for activation. Tissue factor is a lipoprotein found in the endothelial cells that line the vascular system and other organs.

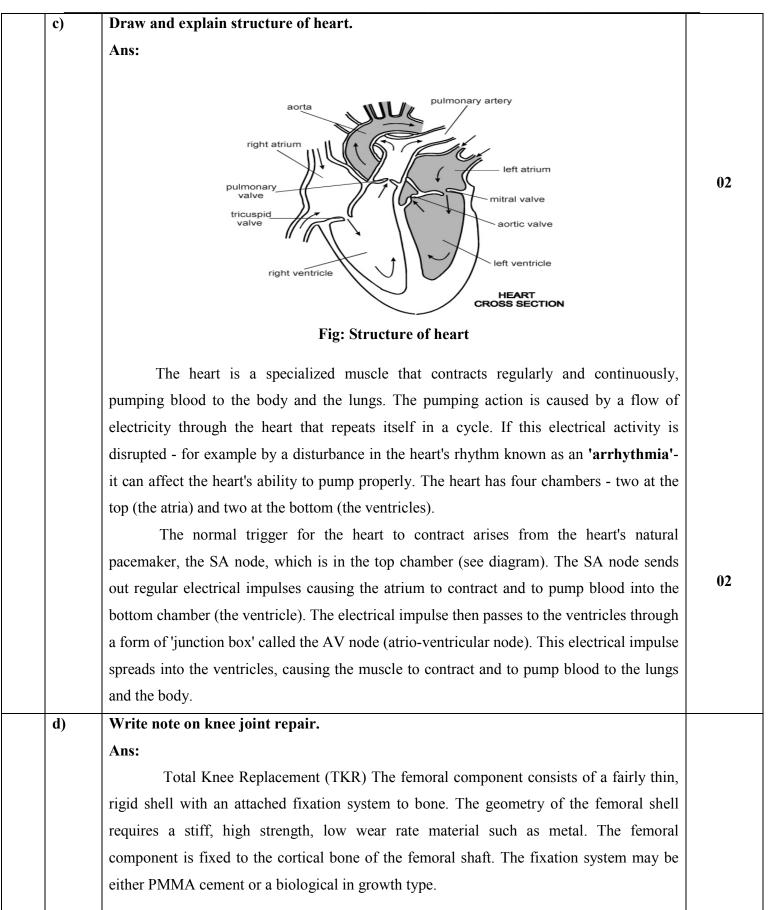
Damage to tissues or vessels releases tissue factor, which activates factor VII to VIIa in the presence of calcium. Factor VIIa is a protease that converts factor X to Xa. All the factors in the intrinsic pathway are available in circulation. Factor XII undergoes a conformational change when exposed to collagen, basement membrane or a variety of other foreign surfaces. Once activated XIIa initiates a series of reactions. The central event in clotting is the cleavage of fibrinogen in the presence of the proteolytic enzyme thrombin to a fibrin monomer, and its polymerization to form a fibrin polymer.

A fibrin clot is cross-linked fibrinogen in a three-dimensional structure in conjunction with platelets and other wound factors. The generation of fibrin from fibrinogen and thrombin from prothrombin are a part of the common pathway of coagulation. Prothrombin is cleaved to thrombin by a complex of factor Xa, factor Va, phospholipid, and calcium. Factor Xa is a serine protease that attacks prothrombin while factor Va is a cofactor that accelerates the reaction.

