

17517

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking Scheme
N	Q. N.		
0			
1.	a)	Attempt any three:	(3×4=12)
	1)	State and explain the functions of loader.	4 M
	Ans:	• Loader Function: The loader performs the following functions:	(Each function 1
		• Allocation- The loader determines and allocates the required memory space for the program to execute properly.	mark, Only List :1 mark)
		• Linking- The loader analyses and resolve the symbolic references made in the object modules.	
		• Relocation- The loader maps and relocates the address references to correspond to the newly allocated memory space during execution.	
		• Loading-The loader actually loads the machine code corresponding to the object modules into the allocated memory space and makes the program ready to execute.	
	2)	What are the four components of system software?	4M
	Ans:	Components of system software are: 1. Assembler 2. Macros 3. Loader 4. Linker 5. Compiler	(Any 4 Component: 1 mark Each)
		1. Assembler: It is a language translator that takes as input assembly language	

	 program (ALP) and generates its machine language equivalent along with information required by the loader. 2. Macros: The assembly language programmer often finds that certain set of instructions get repeated often in the code. Instead of repeating the set of instructions the programmer can take the advantage of macro facility where macro is defined to be as "Single line abbreviation for a group of instructions". The template for designing a macro is as follows 3. Loader: It is responsible for loading program into the memory, prepare them for execution and then execute them. OR Loader is a system program which is responsible for preparing the object programs for execution and start the execution. 4. Linker: A linker which is also called binder or link editor is a program that combines object modules together to form program that can be executed. Modules are parts of a program. 5. Compiler: Compiler: Compiler: Compiler: Compiler: Compiler: Compiler: Compiler: Compiler: Compiler: 	
3)	Describe the steps of design for assembler.	4 M
	Step 1. Specify the problem	(All Stons · A
Ans:	 This includes translating assembly language program into machine language program using two passes of assembler. Purpose of two passes of assembler are to determine length of instruction, keep track of location counter, remember values of symbol, process some pseudo ops, lookup values of symbols, generate instructions and data, etc. Step 2: Specify data structures This includes establishing required databases such as Location counter(LC), machine operation table (MOT), pseudo operation table (POT), symbol table(ST), Literal Table(LT), Base Table (BT), etc. Step 3: Define format of data structures This includes specifying the format and content of each of the data bases – a task that must be undertaken before describing the specific algorithm underlying the assembler design. Step 4: Specify algorithm Specify algorithms to define symbols and generate code Step 5: Look for modularity This includes review design, looking for functions that can be isolated. Such functions fall into two categories: 1) multi-use 2) unique Step 6: Repeat 1 to 5 on modules	marks)
 4)	What must the compiler do in order to produce the machine language equivalent of WCM?	4M
	(Any relevant answer can also be considered)	

Ans	 Recognize certain strings as basic element e.g. recognize COST is a variable, WCM label, PROCEDURE is a keyword, and "=" is an operator. Recognize combinations of elements as Syntactic units and interpret their meaning, e.g. ascertain that the first statement is a procedure name with three arguments, that the next statement defines four variables to be fixed binary numbers of 31 bits, that the third statement is an assignment statement that requires seven computations, and that the last statement is a return statement with one argument. Allocate storage and assign location for all variables in this program Generate the appropriate object code. 	(Each step :1 mark)	
b)	Attempt any one:	(1×6=6)	
1	Explain the foundation of system programming.	6M	
Ans	PeoplePeopleApplication programmingCompilersAssemblersMacroprocessorsLoadersText editorsDebugging aidsand sortingJoint colspan="2">DevicemanagementDevicemanagementDevicemanagementJoint colspan="2">DevicemanagementDevicemanagementJoint colspan="2">DevicemanagementJoint colspan="2">DevicemanagementDevicemanagementDevicemanagementDevicemanagementDevicemanagementmanagementDevicemanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagementmanagement <th col<="" th=""><th>(Diagram: 2 marks, Description: 4 marks)</th></th>	<th>(Diagram: 2 marks, Description: 4 marks)</th>	(Diagram: 2 marks, Description: 4 marks)
2)	Explain macro instructions with the help of its structure and example	6M	
Ans	Description: - Macro is used to give single line abbreviation to group of lines which are repeatedly used in program. These statements are combined and kept in macro. Whenever such single line abbreviation is encountered macro processor expands replaces this abbreviation with associated group of lines. Macro Processor is a program that lets you	(Description :2 marks, Structure :2 marks,Example: 2 marks)	

