

Subject Code: 17539

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

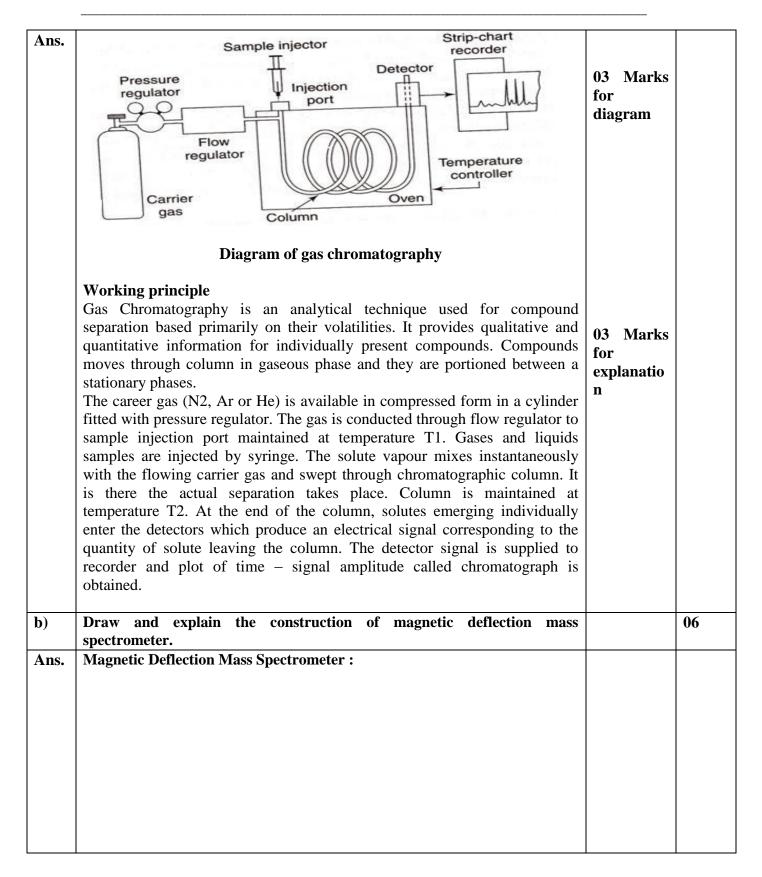
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & its Answer	Remark	Total Marks
1 A)	Attempt any three:		12
a)	What is pH? List the types of electrodes used for pH measurement.		04
Ans.	pH: Hydrogen ion concentration, as distinct from total acidities in a chemical solution is represented by a symbol pH. It is defined by following equation $pH=-log_{10}C_H$ where C_H is the hydrogen ion concentration The lower case letter 'p' in pH stand for negative common (base ten) logarithm, while the upper case letter "H" stands for the element Hydrogen. Thus pH is a logarithmic measurement of the number of moles of hydrogen ion (H ⁺) per liter of solution.	02 Marks for definition And formula	
	 Electrodes for pH measurement: 1. Hydrogen electrode 2. Glass electrode 3. Calomel or reference electrode. 4. Silver silver chloride reference electrode . 	02 Marks for list of electrodes	
b)	State the basic principle of NMR. Explain the resonance condition in NMR.		04
Ans.	Principle of NMR: Nuclear Spin: Elementary particles such as electrons or a nucleus behaves as if they rotate about an axis possesses the property of spin known as nuclear spin. The angular momentum is associated with the spin of particle would be an integral or half integral multiple of $h/2\pi$ where, h is planck's	02 Marks for principle	