04

	Intrinsic pathway Surface Contact XII XII XI Active hageman [XII] IX Active P.T.A [XI] IX Active christmas, [IX], Ca ²⁺ Antihaemophilic VIII, Ca ²⁺ Antihaemophilic VIII, Ca ²⁺ VII X Active stuart [X] Phospholipid Proaccelerin(V) Ca ⁺⁺ , Prothrombin Fibrin gen Fibrin Fibrin fibres Formation of clot	
	Fig: Two routes for blood clot formation	
f)	Write note on materials for deep cavities.	
	Ans:	
	Necrosis of the tissues at the pulp chamber & amp; the root canals of the teeth occur by deep caries or other aggressions treatment of the infection requires the removal of the damaged tissues that cannot be regenerated. Therefore the resulting pulp cavities are previously enlarged, cleaned, disinfected & amp; dried, which are then filled by using different materials and techniques. The nature of materials employed is very important since they contact internal tissues through the root apex. These materials include plastic (cements, pastes etc.) or solid pieces (thin cones). & amp; synthetic polymers such as polyethylene, epoxy, polyacrylate, polycarbonate , silicones. These materials used to give hardness of the final product & amp; also seal the internal part of the canals , in addition Gutta- percha mixed with cement is now widely used as sealing materials. This polymer contains many additives zinc oxide, fillers, plasticizers, radiopaque agents to improve its properties for dental purposes.	04

	a)	Ans : Corrosic reaction	of metal in electrolytic solution a s. The primary anodic and cathod yely. M —	ten associated with electrochemical and oxidation as well as oxidation and degradation of polymeric ic reactions are represented by equations A and B $M^{n+} + ne^{-}$ $_{2}O + 2e^{-} \rightarrow 2OH^{-}$	04
		Ans : Corrosid reaction materials	on: It is a degradative process oft of metal in electrolytic solution a s. The primary anodic and cathod yely. M —	as well as oxidation and degradation of polymeric ic reactions are represented by equations A and B $\rightarrow M^{n+} + ne^{-}$	04
		Corrosic reaction materials	of metal in electrolytic solution a s. The primary anodic and cathod yely. M —	as well as oxidation and degradation of polymeric ic reactions are represented by equations A and B $\rightarrow M^{n+} + ne^{-}$	04
		reaction materials	of metal in electrolytic solution a s. The primary anodic and cathod yely. M —	as well as oxidation and degradation of polymeric ic reactions are represented by equations A and B $\rightarrow M^{n+} + ne^{-}$	04
		materials	s. The primary anodic and cathod vely. M —	ic reactions are represented by equations A and B $\rightarrow M^{n+} + ne^{-}$	04
			vely. M —	$\rightarrow M^{n+} + ne^{-}$	
	1 .)	respectiv	м —		
	L \				
	L)			20 1 20 7 2011	
-+	1.)				
1	b)	Write no	ote on testing of biomaterials.		
	,	Ans :	C		
			Evaluation type/Test methods	Effect/Indication	
			Toxicological In vitro: Mutagenicity/ Cell culture toxicity	Inhibition of growth or modification of cellular	
				characteristic	
			In vivo: Intradermal and Mucus membrane irritation test	Inflammation/irritation	04
			Systemic toxicity Carcinogenicity	Toxic nature Tumour formation/DNA mutation	04
			Teratogenicity	Malformation of the fetus	
			Blood compatibility		
			in vitro Hemolytic assay Hemorheological assay	Red cell rupture Effect on hemorheological parameters	
			Clotting time	Blood clotting Uptake of plasma proteins	
			Protein absorption Platelet adhesion	Blood clogging	
			Long term implantation	Retention of mechanical properties	
			Pyrogenicity Immunocompatibility	Microbial contamination Immunostimulation and rejection	
	c)	Write ar	ny four applications of acrylic p	olymers.	
		Ans:	· · · · · ·		
		Applicat	tions of Acrylic polymer :		
				medico-surgical application as contact lenses.	1 marl
			ntable ocular lenses.		each
		-	cement for joint fixation.		
			res and maxillofacial prostheses.		