Ans:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER-16 EXAMINATION **Model Answer** Subject Code:

17517

(Flowchart: 4 marks. **Description:** 4 marks)

PASS1:

DEFINE SYMBOLS the purpose of the first pass is to assign a location to each instruction and data defining pseudo- instruction, and thus to define values for symbols appearing in the label; fields of the source program. Initially, the Location Counter (LC) is set to the first location in the program (relative address 0) then a source statement is read the operation code field is examine to determine if it is pseudo-op; if it is not, table of machine op-code (MOT) is search to find match of source stamen. Op-code field the match MOT entry specifies the length (2, 4 or 6 Bytes) of the instructions the operand field is scanned for the presence of literal. If a new literal is found, it Is entered into the literal table (LT) for later processing. The label field of source statement is then examine for the presence of the symbol if there is label, symbol is saved in the symbol table (ST) along with the current value of the location counter. Finally, the current value of the Location counter is increment by Length of the instruction. And the copy of as our card is saved for used by Pass 2. The above sequence is then repeated for the next instruction.

The simplest procedure occurs for USING and DROPP as s1 is only concern with pseudo-ops that defines symbols (Labels) or affects the location counter; USING and DROP do neither assembler need only save the USING and DROP card for Pass 2.

In case of EQU pseudo-op during Pass1 We can concern only with defining the symbol in the label field this require evaluating the expression in the operand field (The symbol in the operand field and EQU statement must have been defined previously).

The DS and DC pseudo-op scan affects both the location counter and definition of symbols in Pass1. The operand field must be examine to determine the number of by

	test of storage require due to requirement for certain alignment conditions. It may be necessary to adjust the location counter before defining the symbol.	
	When the END Pseudo-op is encountered Pass 1 is terminated before transferring	
	to control to Pass2. There are various "housekeeping" operation that must be	
	performed this including assigning location the literal that have been collected during	
	Pass1, a procedure that is very similar that for the DC pseudo-op, finally conditions are	
	reinitialized for processing by Pass 2.	
 2)	What is the need of searching and sorting techniques in system programming?	8M
_/	Elaborate vour answer in details.	UI,I
	(Any Relevant Description can also be considered)	
Ans:	This attention to searching and sorting techniques derives from an awareness of critical	(Need : 4 marks,
	performance areas or potential bottlenecks. All of the identified assembler functional	Elaboration: 4
	modules are of comparable programming complexity; whereas the listing format	marks)
	module is used once for every source card, the symbol table search module, for	
	example, contains a loop that may be executed hundreds or thousands of times for	
	every source card. Since the software designer only has a limite amount of time, it is assential to accontuate these particular modules that yield the highest performance	
	results	
	A simple example should illustrate this point. Consider an assembler running on a	
	medium-speed computer, such as an IBM System/360 Model 40, which has a typical	
	instruction time of 12 microseconds (i.e., it averages 83,000 instructions per second).	
	Assume that we wish to assemble a fairly large assembly source program of 5,000	
	cards, which contains about 2,000 symbols. On an average, each source card has at	
	least one symbolic reference in the operand field. Let us compute the amount of time	
	spent in searching the symbol table.	
	in a linear search is used and programmed as in Figure 5.12, there will be live instructions executed for each loop of the search. Thus each iteration will take about	
	5x12.60 microseconds. The number of iterations for each search will be approximately	
	half the symbol table size, $1.000P$ (I/2) of 2.000. Finally, there will be approximately	
	one search for each of the 5,000 source cards. Thus we can estimate the total time spent	
	searching as:	
	Total search time = number of searches	
	x number of iterations per search	
	x time per iteration $(5, 102) = (102) = (202)$	
	$= (5x103) \times (103) \times (60x106) = 300$ seconds	
	= 5 minutes	
	On the other hand, if a binary search is used, the average number of iterations per	
	search becomes only log2 (2000) -1 10, and the time per iteration is about 100	
	microseconds if programmed	
	Total search time = $(5x103) \times (10) \times (100x I 0-6)$	
	5000 x iO3	
	rr 5 seconds	