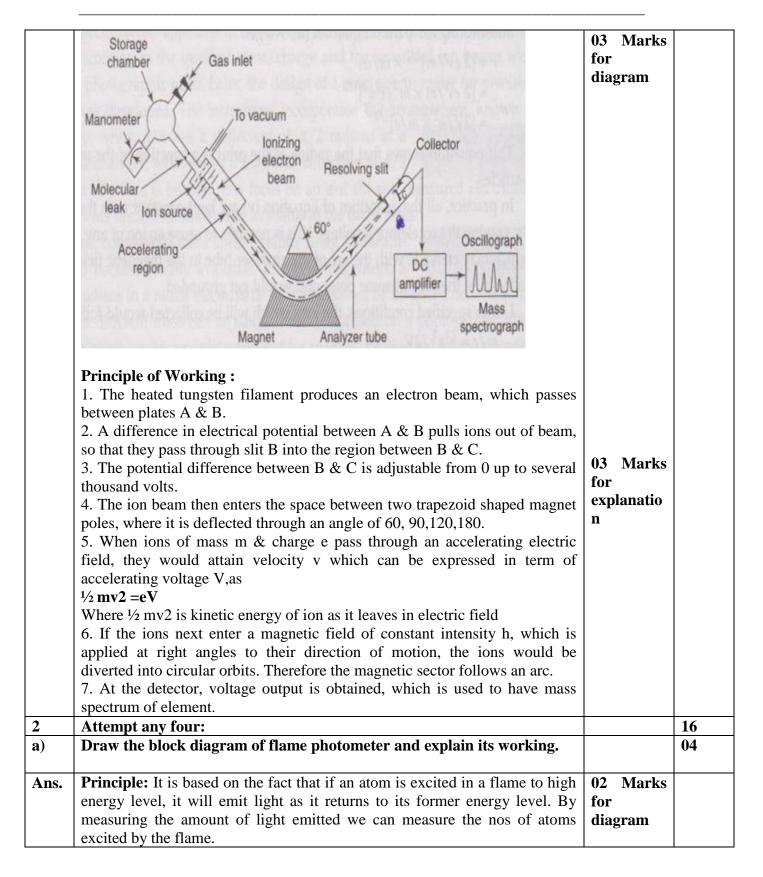
Subject Code: 17539

							1
	is analogues to t a coil of wire. This oriented along each kind of part When spinning the field exerts a tor to assume a definition of the results in a rotat field. This is cal motion. Resonance Con When an alternat field, rotates at e provided enough higher energy let $\Delta E = \mu\beta$.Ho/I Where, Ho = strength of B = constant cal μ = magnetic mode The frequency, to $\Delta E = hv = \mu\beta$.Ho/I The frequency of $v = \mu /h.\beta$. Ho/I = 2.797 × 5.05 × (6.6256 × 10-27 = 95 × 106 Hz = 95 MHz The proton will gauss. The frequency	the field product the resulting m g the axis of spectructer. nucleus is place rque upon the finite orientation its direction at ion of the nuc- led procession ndition: thing RF field, exactly the free the energy to un evel. In genera f external mag led the nuclea oment of the p v of radiation of (-24×2300) (1/2) process 95 min ency 95 MHz spectrum.	iced when an e hagnetic dipole pin and has a v ced in a strong nuclear magne on with respect t right angles t lear axis arour hal superimposed quency of an e idergo a transit l Energy differ gnetic field in g ar magneton, 5 barticle express determine fror by applying ma × 10-27 ergs 00	electric curren e or nuclear m value that is ch g uniform mag et. This would t to the externa to the plane of nd the directio l over the stati energy level, t tion from lower rence between gauges .049 \times 10-24 of sed in units of m Planck's equ agnetic field,	inetic field (H), th make the nucleu al field. The torqu µ and H. This on of the external ionary magnetic he nuclei will be er energy level to n states is given by ergs f nuclear magneto uations	gh μ ne is ie o a y, 02 Marks for y, Explanatio n	
c)	Name any four	hlood gas na	rameters Sta	te their norn	nal range		04
Ans.	Blood Gas Para	ameters: (Any	y four)	1		01 Mark for each	
	Serial Number	Plasma Para	ameter	Arterial Capillary Blood	Venous Plasma	parameter	
	1.	pН	-	7.37 to7.44	7.35 to		