	d)	Explain blood compatibilit	y of synthetic vascul	ar implant materials.	
		Ans:			
		The most important re	quirement for the	blood interfacing implants is blood	
		compatibility. The implant s	hould not enhance blo	ood clotting or cause damage to the blood	
		components.			
		Surface roughness is an	important factor affe	cting blood compatibility, since rougher	
		the surface more the area is	exposed to the blood.	Therefore rough surfaces promote faster	04
		blood coagulation than highl	y polished surfaces.		
		The factors that affect the block	ood compatibility are		
		1. Clot formation.			
		2. Surface roughness.			
		3. Negatively charged surfac	e.		
		4. Inert surfaces.			
		5. Solution perfused surfaces	8.		
	e)	List different biomaterials	used in total joint re	placement.	
		Ans:			
		The following biomaterials	used in total joint r	eplacement :	
		1. Stainless steel 316L	7. Ti-6VAL-4V.	13. Zirconia.	
		2. Cobalt – based alloys	8. Ti-5AL-2.5Fe	14. Calcium phosphate.	1 mark
		3. Cast Co- Cr-Mo	9.Ti-Al-Nb.	15. Bioglass	each
		4. Wrought CaNi-Cr-Mo	10. Bioinert.	16. PMMA.	Cach
		5. Wrought Co-Cr-W-Ni.	11. Carbon.	17. UHMWPE/HDPE	
		6. Cr-Ti	12. Alumina	18. PTFE	
4.	(A)	Attempt any THREE.			12
	a)	Describe contact angle tech	nique used in surfac	ce analysis.	
		Ans:			
		When a liquid drop is placed	d onto a solid surface	or another liquid surface two things may	
		happen. The liquid may sit o	on the surface in the fo	orm of a droplet or it may spread out over	
		the entire surface. Which ev	vent occurs depend o	n the interfacial free energies of the two	04
		substances.			04
		At equilibrium contact angle	le or Young-Dupree	equation describes: $\gamma_{S/g} = \gamma_{S/l} + \gamma_{L/g} \cos \theta$	
		where , $\gamma s/g$, $\gamma s/l$ and $\gamma l/g$ at	re the interfacial free	energy between the solid and gas; solid	
		and liquid, liquid and gas res	spectively and θ the co	ontact angle.	

	Gios Lizuid @ Goid NEH Nelg Figs- Contact congle Fig: Contact angle	
b)	Enlist properties of alumina and zirconia.	
,	Ans:	
	Properties of alumina:	
	(1 mark each)	
	1. Chemically stable and corrosion resistant.	02
	2. It is insoluble in water. And slightly soluble in strong alkali and acid.	
	3. High melting point.	
	4. Highest hardness.	
	5. Highest mechanical strength.	
	Properties of zirconia:	
	(1 mark each)	
	1. excellent biocompatibility and wear properties	
	2.Use temperatures up to 2400°C	
	3. High density.	
	4. Low thermal conductivity (20% that of alumina).	
	5. Chemical inertness.	02
	6. Resistance to molten metal's.	
	7. Ionic electrical conduction.	
	8. Wear resistance.	
	9. High fracture toughness.	
	10. High hardness.	
	11. High refractive index.	

	The tibial portion consists of a broad plateau covering the tibia, consisting of a	04
	stiff metal tray supporting a polymeric or fiber reinforced polymer. Repeated tensile	
	loading may cause failure of PMMA-bone interface TKR utilizes a limited number of	
	metallic alloys including cobalt-chromium and titanium alloy. Cobalt-chromium alloy	
	combined with ultra high molecular weight polyethylene (UHMWPE) remains the contact	
	surfaces of choice, despite some adverse effects on biocompatibility and mechanical	
	problems.	
	These include creep and fatigue of UHMWPE component due to high stresses and	
	repeated loading and wear of polymeric contact surface due to adhesion of the polymeric	
	surface to the metallic.	
 (B)	Attempt any ONE.	06
 a)	Write the procedure for testing the reliability of dental implant and list the materials	
	used in porous dental implant.	
	Ans:	
	The testing the reliability of dental implants involves several stages.	
	1. First, materials are tested for toxicity by implantation subcutaneously in rats for periods	
	of time up to 30 days and through tissue culture tests. 2. The second step is to test the devices in an animal model. Of all animals, the baboon is	
	considered the most preferred experimental animal in dental-implant studies, since its	
	physiology and immunological responses are very similar to those of humans.	
	3. In general, the clinical condition of dental implants is evaluated by using radiographs,	
	gingival tone, pocket depth and mobility. A stereo-photogrammetric method of measuring the extent of tissue changes and mobility of subperiosteal implants technique	03
	utilizes stereophotographs to measure quantitatively, the extent of tissue swelling or	
	resorption, as well as, migration of dental implants to an accuracy of 16 μ m.	
	The materials used in porous dental implant:	
	1. Titanium & Titanium –6	
	 Aluminum-4Vanadium (Ti-6AI- 4V) Ti, Cobalt-Chromium-Molybdenum-Based Alloy 	
	4. Iron-Chromium-Nickel-Based Alloys),	03
	5. Ceramics (Aluminum, Titanium and Zirconium oxide, Bioactive and biodegradable	
	ceramics)	
	6. Carbon Carbon & carbon silicon,7. Polymers and Composites (Polymethylmethacrylate (PMMA), Polyethylene	
	(UHMW-PE), Polytetrafluoroethylene (PTFE), Silicone rubber, Polysulfide etc.	

