

Digital Communication

(Autonomous)

WINTER- 16 EXAMINATION

(Subject Code: 17535)

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.N 0.	Sub Q.N.	Answer									
Q.1	A)	Attempt any	Attempt any <u>THREE</u> :								
	a)	Compare bet	ween analog and dig	gital pulse modulation	technique.	4 M					
	Ans:	SR. NO.	PARAMETER	АРМ	DPM	(Any 4					
		1	Nature of signal	Input -Continuous	Input -Continuous time	points: 1					
				time varying signal	varying signal	M each)					
				Output - discrete time varying signal	Output - Digital signal						
		2	Variable parameters	Amplitude, position or width	Message is transmitted in form of codes						
		3	Noise immunity	Poor	Excellent						
		4	Repeaters	Cannot be used	Can be used						
		5	Bandwidth	Lower	Higher						
		6	Multiplexing used	FDM	TDM						
		7	Types	PAM,PWM,PPM	DM,ADM,PCM,DPCM						

b)	State Shanon's Hartley theorem and write it's statement.	4 M				
Ans:	Shannon's Hartley Theorem:	(Statemen				
	The channel capacity of a white, band limited Gaussian channel is given by,	Explanati				
	$C = B \log_2\left(1 + \frac{S}{N}\right)$					
	Where, $B = Channel$ Bandwidth $S = Signal$ Power $N = Noise$ within the channel bandwidth .					
c)	State the need of multiplexing and write it's type.	4 M				
Ans:	Need of multiplexing in the application like telephony there are large numbers of users	Need:2M				
	involved. It is not possible to lay a separate pair of wires from each subscriber to the other entire entire subscriber; this is very expensive and practically impossible.	& types:2M				
	In the Process of multiplexing two or more individual signals are transmitted over a single communication channel. Here we used medium as a coaxial cable or an optical fiber cable because of multiplexing bandwidth utilization is possible. As the data and telecommunications usage increases, so does the traffic. We can accommodate this increase by continuing to add individual lines each time a new channel is needed, or we can install higher capacity links and use each to carry multiple signals.					
	Today's technology includes high-bandwidth transmission media such as coaxial cable, optical fiber and terrestrial and satellite microwaves.					
	Each of these has a carrying capacity (bandwidth) far in excess of that needed for the average transmission signal. If the bandwidth of the link is greater than the transmission needs of the devices connected to it, the excess capacity is wasted.					
	An efficient system maximizes the utilization of all resources. Bandwidth is one of the most precious resources in data communications.					
	Types of multiplexing:					
	1. Analog multiplexing: Frequency division multiplexing					
	Wavelength division multiplexing					
	2. Digital multiplexing: Time division multiplexing					
	Code division multiplexing					

(ISO/IEC - 27001 - 2005 Certifie4)

compression.

CHANNEL ENCODER:

- The channel coder provides some amount of error controlled capability to the data to be transmitted.
- It adds some extra bits to the output of the source coder. While these extra bits make it possible for the receiver to detect and/or correct some of the errors in the information bearing bits.

MODULATOR:

• The modulator accepts a bit stream as its input and converts it to an electrical waveform suitable for transmission over the communication channel as they are basically analog in nature.

COMMUNICATION CHANNEL:

- The communication channel provides the electrical connection between the source and the destination.
- The channel may be a pair of wire or a telephone link or free space over which the information bearing signal is radiated.

DEMODULATOR:

• Modulation is a reversible process and the extraction of the message from the information bearing waveform produced by the modulator is accomplished by the demodulator.

CHANNEL DECODER:

• The channel decoder recovers the information bearing bits from the coded binary stream. Error detection and possible correction is also performed by the channel decoder.

SOURCE DECODER:

• At the receiver, the source decoder converts the binary output of the channel decoder into a symbol sequence.