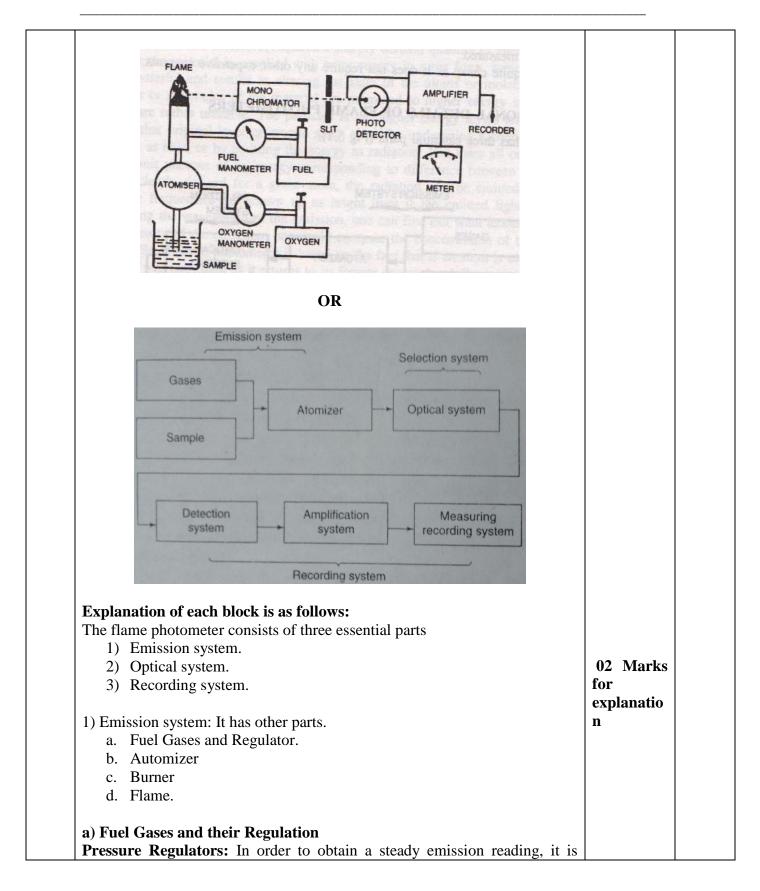

Subject Code: 17539

<u>Model Answer</u>

	2.	pCO ₂	Men	34-35	36-50			
	2.	pco ₂	WICH	mmHg	mmHg			
			Women	31-42	34-50			
				mmHg	mmHg			
	3.	pO ₂	Resting	80-90	25-40			
		r - 2	adult	mmHg	mmHg			
			Resting	75-85	mmol/l			
			adult over	mmHg				
			65 years	-				
	4.	Biocarbon	Men	23-29	25-30			
		ate		mmol/l	mmol/l			
			Women	20-29	23-28			
				mmol/l	mmol/l			
	5.	Total CO2	Men	24-30	26-31			
		(Plasma)		mmol/l	mmol/l			
		Base	Women	21-30	24-29			
		Excess		mmol/l	mmol/l			
			Men	-2.4- +2.3	0- 5			
				mmol/l	mmol/l			
			Women	-3.3- +1.2	-1- +3.5			
			Women					
4)		other relevant p	parameters ra	-3.3- +1.2 mmol/l	-1- +3.5 mmol/l			0.4
d)	List the types	and concentra	parameters ra tion of variou	-3.3- +1.2 mmol/l ange should b as gas polluta	-1- +3.5 mmol/l e considered nts.	vidoo	02 Marks	04
	List the types The major	and concentra gas pollutants	barameters ra tion of variou are carbo	-3.3- +1.2 mmol/l ange should b is gas polluta n monoxide,	-1- +3.5 mmol/l e considered nts.	xides,	02 Marks	04
	List the types The major	and concentra	barameters ra tion of variou are carbo	-3.3- +1.2 mmol/l ange should b is gas polluta n monoxide,	-1- +3.5 mmol/l e considered nts.	xides,	for any	04
	List the types The major hydrocarbons,	and concentra gas pollutants nitrogen oxides	barameters ra tion of vario are carbo and particula	-3.3- +1.2 mmol/l ange should b is gas polluta n monoxide, tes.	-1- +3.5 mmol/1 e considered nts.	xides,	-	04
	List the types The major hydrocarbons,	and concentra gas pollutants	barameters ra tion of vario are carbo and particula	-3.3- +1.2 mmol/l ange should b is gas polluta n monoxide, tes.	-1- +3.5 mmol/1 e considered nts.	xides,	for any	04
	List the types The major hydrocarbons, Carbon mono	and concentra gas pollutants nitrogen oxides oxide: Its averag	barameters ra tion of vario are carbo and particula ge concentratio	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20	-1- +3.5 mmol/1 e considered nts. , sulphur or 0 ppm.	xides,	for any	04
	List the types The major hydrocarbons, Carbon mono	and concentra gas pollutants nitrogen oxides	barameters ra tion of vario are carbo and particula ge concentratio	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20	-1- +3.5 mmol/1 e considered nts. , sulphur or 0 ppm.	xides,	for any four type	04
	List the types The major hydrocarbons, Carbon mono Hydrocarbons	and concentra gas pollutants nitrogen oxides xide: Its averag : Its average con	barameters ra tion of variou are carbo and particula ge concentration is	-3.3- +1.2 mmol/1 ange should b as gas polluta n monoxide, tes. on is below 20 below 80 ppm	-1- +3.5 mmol/1 e considered nts. , sulphur or 0 ppm.	xides,	for any four type 02 Marks	04
	List the types The major hydrocarbons, Carbon mono Hydrocarbons	and concentra gas pollutants nitrogen oxides oxide: Its averag	barameters ra tion of variou are carbo and particula ge concentration is	-3.3- +1.2 mmol/1 ange should b as gas polluta n monoxide, tes. on is below 20 below 80 ppm	-1- +3.5 mmol/1 e considered nts. , sulphur or 0 ppm.	xides,	for any four type 02 Marks for any	04
	List the types The major hydrocarbons, Carbon mono Hydrocarbons Oxidants: Its a	and concentra gas pollutants nitrogen oxides xide: Its averag : Its average con average concent	Darameters ra tion of varion are carbo and particula ge concentration is incentration is tration is below	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20 below 80 ppm w 500 ppb	-1- +3.5 mmol/l e considered nts. , sulphur of 0 ppm.	xides,	for any four type 02 Marks for any four	04
	List the types The major hydrocarbons, Carbon mono Hydrocarbons Oxidants: Its a	and concentra gas pollutants nitrogen oxides xide: Its averag : Its average con	Darameters ra tion of varion are carbo and particula ge concentration is incentration is tration is below	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20 below 80 ppm w 500 ppb	-1- +3.5 mmol/l e considered nts. , sulphur of 0 ppm.	xides,	for any four type 02 Marks for any four concentrat	04
	List the types The major hydrocarbons, Carbon mono Hydrocarbon Oxidants: Its a Sulphur dioxi	and concentra gas pollutants nitrogen oxides xide: Its averag : Its average con average concent	barameters ra tion of variou are carbo and particula the concentration recontration is the concentration is the concentration is the concentration is	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20 below 80 ppm w 500 ppb a areas is 0.024	-1- +3.5 mmol/l e considered nts. , sulphur of 0 ppm.	xides,	for any four type 02 Marks for any four	04
d) Ans. B)	List the types The major hydrocarbons, Carbon mono Hydrocarbon Oxidants: Its a Sulphur dioxi Nitrogen oxid	and concentra gas pollutants nitrogen oxides oxide: Its average : Its average concent average concent de: Its concentr es: Its level ran	barameters ra tion of variou are carbo and particula the concentration recontration is the concentration is the concentration is the concentration is	-3.3- +1.2 mmol/1 ange should b is gas polluta n monoxide, tes. on is below 20 below 80 ppm w 500 ppb a areas is 0.024	-1- +3.5 mmol/l e considered nts. , sulphur of 0 ppm.	xides,	for any four type 02 Marks for any four concentrat	04
Ans.	List the types The major hydrocarbons, Carbon mono Hydrocarbons Oxidants: Its a Sulphur dioxi Nitrogen oxid Attempt any (and concentra gas pollutants nitrogen oxides oxide: Its average : Its average concent average concent de: Its concentr es: Its level ran	barameters ra tion of varion are carbo and particula the concentration reconcentration is tration is below that the the the the tration in urbar ges from 0.5 t	-3.3- +1.2 mmol/1 ange should b as gas polluta n monoxide, tes. on is below 20 below 80 ppm w 500 ppb a areas is 0.024 o 0.12 ppm.	-1- +3.5 mmol/1 e considered nts. , sulphur or 0 ppm.		for any four type 02 Marks for any four concentrat	