healing.				
Ans:				
	Direction of test	Modulus of elasticity (Gpa)	Tensile strength (Mpa)	Compressive strength (Mpa)
Leg bones	Longitudinal			
Femur		17.2	121	167
Tibia		18.1	140	159
Fibula		18.6	146	123
Arm bones	Longitudinal			
Humerus		17.2	130	132
Radius		18.6	149	114
Ulna		18.0	148	117
Vertebrae	Longitudinal			
Cervical		0.23	3.1	10
Lumbar		0.16	3.7	5
Spongy bone		0.09	1.2	1.9
Skull	Tangential	-	-	-
	Radial			97

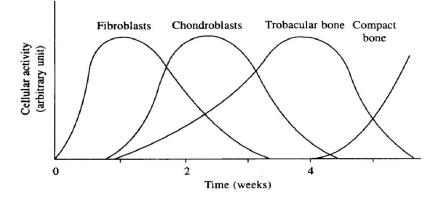


Fig: Cellular events in bone healing

1. Upon bone fracture a certain sequence of cellular events is observed for healing bones. There are basically three types of cellular activities : fibroblastic, chondroblastic and osteoblastic.

2. Fibroblast from the periosteum and surrounding tissues proliferate vigorously into the region of fracture within 1 or 2 days. During the same period capillaries being proliferating into the wound invading the fibrous callus prior to actual new bone formation. Within the first week osteogenic cells begin to migrate from the peripheral regions towards the bone fracture

3. After about a week, the level of mucopolysaccharides begins to decrease while collagen production by fibroblasts, chondroblasts and osteoblasts becomes significant.

03

4. In a little more than 1 week collagen fibers bridge the entire gaps of the fracture and the pH returns to normal. Osteoblasts begin to form new trabecular bone in the marrow.

5. After 2 weeks a collagen matrix replaces the entire clot and chondroblasts are seen in the region between the matrix and the advancing bone growth.