<u>17535</u>

(ISO/IEC - 27001 - 2005 Certifie4)

17535

<u>17535</u>

b)	Write different types of Pulse Modulation. With the help of block diagram and waveform. Explain PCM transmitter.	8 M
Ans:	Types :	(Types
	1. Analog Pulse Modulation Systems	:1M, Diagra
	• Pulse Amplitude Modulation (PAM)	:3M,
	• Pulse Width Modulation (PWM)	wave form:
	• Pulse Position Modulation (PPM)	M,
	2. Digital Pulse Modulation Systems	Explar on: 2N
	Pulse Code Modulation (PCM)	
	• Differential Pulse Code Modulation (DPCM)	
	• Delta Modulation (DM)	
	• Adaptive Delta Modulation (ADM)	
	•	
	Diagram:	
	$\begin{array}{c c} Message \\ Signal \\ Source \\ \hline \\ \end{array} \end{array} \xrightarrow{Anti-aliasing \\ filter \\ \hline \\ \end{array} \xrightarrow{x(t)} Sampler \xrightarrow{x_{\delta}(t)} Quantizer \xrightarrow{x_{\eta}(t)} Encoder \\ \hline \\ signal \\ \hline \\ \hline \\ \end{array} \xrightarrow{rignal} rig$	
	Explanation:	
	PCM TRANSMITTER:	
	• The analog signal x (t) is passed through a LPF (anti-aliasing filter). The LPF band-limits the signal to f _m band-limiting is necessary to avoid the aliasing effect in the sampling process.	
	• The pulse generator generates a train of pulses at a frequency of f_s such that $f_s > 2$	
	f _m . Thus, the Nyquist criterion is satisfied. • The sampler block carries out flat_top sampling process on the modulating signal	
	at adequately high frequency. Then these samples are subjected to the operation	
	called Quantization in the Quantizer.	

17535

- The quantization process is the process of approximation of the sampled signal. It assigns a particular level to which the sampled value is near to.
- The quantized PAM pulses are applied to an encoder. The encoder converts each quantized level into an N-bit digital word (binary pattern) such that $Q = 2^N$ where Q is the total number of quantization levels.
- The combination of the Quantizer and the Encoder is called as an Analog-to-Digital Converter (A/D Converter). Thus, the signal transmitted over the communication channel is a digitally-encoded signal.

Waveform:

	c)	Draw and Explain the block diagram of Code Division Multiplexing (CDM) system	8 M
	Ans:	 User-1 PN-1 User-2 PN-1 User-2 PN-2 User-N PN-2 User-N PN-2 User-N PN-2 User-N PN-2 User-N PN-2 User-N PN-2 User-N PN-N In CDM separation is achieved by assigning each user channel its own code. Guard spaces are realized by using codes with necessary distance in code spaces, orthogonal codes. Above fig shows CDM scheme. Good protection against unauthorized reception is the main advantage of CDM. A receiver must be precisely synchronized with the transmitter to apply the decoding correctly. – All the signals received by the receiver should have equal strength, otherwise some signals drain others. 	(Diagram : 4 M, Explainat ion: 4M)
Q.3.		Attempt any <u>FOUR</u> :	16 M
_	a)	Write about advantages and disadvantages of Delta Modulation.	4 M
	Ans:	ADVANTAGES OF DELTA MODULATION: 1. Low signaling rate 2. Low transmission bandwidth. 3. The delta modulator transmitter and receiver are less complicated to implement. DISADVANTAGES OF DELTA MODULATION: 1. SLOPE-OVERLOAD DISTORTION 2. GRANULAR NOISE	(Advanta ges :2M (Any 2) ,Disadvan tages: 2M) (Any 2)