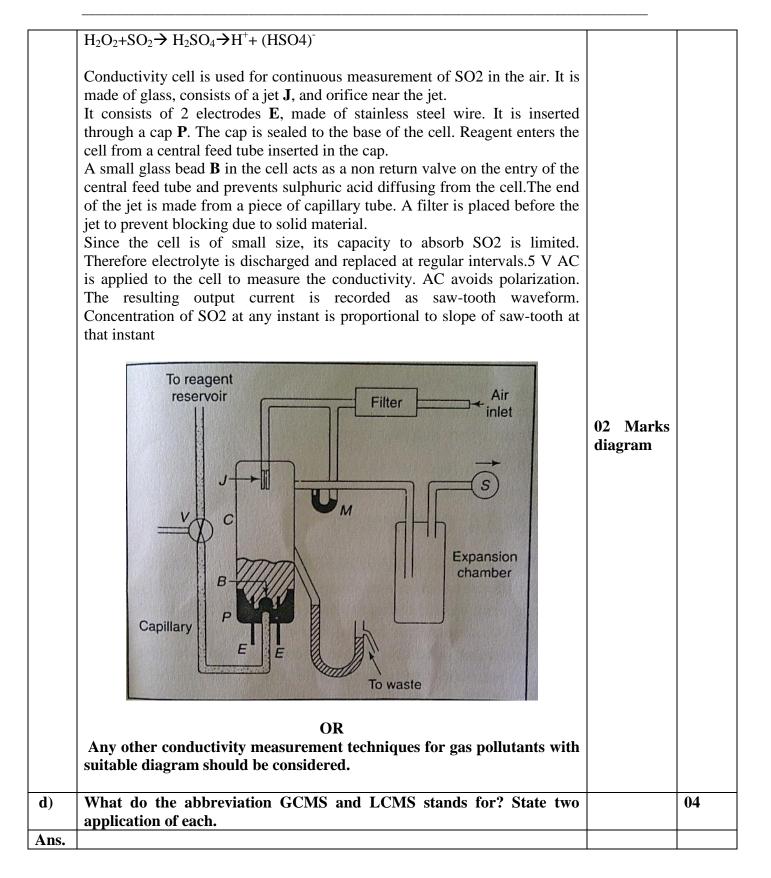


Model Answer



Model Answer

Model Answer



Subject Code: 17539

b)	 needed to have steady flame. In order to achieve this, the air or oxygen and fuel pressure has to be maintained constant during the operation of the instrument. Suitable pressure gauges are therefore provided in the instrument to indicate the pressure that is actually present in the line. The fuel gas normally used in flame photometry is acetylene gas, which is commercially available in cylinders of various sizes. b) Atomizer: It is a system used to form aerosol (drop of liquid) by breaking atoms of liquid into small drops. This little device is responsible for introducing the liquid sample into the flame at a stable and reproducible rate. The atomizer must not be attacked by corrosive solutions. c) Burner: The burner brings the fuel, oxidant and sample aerosol together so that they may react safely and produce a good flame. d) Flames: It forms the source in which the light radiations characteristics of sample elements are produced. 2) Optical system: the emitted light by flame is passed through filters, monochromators and focused on photo detector. This detector converts light energy into electrical signal. 3) Recording system: electrical signals o/p of detector is recorded or indicated using suitable photometer recorders using amplifier. 		04
D)	Classify liquid chromatography. State any 2 applications of liquid chromatography.		04
Ans.	 Classification Liquid chromatography: a. Paper chromatography b. Column chromatography i. Liquid/Liquid (partition) chromatography. ii. Liquid/Solid (adsorption) chromatography. iii. Gel permeation chromatography. iv. Ion exchange chromatography. c. Thin layer chromatography. Applications of liquid chromatography (Any two) 1. Biochemical Screening for Genetic Disorders, 2. Analysis of biological fluids, 3. Therapeutic Drug Monitoring and Toxicology, 4. R&D in pharmaceutical industries, 5. Vitamins and Related Metabolites, 6. Steroid Hormones 	02Marks for classificati on 01 Mark for each applicatio n	
c)	Explain conductivity measurement techniques for gas pollutants.		04
Ans.	Conductivity method for measurement of SO2 in air : When air sample containing SO2 (sulphur dioxide) is passed through a solution consisting of sulphuric acid and hydrogen peroxide, its electrical conductivity changes due to formation of sulphuric acid by oxidation of SO2.	02 Marks Explanatio n	

Subject Code: 17539

Subject Code: 17539

	 GCMS: Gas Chromatography- mass spectrometry, GCMS is chemistry technique that combine the physical separation capabilities of gas chromatography with the mass analysis capabilities of mass spectrometry LCMS: Liquid chromatography–mass spectrometry, LCMS is a chemistry technique that combines the physical separation capabilities of <u>liquid chromatography</u> with the mass analysis capabilities of <u>mass spectrometry</u>. LC-MS is a powerful technique used for many applications which has very high sensitivity and selectivity. Generally its application is oriented towards the general detection and potential identification of chemicals in the presence of other chemicals (in a complex mixture). 	01 Mark 01 Mark	
	 Application: GCMS: In bio chemical analysis in medicine and other field. In studying respiratory physiology in routine clinical investigation of patients breathing cycle. Analysis of lighter hydrocarbon. LCMS: 	01 Mark for any one applicatio n	
	 Preparative LC-MS system can be used for fast and mass directed purification of natural-products extracts and new molecular entities important to food, pharmaceutical, agrochemical and other industries. Detection and measurement of concentration of pollutant in air and water In refineries for analysis of lubricating oil. 	01 Mark for any one applicatio n	
e)	Define Chemiluminescence. How is measurement of nitrogen oxides done using chemiluminescence?		04
Ans.	Definition: The phenomenon of emission of radiation from chemi-excited species is known as Chemiluminescence.	01 Mark for Definition	
	 Nitrogen oxide measurement using Chemiluminescence: 1. Chemiluminescence phenomenon is very useful for measurement of air pollutants, particularly NO and NO₂. 2. Instruments based on the measurement of chemiluminescent emission, based on the following reaction have been developed: 	03 Marks for explanatio n	
	NO + O ₃ \rightarrow NO ₂ + O ₂ NO ₂ \rightarrow NO ₂ + hv (λ max =6300 Å) 3. Since NO ₂ reacts only slowly with ozone and the reaction which produces NO ₃ is not accompanied by Chemiluminescence, it is necessary to reduce to		

Subject Code: 17539

<u>Model Answer</u>

	NO ₂ to NO before admission into the reactor		
	 NO₂→NO + ½ O₂ 4. Nitric oxide and ozone containing gas steam are mixed in a vessel at a sub atmospheric pressure of about 2 mm of Hg. 5. Light emission is measured with a photomultiplier. 6. With the use of high gain, low dark current photomultiplier tubes, extremely low levels of radiation can be measured. 7. The response of the instruments based on Chemiluminescence is linear from 1 ppb to 1000ppm of NO. 8. This technique is extremely useful for measurement of NO in automotive exhaust gases. 		
f)	Explain the working principle of thermal conductivity analyzer. List any two applications.		04
Ans.	Heating current indicator Adjust heating current Adjust heating current B B B B B B B B B B B B B B B B B B B	03 Marks for Diagram m and Explanatio n	
	Working: In a typical hot-wire cell thermal conductivity analyzer; four platinum filaments are employed as heat sensing elements. They are arranged in a constant current bridge circuit and each of them is placed in a separate cavity in a brass or stainless steel block. The block acts as a heat sink. The material used for construction of filaments must have a high temperature-coefficient of resistance. The materials generally used for the purpose include tungsten, Kovar (alloy of co,Ni and Fe) or platinum.		
	Two filaments connected in opposite arms of the Wheatstone bridge act as reference arms, whereas the other two filaments are connected in the gas stream, which act as measuring arms. The use of a four-cell arrangement		

Subject Code: 17539

	 serves to compensate for temperature and power supply variations. Initially, reference gas is made to flow through all the cells and the bridge is balanced precisely with the help of potentiometer D. When the gas stream passes through the measuring pair of filaments, the wires are cooled and there is a corresponding change in the resistance of the filaments. The higher the thermal conductivity of the gas, the lower would be the resistance of the wire and vice versa. Consequently, the greater the difference in thermal conductivities of the reference and sample gas, the greater would be the unbalance of the Wheatstone bridge. (NOTE: thermal conductivity analyzer using thermistor can be considered) Applications of Thermal Conductivity analyser: In oil industry for detection of hydrocarbon. In medical field for lung function testing equipment. In gas chromatography For monitoring of hydrogen purity in hydrogen cooled turbo generator Detection of helium loss from helium vessel of an MRI superconducting magnet 	01 Mark for any two applicatio ns	
3	Attempt any FOUR :		16
a)	State Beer Lambert's law. Give its mathematical expression.		04
Ans.	Statement: Beer Lambert Law, states the relationship between absorbance (A) and transmittance (T). It states that the concentration of a substance in solution is directly proportional to the 'absorbance', A, of the solution. Absorbance $A = \epsilon cb$	02 Marks for statement	
	Where, A = absorbance ($\epsilon = molar absorptivity$ c = molar concentration b = path length Mathematically, absorbance is related to percentage transmittance T by the expression: $A = log10(I0I) = log10(100T) = \epsilon bc$	02 Marks for expression	
b)	List any four applications of NMR.		04
Ans.	 Applications of NMR:(any four) 1) NMR is used in magnetic resonance imaging in medical diagnosis 2) By studying peak of nuclear magnetic spectra, chemist can determine structure of chemical compound. 3) NMR is extremely used for analysis of sample nondestructively. 4) NMR is used for data acquisition in petroleum industry and natural gas exploration and recovery. 	01 mark for each applicatio n	