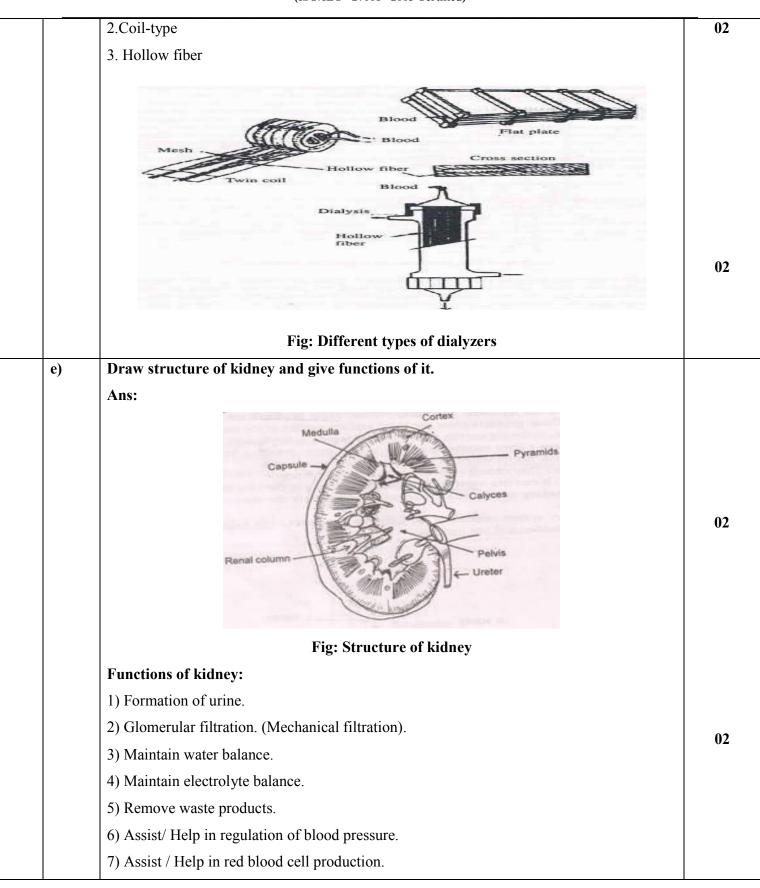
		6. After a week or two the uptake of calcium and phosphorous into the wound area	
		increases which is attributed to the increased rate of bone mineral deposition.7. By the third and fourth weeks the major activity is the replacement of chondroblasts by trabecular bone and after 5-6 weeks the major activity is the remodeling of the bone trabeaculae with the deposition of compact bone.	
j .		Attempt any FOUR.	16
	a)	Enlist three imperfections in crystal and sketch any one.	
		Ans:	
		1. Point defect	
		2. Line defects	02
		3. Plane defects Point defects :-	
		(1) Figs- Types of point defects	02
		Fig: Imperfections in crystal	
	b)	Classify polymers. List uses of any one type of polymer.	
		Ans: Polymers S Synthhelic Polymers Biopolymers Polymers Biopolymers Proteoglycans Proteoglycans Phema Phema Phema Phema Phic Biopolymers Polymers Biopolymers Proteoglycans Proteoglycans Phic Biopolymers Polymers Biopolymers Proteoglycans Phic Biopolymers Polymers Biopolymers Proteoglycans Phic Biopolymers Phema	02
		Figs- Classification of Polymers Fig: Classification of polymers	

	Uses of polymer:			
	Polymer	Specific properties	Biomedical uses	
	Polyethylene	Low cost, easy processibility, excellent electrical insulation properties, excellent chemical resistance, toughness and flexibility even at low temperatures	Tubes for various catheters, hip joint, knee joint prostheses	
	Polypropylene	Excellent chemical resistance, weak permeability to water vapors, good transparency and surface reflection	Yarn for surgery, sulures	
	Tetrafluoro- ethylene	Chemical inertness, exceptional weathering and heat resistance, nonadhesive, very low coefficient of friction	Vascular and auditory prostheses, catheters, tubes	
	Polyvinyl- chloride	Excellent resistance to abrasion, good dimensional stability, high chemical resistance to acids, alkalis, oils, fats, alcohols, and aliphatic hydrocarbons	Flexible or semi-flexible medical tubes, catheter, inner tubes, components of dialysis installation and temporary blood storage devices.	02
	Polyacetals	Stiffness, fatigue endurance, resistance to creep, excellent resistance to action of humidity, gas and solvents	Hard tissue replacement	
	Polymethyl methacrylate	Optical properties, exceptional transparency, easy thermo- formation and welding	Bone cement, intraocular lenses, contact lenses, fixation of articular prostheses, dentures	
	Polycarbonate	Rigidity and toughness upto 140°C, transparency, good electrical insulator, physiological inertness	Syringes, arterial tubules, hard tissue replacement	
	Polyethylene terephthalate	Transparency, good resistance to traction and tearing, resistance to oils, fats, organic solvents	Vascular, laryngeal, esophageal prostheses, surgical sutures, knitted vascular prostheses	
	Polyamide	Very good mechanical properties, resistance to abrasion and breaking, stability to shock and fatigue, low friction coefficient, good thermal properties, good chemical resistance, permeable to gases	PA 6 tubes for intracardiac catheters, urethral sound; surgical suture, films for packages, dialysis devices components, PA66 heart mirtal valves, three way valve for perfusion, hypodermic syringes, sutures	
	Polyurethane	Exceptional resistance to abrasion, high resistance to breaking, very high elasticity	Adhesives, dental materials, blood pumps, artificial beart and skin	
		Table: Uses of poly	ymers	
c)	Enlist applications	of silicon rubber and elastin.		
	Ans :			
	 Applications of Silicon Rubber: 1. Used to make catheters. 2. The replacement of destroyed or diseased finger joints with silicone prostheses is carried routinely. 			
	5	3. Silicone rubber are the replacement of carpal bones, toe prostheses and capping		
	temporomandibul	5	, ,	02
	4. Breast augmentation with silicone rubber mammary prothesis is carried out routinel. Silicone rubber has been extensively used in maxillofacial surgery. Such uses include nasal supports, jaw augmentation, orbital floor repair, and chin augmentation.			