	e)	Compare between ASK and FSK modulation.(any four points)						
	Ans:	SR NO	ASK	FSK	1M for Each			
		1	Poor noise immunity	Better noise immunity	Point			
		2	Minimum Bandwidth requirement is less and is given by $BW = 2fb$	Minimum Bandwidth requirement is more and is given by BW = 4fb	(Any other relevant			
	3 In ASK amplitude of the carrier carries the binary information In FSK frequency of the carrier carries the binary information							
		4	Circuit is very simple to generate.	Circuit complexity is more.	considere d)			
<u> </u>								
Q. 4	A)	Attempt any <u>THREE</u> :						
	a)	Explain channel modelling in communication system.						
	Ans:	 Modelling of channel means correlating mathematics with the channel statics. In the analysis and design of communication system, it will be necessary to model the channel as system and incorporate in to that model as many details of electrical behavior of the channel as possible, so as to make it represent the actual situation as accurately as possible. Types of channel modellings are as follows: Additive Gaussian noise channel Pandwidth limited linear channel 						
	•	3. Linear time-variant channel						
	b)	With the help	of neat sketch explain quantization	n process.	4 M			
	Ans:	Quantization process:						
		 Quantization is the process of approximation or rounding off the sampled signal. The quantizes converts sampled signal into approximated rounded values consisting of only finite no. of pre decided voltage levels called as quantization levels. In the process of A to D conversion, after sampling, quantization is the next step. The input signal x (t) is assumed to have a peak swing of VL to VH volts. This entire voltage range has been divided into Q equal intervals each of size "s". s is called as step size and its value is given as 						

<u>17535</u>

d)	Explain fast frequency hopping with suitable diagram	4 M
Ans:	Fast frequency hopping means multiple hops are used to transmit one symbol.	2M
	Thus the hop rate Rh is higher than Rs	
	Rh>Rs	
	The chip rate is equal to hop rate	
	Rc=Rh	
	The fig. shows variation of transmitted frequency of fast hopping with time:	2M
	Frequency Frequency MFSK symbol 01 11 11 0 00 10 01 11 10 10	
B)	PN 001110 011001 001001 11001 001001 011001 001001 110011 001001 Attempt any ONE: <	6 M
a)	State the different types of error present in digital communication system. Find the Hamming weight of following code vector. X=11010100	6 M
Ans:	Types of error:	Correct
		answer
	1. Single bit error:	for
	 Single bit error: Single-bit error occurs when only one bit of a given data string is in error (changed from 0 to 1 or from 1 to 0). 	for Hamming weight:2
	 Single bit error: Single-bit error occurs when only one bit of a given data string is in error (changed from 0 to 1 or from 1 to 0). Burst error: 	for Hamming weight:2 M & each type :2M
	 Single bit error: Single-bit error occurs when only one bit of a given data string is in error (changed from 0 to 1 or from 1 to 0). Burst error: A burst error or multiple-bit error occurs when two or more bits within a given data string are in error. 	for Hamming weight:2 M & each type :2M
	 Single bit error: Single-bit error occurs when only one bit of a given data string is in error (changed from 0 to 1 or from 1 to 0). Burst error: A burst error or multiple-bit error occurs when two or more bits within a given data string are in error. Example 	for Hamming weight:2 M & each type :2M

		 In practice the data sequence after spreading is carrier modulated, generally using either BPSK, QPSK or MSK. Then it is transmitted over the channel. At the receiving end, the received signal is first subjected to coherent detection using locally generated carrier signal that is to be arranged in phase and frequency synchronism with the carrier used at the transmitter. The output of the coherent detector is then subjected to de-spreading by multiplying it with a locally generated PN sequence generator that is identical to and in synchronism with the one at the transmitter. After de-spreading it is integrated over a bit duration T_b to get the voltage v which is used for decision making. 								
Q.5		Attempt a	ny <u>TW</u>	<u>O</u> :						16 M
	a)	Draw and	explair	DPSK trans	smitter worki	ing principle.				8 M
	Ans:	DPSK MODULATOR: The generation block diagram of DPSK signal is shown in Figure 1 3.16. The data stream to be transmitted, d(t), is applied to one input of an exclusive-OR 1 logic gate. To the other gate input the output of the exclusive-OR gate b(t) delayed by time T _b allocated to one bit is applied. This second input is then b(t - T _b). Binary data d(t) b (t) LEVEL SHIFTER BIPOLAR GENERATOR CARRIER GENERATOR DELAY DELAY T _b							Dig:4mar ks,explain ation :4marks	
		d(t) b(t - T _b) b(t)								
		L	.ogic .evel	Voltage	Logic Level	Voltage	Logic Level	Voltage		
			0	-1	0	-1	0	-1		
			0	-1	1	1	1	1		
			1	1	0	-1	1	1		
			1	1	1	1	0	-1		