Subject Code: 17539

	5) NMR is used in process control and process optimization in oil refineries		
	and petrochemical plant.		
	6) It is a complex system integrating several technologies.		
	7)In medical field		
	8)Structural determination of flavors		
	9) fragrance in gradient Food industry		
	10) Chemical research & development of organic product.		
	11) Pharmaceutical production.		
	12) Analysis of Polymers.		
	12) Analysis of Polymers.		
	Note: any other relevant four applications should be considered.)		0.4
c)	Explain the working of null detector type pH meter.		04
Ans.	Diagram of null-detector type pH meter:	02 Marks	
	R _{measurement} electrode	for	
	≈ 400 MΩ	Diagram	
	voltage produced by v v precision voltmeter		
	-		
	R _{reference} electrode		
	$\approx 3 \text{ k}\Omega$		
	OR		
	Other relevant diagram shall be considered.		
	Working of null-detector type pH meter:		
	1) The null-detector type pH meter is uses a potentiometric 'null-		
	balance' method.		
	2) Fig shows the principle of this method in which the voltage output	02 Marks	
	between a pair of pH electrodes is measured without drawing any	for	
	current from the circuit under test.	explanatio	
	3) In the circuit, the emf developed on the pH electrodes is shown along	n	
	with series resistors of both the glass electrode and reference		
	electrode.		
	4) The Precision voltage can be adjusted until the null detector shows		
	zero.		
	5) The reading on the voltmeter connected in parallel with the precision		
	voltage would show the electrode potential representing pH of the		
	solution.		
	6) At the 'null' condition, there would be zero current in the pH		
	electrode circuit and therefore no voltage drop across the resistances		
	of either electrode, giving the real electrode voltage at the voltmeter		
	terminals.		
	7) The pH value is read from the calibrated precision voltage source		
d)			04
d)	terminals.		04

Subject Code: 17539

<u>Model Answer</u>

Ans.	points).			
			01 Mark for	
	Gas chromatography	Liquid chromatography	each	
	In this mobile phase gas is used.	In this mobile phase liquid is used.	compariso n	
	Types are gas / liquid & gas / solid	Types are paper, column and thin layer.		
	Detectors used are as thermal conductivity detector , flame ionized detector,flame photometric detector etc.	Detectors used are UV spectrophotometric detector , florescence detector , RI detector		
	He, Ar, Ne gases may be Used as carrier.	Volatile solvents, Eluent solution are used as carrier.		
	Accuracy is more.	Accuracy is less.		
	Technique is simple	Technique is complicated.		
	Takes less time.	Takes more time		
	(NOTE: Any other relevant f	our points should be considered.)		
	Describe measurement technique f			04
ns.	KI + Na ₂ S ₂ O ₃ Glass jar Platinum electrode	Pump Na ₂ S ₂ O ₃ ses the oxidizing properties of O3 is	02 Marks for Diagram	

Subject Code: 17539

	• When ozone enters the solution the following reaction takes place		
	• $O_3+2I+H_2O \rightarrow I_2+O_2+2OH^-$		
	iodine then reacts with thiosulphate		
	$I_2+2(S_2O_3) \rightarrow 2(\Gamma)+S_4O_6$		
	• Reaction continues so long as there is thiosulphate in the solution.		
	When all the thiosulphate has been reacted, free iodine appears and		
	reacts at the electrodes.		
	• The electrical resistance is high as long as there is an excess of		
	thiosulphate. The resistance decreases when it is used up. This		
	change is used to control the operation of instrument.		
	• The voltage drop across 20kohm resistance which is in series with the		
	electrode is used to operate the recorder as well as relay which		
	controls a motorized injector which injects 0.5cm ³ thiosulphate in		
	each operation.		
	• The recorder serves mainly to indicate as to when the injection was		
	made and thus the average ozone concentration between any two		
	injections can be calculated. Since the pumping rate is known,		
4 ()	knowledge of the time intervals gives the total volumes of air sample.		12
4 (A) (a)	Attempt any THREE: Draw a neat block diagram of liquid chromatography. What is the role		04
(a)	of high pressure pump in it?		V4
Ans.	Diagram of Liquid chromatography:		
1115.	Diagram of Elquid enfomatography.	02 Marks	
		for	
	Solvents Recorder	Diagram	
	For gradient phase Injector	0	
	Pump Column Detector		
	programmer Thermostated		
	High pressure oven Receiver		
	pump		
	OR Any Other relevant diagram shall be considered		
	Any Other relevant diagram shall be considered.		
	Role of high pressure pump in Liquid chromatography		
	• Liquid Chromatography uses smaller diameter columns filled with	02 Marks	
	fine mesh particles which need high pressure solvent delivery system.	for	
	Constant flow pumps and constant pressure pumps are commonly	explanatio	
	used.	n	
	• High pressure is required to yield the desired flow rate, So LC need		
	high pressure pumps.		
	 high pressure pumps. The pressure of carrier in LC is typically 1000psig at flow rate of 1 ml /min. This is done by high pressure pump either air driven pump 		

Subject Code: 17539

	or motor driven pump.		
(b)	State any four drawbacks of IR analyzer		04
Ans.	 Drawbacks of IR analyzer :(Any four relevant points) With IR analyzer, it is not possible to know molecular weight of substance. It is not frequently non-adherence to Beer's law of complexity spectra. The narrowness of spectra and effect of stray radiations make the measurements of absorbance upon slit width and wavelength setting. Generally, IR analyzer does not provide information of relative positions of different functional groups on molecule. From spectrum of unknown substance, it is not possible to know whether it is pure compound mixture of compound. 	01 Mark for each drawback	
(c)	Draw a labeled diagram of electrode which can measure PO ₂ and PCO ₂ of blood. Explain its working.		04
Ans.	Diagram of electrode which can measure PO ₂ and PCO ₂ of blood. Gelled electrolyte Diffusion membrane pH glass Semi-solid electrolyte Silver/silver cathode Catheter Lead out Wires OR Any other relevant diagram & explanation should be considered.	02 Marks for Diagram	
	 These are the miniature electrodes for in vivo transcutaneous measurement of blood PCO₂ & PO₂. The electrodes are small enough to be mounted on the catheter tip and able to perform more than one parameter i.e measurement of blood PCO₂ & PO₂. The electrode consists of pH sensitive glass bulb at the tip of catheter for measurement of blood PO₂ and silver cathode electrode for measurement of blood PCO₂. Silver/ silver chloride is the common electrode. A semisolid electrolyte is common for both PCO₂ & PO₂ electrodes. The electrodes are dip-coated with a thin polystyrene diffusion 	02 Marks for Explanatio n	