	5. Silicone rubber such as artificial bladder, sphincters and testicles are being investigated.	
	Applications of Elastin:	
	1. Drug delivery system.	
	2. scaffolds	02
	3. derma substitutes.	
	4. Tissue repair or tissue engineering.	
	5. protein purification.	
	6. biosensing.	
d)	What are different total hip replacement ? Explain any one.	
	Ans:	
	Hip replacement devices :	
	1. Thompson, 316L	
	2. Austin moore,316L	
	3. Bipolar 316L.	02
	4. Modular bipolar, Ti alloy stem, Co-Cr head	
	5. & 6. Charnley, Co-Cr.	
	7. Modular, Ti alloy stem, Co-Cr head.	
	Explanation :	
	A hip replacement consists of femoral component that is a ball mounted on a	
	shaft & an acetabular component having a socket into which ball is placed. Cobalt -	
	Chromium & Titanium-Aluminum-Vanadium alloys or alpha alumina are used by different	
	manufacturer for the femoral component & high molecular weight polyethylene to cover	
	the socket. Several design types with different stem lengths are available.	
	Boutin (1974) had reported several hundred successful clinical cases using a ceramic ball on a metallic stem femoral component & a matching alumina acetabular component.	02
	Boutins devices were all fixed in the bony tissues with standard PMMA cement.	
	Subsequently the HDHMW polyethylene cups were introduced along with ceramic balls	
	attached to metallic stem. The number of alternative combinations of materials use in total	
	hip replacement include Metal- Metal, Metal- HDHMW polyethylene, Ceramic- HDHMW	
	polyethylene, Ceramic- Ceramic.	

e)	List properties of stainless steel and Nitinol. Ans:					
	Properties of stainless steel :					
	Material	Condition	Ultimate	Yield strength	Elongation in	
			tensile strength(Mpa)	(Mpa)	2 in, min. %	
	316	Annealed	515	205	40	
		Cold finished	620	310	35	0
		Cold worked	860	690	12	
	316L	Annealed	505	195	40	
		Cold finished	605	295	35	
		Cold worked	860	690	12	
	Properties of Nitinol: After the material is deformed it can shape back to its previous shape following heating 					
	the material. (Shape memory effect).					
	 2. High acoustic damping. 2. Direct conversion of best energy into machanical energy. 					
	 Direct conversion of heat energy into mechanical energy. Good fatigue properties. 					
	5. Low temperature ductility.					
	-	of elasticity and tou	gher material.			
	7. Good biocompatibility and corrosion resistance.					
f)	List factors affecting bone formation and resorption.					
	Ans:					