	From figure, b(t) is given	by, $b(t) =$	d(t) b	$(t - T_b)$					
	Input Data d(t)		1	0	1	1	1	0	
	Delayed input $b(t - T_b)$		0	1	1	0	1	0	
	XOR Output b(t)	0	1	1	0	1	0	0	
	Output Phase		0°	0°	180°	0°	180°	180°	
	DPSK input (at Receiver)	180°	0°	0°	180°	0°	180°	180°	
	Recovered data stream		1	0	1	1	1	0	
		$V_{\rm DPS}$	ansmutSK(t) = b $= (+$	$P(t) \sqrt{2P_s}$	s given cosω _c t	Uy,			
b)	Draw block diagram of advantage of TDMA ov	TDMA te er FDMA	chnolog	y and ex	plain it's	operatio	n. Give 1	the	8 M
Ans:	TDMA technology :								[dig:2

(ISO/IEC - 27001 - 2005 Certifie4)

transponder at a different time. Consequently, only one earth station's carrier is present in the transponder at any given time thus avoiding collision with another station's carrier.

• The transponder is an RF to RF repeater that simply receives the earth stations transmissions, amplifies them and retransmits them in a downlink beam that is received by all participating earth stations. Each earth station receives the bursts from all other earth stations and must select from them the traffic destined only for itself.

TDMA FRAME:

• A TDMA frame consists of one or two reference bursts and several traffic bursts. A new frame starts with fresh reference bursts. A set of two TDMA frames is illustrated in Figure for three stations.

- RB are the reference bursts and A, B and C are the traffic bursts. A guard band is used between bursts. There is no transmission during the guard time. It prevents overlapping that may occur between various bursts.
- The frame time t_f is the time interval from the start of the reference burst RB-1 to the end of the last traffic burst (TB) of the frame. Typical frame time lies between 0.75 ms to 20 ms.
- The bursts transmitted from the earth stations in their respective slots are received at a receiving station as shown in Figure 5.17. RB will enable the correct bursts to be recognized by the concerned station while the other bursts will be ignored.

<u>17535</u>

c)	Write about the importance of spread spectrum modulation. List out application of spread spectrum modulation.	8 M
Ans:	Importance of spread spectrum modulation :	(1mark
	1. In combating the intentional interference (jamming):	for each
	• It is important in communications that the jammer who is trying to disrupt the communication does not have prior knowledge of the signal characteristics except for the overall channel bandwidth and the type of modulation being used.	any 4point)
	• If digital information is just encoded, a sophisticated jammer can easily mimic the signals emitted by the transmitter and confuse the receiver. Therefore to combat this problem, the transmitter introduces an element of unpredictability or randomness in each of the transmitted coded signal waveforms which is known only to the intended receiver but not to the jammer.	& (1mark for each
	2. In rejecting the unintentional interference from some other user:	apply – anv
	• Interference from other users arises in multiple access communication systems in which a number of users share a common channel bandwidth. At any given time, a subset of users may transmit information simultaneously over a common channel to corresponding receivers.	4appl)
	• By assigning different codes to different users, the transmitted signals in the common spectrum may be distinguished from one another. Thus, a particular receiver can recover the transmitted information intended for it by knowing the code or key used by the corresponding transmitter.	
	3. To avoid the self -interference due to multipath propagation	
	• A signal can take multiple paths while travelling over a communication channel. The signal components following different path lengths will result in dispersed signal at the receiver. This time dispersive propagation may be viewed as self- interference. This may be suppressed by introducing a pseudo-random pattern in the transmitted signal.	
	4. Hiding a signal by transmitting it at a low power and thus making it difficult for an unintended listener to detect in the presence of background noise. This low average power signal is achieved by spreading its bandwidth using coding and hence, this signal is also called as low probability of intercept (LPI) signal.	
	5. Achieving message privacy in the presence of other listeners:	
	• The message privacy can be achieved by superimposing a pseudo-random pattern on the transmitted message. The message can be demodulated by the intended users that know the pseudo random pattern used at the transmitter.	