Subject Code: 17539

<u>Model Answer</u>

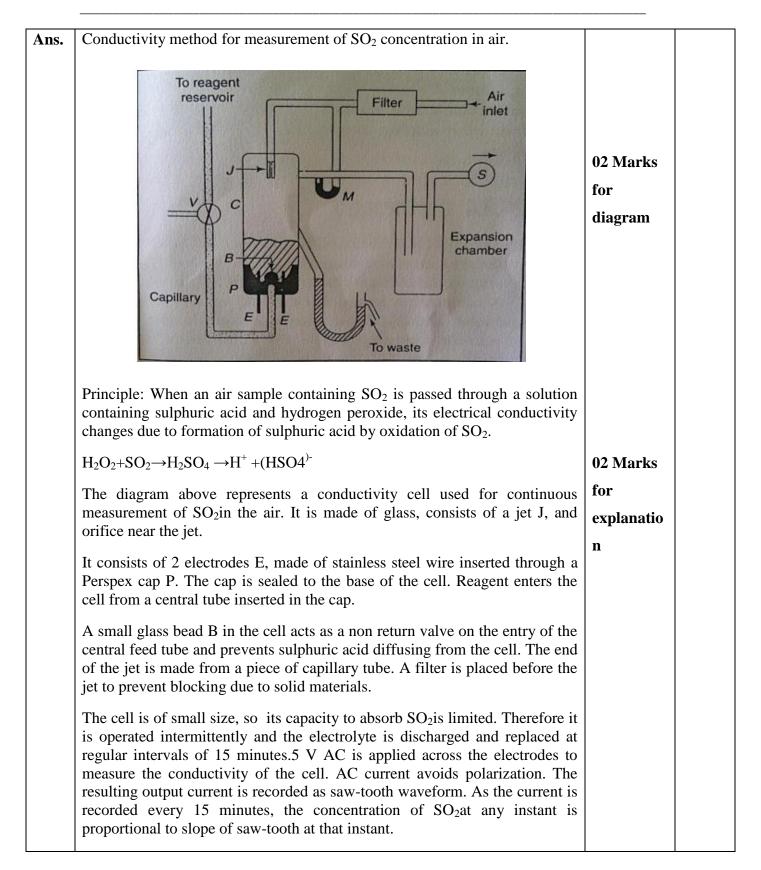
	membrane. When the device is placed in blood, water vapours diffuse		
	through the membrane.		
	• This, together with NaHCO3 & NaCl crystals deposited in the		
	hydgrogel film, constitute the electrolyte for PCO_2 electrode. Under		
	these conditions, the output signal from both PCO ₂ & PO ₂ electrodes		
	is thus obtained.		
(d)	Define i)Nuclear spin ii)Resonance level iii)Chemical shift iv)spectrometer		04
Ans.	Nuclear Spin:	01 mark	
	Elementary particles such as electrons or a nucleus behaves as if they rotate	for each	
	about an axis possesses the property of spin known as nuclear spin. The	definition	
	angular momentum is associated with the spin of particle would be an		
	integral or half integral multiple of $h/2\pi$ where, h is planck's constant.		
	Resonance level:	(
	When an alternating RF field, superimposed over the stationary magnetic	equations	
	field, rotates at exactly the frequency of an energy level, the nuclei will be	are not	
	provided enough energy to undergo a transition from lower energy level to a	compulsor	
	higher energy level. In general Energy difference between states is given by, $\Delta E = \mu \beta Ho/I$	y)	
	Where,		
	Ho = strength of external magnetic field in gauges		
	B = constant called the nuclear magneton, $5.049 \times 10-24$ ergs		
	μ = magnetic moment of the particle expressed in units of nuclear		
	magnetons The frequency, v of radiation determine from Planck's equations		
	$\Delta E = hv = \mu\beta Ho/I$		
	$\Delta \mathbf{L} = \mathbf{n} \mathbf{v} = \mathbf{\mu} \mathbf{p} \cdot \mathbf{n} \mathbf{o} \mathbf{n}$		
	Chemical shift:		
	This is the phenomenon that occurs in some atoms like Carbon or hydrogen		
	in a given molecule which resonate at slightly different frequency based on		
	its local chemical environment so this difference in resonance frequency is called as chemical shift.		
	Chemical shift is expressed as		
	Frequency of sample -Frequency of reference		
	$\delta = \frac{\delta}{Spectrometer frequency} *10^6$		
	H sample – H TMSi		
	$\delta = H1 * 10^6$		
	Spectrometer:		
	It is an analytical instrument that helps to identify the amount and type of		
	chemical present in a sample of measuring the mass to charge ratio and		
	abundance of gas –phase ions.		

Subject Code: 17539

B)	Attempt any ONE:		06
(a)	Describe how measurement of carbon monoxide is done using gas chromatography.		06
Ans.	 When an air sample containing CO is passed through a stripper column, the heavy hydrocarbons are retained and CO and methane are passed into chromatographic column and then into a catalytic reducing chamber. The methane would pass through the reducing chamber unaffected while CO is reduced to methane. By using flame ionization detector both methane peaks can be detected. The first peak is due to methane. The second peak would correspond to CO. The accuracy is about +-2%.peak heights of CO and CH4 would gives sensitivity of 50 ppb. 	06 Marks for explanatio n	
b)	Explain the working principle and construction of multichannel photometer with a neat diagram.		06
Ans.	Diagram of multichannel photometer:	03Marks for Diagram	
	 Working Principle: The light source of 50Wtungsten halogen lamp is controlled by a voltage source. The light is chopped by a mechanical rotating chopper. The colour filter selects a suitable wavelength, the filter is used to block the higher ordered wavelength. A lens focuses the light on the end of a bundle of fiber optic elements. The sample is kept at the end of this. At a time 24 samples are analyzed. Therefore 24 samples covets are arranged in a rack of 3*8 matrix. The 25th channel serves as a reference beam and eliminates possible source and detector drifts. The output of detector is amplified and displayed on DVM. The 	03Marks for Explanatio n	