		 Vascular in growth: Fibronectin, endothelial cell growth factor (ECGF). Bone formation: Insulin-like growth factor (IGF-1) somatomedin c, platelet-derived growth factor. (PDGF), Fibroblast growth factor (FGF) IL-1, ECGF, insulin, bone-derived growth factors (BDGF II and I) bone morphogenetic protein (BMP). Bone resorption, IL-1, Osteoclast-activating factor: (OAF), parathyroid hormone, PDGF, transforming growth factor B (TGF-B), tumor necrosis factor (TNF), prostaglandin E₂. 	
6.		Attempt any FOUR.	16
	a)	Write note on bone regeneration with resorbable material.	
		Ans:	
		A cancellous autograft is considered as the most suitable means for the reconstruction	
		of bone defects. Allogenic and xenogenic grafts are option for bone rgeneration but have	
		short comings. The costs of bone allografts, which require careful handling, are	
		exceptionally high. Along with that, autogenous bone transplantation include prolongation	
		of operation time, increased loss of blood, the risk of infection, nerve and vascular injury,	04
		thrombosis, fracture risk, additional scar, postoperative pain and cost of additional	
		operation.	
		Therefore bone replacement materials assume greater significance. From	
		experiments using more or less compact calcium phosphate or apatite ceramics, many	
		researchers have showed that incorporation of these implants takes place without foreign	
		body reactions and bone regeneration occurs on the surface and margins of the implant in	
		contact with bone. However, when implanted in soft tissue without bone contact this	
		material does not favor bone formation. Collapat® is represents a very good bone	
		substitute material. Collapat® is regarded as a strong bone regeneration-promoting	
		medium in contact with bone. In general, Collapat® yields good vascularity and favorable	
		bone replacement capability in bone beds and at bone surfaces.	
		A similar material, Pyrost®, is obtained from natural bone by using careful	
		pyrolysis and sintering procedure. This material with natural bone structure and mineral	
		content shows favorable osteoinductive activation.	
	b)	List different types of biomaterials used for optical implants.	
		Ans:	
		1) Hydrogels 6) PHEMA	
		2) Polyvinyl Alcohol 7) Cellulose acetate/ butyrate	1 mark


		MAHARAS	SHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)	
		3) Silicon rubber	8) Siloxanyl alkyl methacrylate	
		4) Collagen	9) Silicon resin	
		5) Acrylic rubber	10) Alkyl styrene & fluorocarbon polymers.	
	c)	Explain structure of eye	2.	
		Ans:		
	Vitreous humor Vitreous humor Lens capsule Optic nerve Retina Conjunctiva Fig: Structure of Eye			
		Explanation :		
The eyeball is approximately spherical & has a diameter of contains three layers including the fibrous outer coat, vascular midd			is approximately spherical & has a diameter of about 2.5 cm. It	
			cluding the fibrous outer coat, vascular middle coat, and light	
	sensitive inner coat. The outer fibrous coat consists of the sclera (white port			
		continuous with cornea (transparent portion). In the back of the eye is a vascularized the pigmented membrane, The choroid that supports the retina. The retina is a light sensitive membrane lining the internal surface the transfer light intensity and color into electrical signals. Light passes through the corneal		
		the anterior & posterior chambers, aqueous humor, the lens, & the vitreous body & the		
		pigmented cells of the retina & thereby stimulates photoreceptor cells, the rods & cones Rods are sensitive to dull light & give vision of movement & shape. Cones are sensitive to		
		bright light &are receptors of color & shape outline. Photo stimulation of these cells results		
		in the production of nerve impulses that are conducted to brain via optic nerve. Lens is a transparent structure between the anterior chamber & vitreous		
			nto an oval shape by suspensory ligaments.	
	d)		dialyzers. Draw neat sketch of any one type.	
		Ans:		
			ant part of the artificial kidney. Various designs of dialyzers are	
		available. These include,		

1.Flat plate

04

each