(IS O/IEC - 27001 - 2005 Certifie4)

Application of spread spectrum modulation.

- 6. The **spread spectrum** Communications is widely used today for Military, Industrial, Avionics, Scientific, and Civil uses.
- 7. Bluetooth Technology.
- 8. CDMA radios: It is useful in multiple access communications wherein many users communicate over a shared channel. Here the assignment of a unique spread spectrum sequence to each user allows him to simultaneously transmit over a common channel with minimal mutual interference. Such access technique often simplifies the network control requirements considerably.
- 9. High Resolution Ranging: **spread spectrum** communications is often used in high resolution ranging. It is possible to locate an object with good accuracy using spread spectrum techniques. One example where it could be used is Global Positioning System (GPS). Here an object can use signals from several satellites transmitting spread spectrum signals according to a predefined format to determine its own position accurately on the globe.
- 10. WLAN: Wireless LAN (Local Area Networks) widely use spread spectrum communications.
- 11. Cordless Phones: Several manufacturers implement Spread Spectrum in Cordless phones. The advantages of using spread spectrum in cordless phone include the following:
 - Security: Inherently, ass communication is coded.
 - Immunity to Noise: SS modulation is immune to noise when compared with other modulation schemes such as AM and FM.
 - Longer Range: Due to noise immunity, it is possible to achieve a longer range of communications, for a very small transmitted power.
- 12. Long-range wireless phones for home and industry
- 13. Cellular base stations interconnection.

(IS O/IEC - 27001 - 2005 Certifie4)

Ans:	Data word, Hourerer	4 M
	Divisor: 10101	
	Number of digits in divisor: 5	
	Append to dataword with: 5-1=4 Zero's	
	So, now data will be: 1100101010000	
	10101)1100191919999	
	10101	
	X11008	
	10101	
	×11011	
	10101	
	×11108	
	10101	
	XICOIL	
	10101	
	XXIIOČČ	
	10101	
	×11010	
	10101	
	×11118	
	- 10101	
	× 1011	
	Reminder	
	Now append the reminder at end of data word.	

<u>17535</u>

c)	Write about M-ary encoding. State any two advantages and disadvantage.	4 M
Ans:	M-ary encoding	M-ary
	• In an M-ary signaling scheme, we can send one of the 'M' possible signals/symbols such as S_1 , S_2 S_N (t) during each signaling interval of duration of 't' seconds.	encoding :1 mark &
	• The number of symbols is M and given as, $M=2^N$, where N = no. of bits that are grouped to form a symbol.	Advantag es:-2
	• These signals will extend over a period of NTb ,where Tb is duration of one bit.	mark any one
	• Due to grouping of n bit per symbols, 2^{N} =M possible symbols can be generated.	advantag
	• M-ary ASK, M-ary-PSK and M-ary-FSK are the possible signaling scheme	e a Disaduant
	Advantages	ages:1
	1) Conserves channel Bandwidth	mark any
	2) Increase in system performance.	disadvant
	Disadvantages	age
	1) Increase in probability of error.	
	2) Increase in transmitted power	
	3) Low SNR/high BER	
d)	Draw and explain PSK transmitter block diagram.	4 M
Ans:	 1. The simplest digital modulation technique is shift keying (<u>PSK)</u>. 2. It is a digital modulation technique in which the phase of the analog carrier is changed with respect to the binary input information keeping its frequency and amplitude constant. 3. If binary input is logic 1, phase of analog carrier is shifted by 0⁰. 4. If binary input is logic 0, phase of analog carrier is shifted by 180⁰. Block diagram of PSK transmitter:	Diagram: 2M & Explain:2 M
	O sin(ω _c t) Buffer O Sin(ω _c t) Peterence Carrier Oscillator	