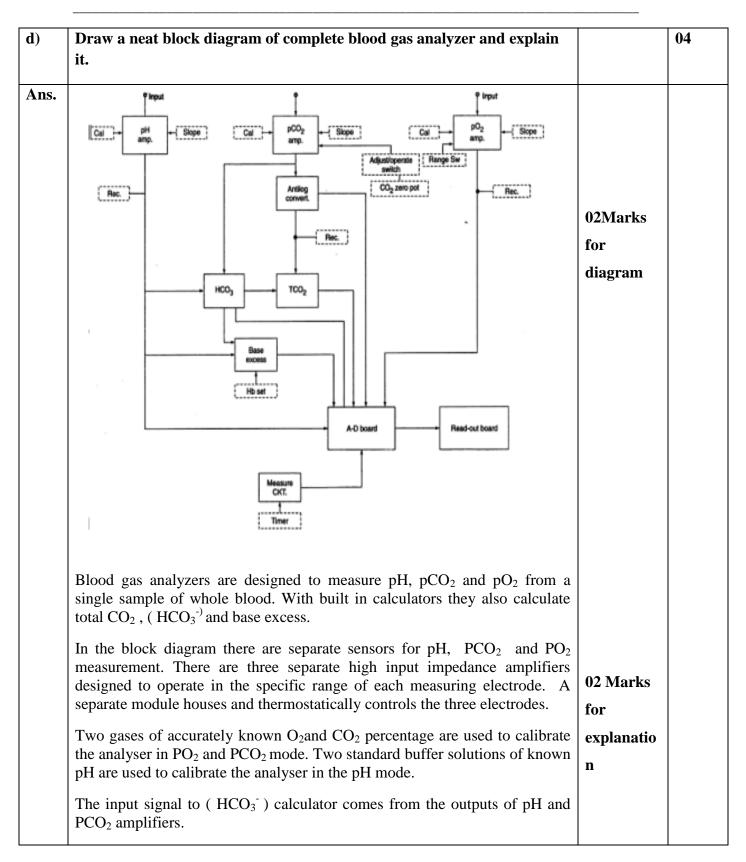
Subject Code: 17539

	Attempt a	ny FOUR :			16
)	Differenti	ate between colorimeter and s	pectrometer.		04
ns.	Sr no	Colorimeter	Spectrometer	01 mark	
	1	It is a device used for measurement of absorption of particular wavelengths of light by a specific solution. In its simplest form, it uses only human eye as the measuring instrument.	It is an instrument that provides information about the intensity of radiation as a function of wavelength or frequency.	for each compariso n (Any four points)	
	2	Here comparison is made by obtaining a match between the colour of the unknown solution and that of a particular standard solution by visual method.	Here photoelectric measurement methods are used.	points)	
	3	It is simple in construction and operation	More complex than colorimeter.		
	4	It works with only light in the visible part of electromagnetic spectrum.	It works with infrared, ultra violet and visible light.		
	5	It is used for analytical work where high accuracy is not required.	As it provides spectral analysis of a given sample it is suitable for applications in research and development phase.		
	6	less costly	More expensive as it performs many complex functions.		
		OR Any other relevant four poin	ts should be considered		
b)	Draw the	block diagram of paper electr	ophoresis. Explain its working.		04
Ans.					



Subject Code: 17539

Elecrtrolyte Pencil Line	02 Marks For diagram	
Paper Fiter Paper Fiter Paper electrophoresis is a separation technique in which the separation of different particles occur on a piece of filter paper that is saturated with an electrolyte. The equipment used for electrophoresis basically consists of a power pack and an electrophoretic cell. The power pack provides a stabilized DC current and has controls for both voltage and current output which have an output of 0-500V and 0 – 150 mA available.		
The electrophoretic cell contains electrodes, buffer reservoirs, a support for paper and a supporting transparent insulating cover. The electrodes are usually made of platinum. The filter strips can be arranged horizontally or vertically depending upon the need.	02 Marks for explanatio	
 The filter paper used should be of good quality and have very slight adsorption capacity. Procedure: A strip of filter paper is moistened with buffer and the ends of the strip are immersed into the buffer reservoirs containing the electrodes. The samples are spotted in the center of the paper. When high voltage is applied, the spots migrate according to their charges. After the process of electrophoresis is over, the separated components can be detected by a variety of staining techniques depending upon their chemical identity. 	n	
OR Any other relevant block diagram & Explanation should be considered		
Explain any one technique for measurement of SO ₂ concentration in air.		04



Subject Code: 17539

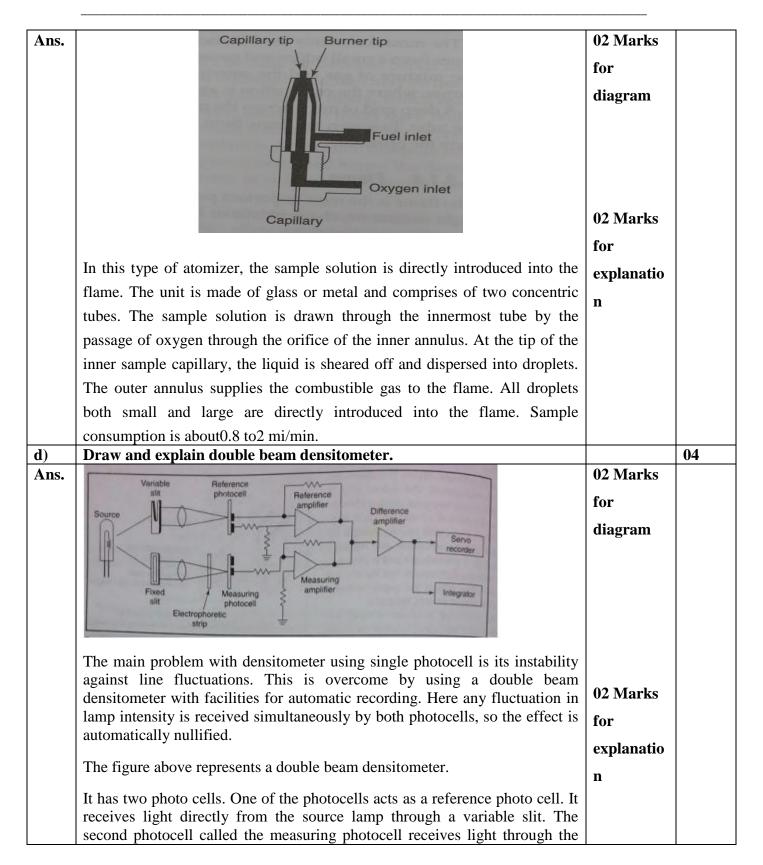
	The outputs are adjusted by multiplying each signal by a constant and given to an adder. The next stage is an antilog-generator and output of this circuit is given toA-D converter for display.		
	Total CO ₂ is calculated by summing the outputs of (HCO_3) calculator and output of PCO ₂ amplifier.		
	The base excess calculator consists of 3 stages. In the first stage, the output of the pH amplifier is inverted in an operational amplifier whose gain is controlled with a potentiometer (Hemoglobin value) placed in the front panel. The output of the		
	(HCO_3^-)calculator is inverted in the second stage . The third stage is assuming amplifier A_3 whose output is given to A-D converter. This o/p is given to display unit for read out the measurement		
e)	Define (i)Environment (ii) Pollutant (iii)Air pollution (iv)Acid rain		04
Ans.	(i)Environment:	01 Mark	
	The sum total of all surroundings of a living organism, including natural	for each	
	forces and other living things, which provide conditions for development and growth as well as of danger and damage is called environment.	definition	
	growth as well as of danger and damage is caned environment.	definition	
	OR The surroundings or conditions in which a person, animal, or plant lives or operates is called environment. (ii) Pollutant: A pollutant is a substance or energy introduced into the environment that has		
	undesired effects, or adversely affects the usefulness of a resource. It may cause long- or short-term damage by changing the growth rate of plant or animal species, or by interfering with human amenities, comfort, health, or property values.		
	(iii)Air pollution:		
	Air pollution is the introduction of particulates, biological molecules, and many harmful substances into Earth's atmosphere, causing diseases, allergies, death to humans, damage to other living organisms such as animals and food crops, or the natural or built environment.		
	OR		
	Air pollution is the contamination of air by smoke and harmful gases, mainly oxides of carbon, sulphur, and nitrogen.		
	(iv)Acid rain		
	Acid rain is a rain or any other form of precipitation that is unusually acidic,		

Subject Code: 17539

<u>Model Answer</u>

	meaning that it possesses elevated levels of hydrogen ions (low pH). It can have harmful effects on plants, aquatic animals and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids. OR Acid rain is a rainfall made so acidic by atmospheric pollution that it causes environmental harm, chiefly to forests and lakes. The main cause is the industrial burning of coal and other fossil fuels, the waste gases from which		
	contain sulphur and nitrogen oxides which combine with atmospheric water to form acids.		
f)	Name the detectors used in gas chromatography. Explain any one in detail.		04
Ans.	 The various detectors used in gas chromatography are: (Any two) The katharometer or thermal conductivity detector Flame ionization detector Flame photometric detector Photoionization detector Electron capture detector Argon ionization detector Cross section ionization detector Atomic emission detector Chemiluminiscence spectroscopy-based detector Nitrogen-phosphorus detector 	01 Mark for naming the types	
	Thermal conductivity detector: Sample gas Katharometer Cells Reference gas R_2 R_3 R_4 R_3 R_4 R_3 R_3 R_4 R_3 R_3 R_4 R_3 R_4 R_3	03 Marks for any one type with diagram and explanatio n	

Subject Code: 17539


	 		
	It is a simple and widely used detector. It is based on the principle that all gases have the ability to conduct heat in varying degrees. The difference in heat conduction is used to determine quantitatively the composition of a mixture of gases.		
	It consists of two temperature sensing elements, one in the reference and another in the reference arm of a Wheatstone's bridge. In the circuit shown R_1 and R_2 are the Katharometer wires, R_3 and R_4 are the ratio arms of the bridge, R_7 and R_8 are used for base-line adjustments.		
	Under balanced conditions, when carrier gas is flowing through the two cells, no current flows between A and C, and $R_1/R_2 = R_3/R_4$		
	When R_1 changes due to the components of sample gas, unbalance current flows through A&C. The magnitude of current helps to detect and measure the magnitude of gas component vapour passing over the measuring cell.		
	OR		
	Any other relevant one type of detector diagram & explanation should		
	be considered		
6	Attempt any FOUR :		16
a)	State the basic principle time of flight mass spectrometer.		04
Ans.	Ions of different mass/charge ratio are separated by the time taken by them to	04 marks	
	travel over an identical path from ion source to the collector.		
	travel over an identical path from ion source to the collector. When ions are accelerated by electric field of known strength, they traverse through an evacuated tube called drift tube and arrive at the detector which is sensitized for a brief instant to register their arrival. Velocity of the ions depends on the mass to charge ratio. Heavier ions of the same charge will travel at lower speeds.		
	When ions are accelerated by electric field of known strength, they traverse through an evacuated tube called drift tube and arrive at the detector which is sensitized for a brief instant to register their arrival. Velocity of the ions depends on the mass to charge ratio. Heavier ions of the same charge will		
	When ions are accelerated by electric field of known strength, they traverse through an evacuated tube called drift tube and arrive at the detector which is sensitized for a brief instant to register their arrival. Velocity of the ions depends on the mass to charge ratio. Heavier ions of the same charge will travel at lower speeds. So, ions of different masses arrive at the detector at different times. The accurate measurement of the time between activating the source and		

Subject Code: 17539

Ans.	Chemical information source Transducer Signal conditioner System	02 Marks for block diagram	
	 Analytical instruments are used to provide information about the composition of a sample of matter. They are made up of the following basic blocks: 1.Chemical information source: It generates a set of signals containing necessary information. The source may be in the sample itself. For example, yellow radiation emitted by heated sodium atoms constitutes the source of the signal in a flame photometer. 		
	2. Transducer: Transducer converts signal from one form to another. Because of the advantages of electric and electronic methods of measurement, it is the usual practice to convert all non-electrical quantities associated with the analysis of a sample into electrical form.	02 Marks for explanatio	
	3. Signal conditioner: Signal conditioner converts the output of the transducer into electrical quantity suitable for operation of display system. Signal conditioner may be varying in complexity from a simple resistance network or impedance matching device to multi-stage amplifiers and other electronic circuit.	n	
	Display system: It provides a visible representation of the quantity as a displacement on a scale or on the chart of a recorder or on the screen of a CRT or in numerical form.		
)	Explain the working of integral burner type atomizer with a neat diagram.		04

Subject Code: 17539

	fixed slit after passing through the stained electrophoretic paper strip.		
	The stained electrophoretic paper strip is made translucent by prolonged immersion in a mixture of paraffin oil and bromonaphthalene.		
	Initially the zero optical density is set on the recorder or meter by allowing light to pass through the translucent portion of the stained paper placed in front of the measuring photocell.		
	Then the stained paper is made to move across the light source and the recorder will trace curves on the graph paper according to the concentration of the protein samples.		
	The photocells are connected electrically such that the net output from them is the difference between the photo voltages of the two cells. Electronic integrators are used for measuring peak heights and results are available directly in concentration.		
e)	What is the significance of column length in GC ?		04
Ans.	A chromatographic column is the heart of a chromatograph where the fundamental process of separation takes place. When a sample of gas or vapour is introduced into the column, it spreads by molecular diffusion to yield a concentration profile. As the sample moves up the shape of the band is detected and recorded as chromatographic peak. A longer column length improves the process of separation. The column	04 Marks	
	efficiency is a function of column length. Longer the column, greater is the efficiency. Doubling the length increases the resolution by 40%.		