	by the CP	U swit	ching l	betweer	them.	but th	e switc	hes oc	cur so	frequei	tly that the	
	users may	interac	t with e	each pro	ogram v	while it	is runn	ing.		1	5	
	Time-Shai	ring S	ystems	–Intera	active	Compi	iting 7	The CP	PU is n	nultiple	exed among	
	several job	s that a	are kep	t in mei	mory a	nd on d	isk (the	CPU i	is alloca	ited to	a job only if	
	the job is	in mei	mory).	A job	swappe	ed in a	nd out	of mer	mory to	the d	isk. On-line	
communication between the user and the system is provided; when the operati										e operating		
system finishes the execution of one command, it seeks the next "control statement										l statement"		
	from the user's keyboard. On-line system must be available for users to access da										access data	
	and code.		-		-							
	Desktop S	ystem	s or Pe	ersonal	comp	uters –	compu	iter sys	stem de	dicated	to a single	
	user. I/O devices – keyboards, mice, display screens, small printers. User convenience									convenience		
	and respor	nsivene	ess. Ca	n adop	t techn	ology d	develop	ed for	larger	operat	ing system"	
	often indiv	iduals	have so	ole use	of com	puter ar	nd do n	ot need	advanc	ed CP	U utilization	
	of protection	on featu	ures. M	ay run	several	differe	nt types	s of ope	erating s	systems	s (Windows,	
	MacOS, U	NIX, L	.inux).					_				
	Distribute	ed sys	tem o	r disti	ributed	data	proce	ssing	is the	system	n in which	
	processors.	, data a	nd othe	er aspec	ts of a	data pro	ocessin	g systei	m may l	be disp	ersed within	
	on the orga	anizatio	on. A L	DDP sys	stem in	volves	a partit	ioning	of the c	comput	ing function	
	and may	also in	ivolve	a distr	ributed	of dat	abases,	devic	e contr	ol and	interaction	
	(network)	control	Aona io		han tha		با ما ما		ind for		and of a	
		me sys	tem 18 Jow of	doto or	nen the	ic ofter	igia un	ne requ	ntrol do	r the op	eration of a	
	processor (low of		m is ac	is one	i used a	as a col		vice in	if it roturns	
	the correct	t. A NC	vithir	c system	ime co	nstraint	Hord	real ti	me eve	tom Sc	If it real time	
	system	. iesuit	. within	i ally t		iistiaiii	. Haiu	icai-ti	ine sys		fit feat-time	
 2)	Apply lines	ar sear	ch on f	followi	ng num	nbers a	nd sear	ch the	numbe	r 15 fr	om it.	4M
_)	rippiy mice	ii scui			ing num		nu scur	en ine	numot	1 10 11	0111 10.	-11/1
	1,3,7,9,11,1	3,15,1	9,21									
 A ne.	Algorithr	n										(Correct stons .
Alls.	1 Star	n t with t	the first	Numb	er in th	e list						(Correct steps . 4 marks)
	2. Con	npare th	he curre	ent Nur	nber to	the targ	vet					+ marks)
	3. If th	e curre	ent Nun	ber ma	atches t	he targe	et then y	we decl	lare seat	rch fou	nd and stop.	
	4. If th	e curre	ent num	ber is r	not equi	al to the	e target	then se	et the cu	irrent n	umber to be	
	the	next Ni	umber a	and rep	eat from	n 2.						
				1								
		-		-	0	11	13	15	19	21	7	
		1	3		9							
		1	3		9	11	15	15	17	21		
		1	3		9	11	15	15	17	21		
		1	3		9		15	15	17	21		
	Search for r	1 number	3 : 15 in t	he list	9		15			21		
	Search for r i.e. Target =	1 number = <u>15</u>	3 : 15 in t	he list	9					21		
	Search for r i.e. Target =	1 number = 15	3 : 15 in t	he list	9	11	13	15	10	21		
	Search for r i.e. Target =	1 number = 15 1	3 - 15 in t 3	he list	9	11	13	15	19	21		
	Search for r i.e. Target = $\sqrt{1}$	1 number = 15 1	3 - 15 in t 3	he list	9	11	13	15	19	21		
	Search for r i.e. Target =	1 number = 15 1	3 : 15 in t 3	the list	9	11	13	15	19	21		

Model Answer

Subject Code:

	 interpret the meaning (semantic). There are many ways of recognizing the basic constructs and interpreting the meaning. Syntax analysis uses a rule (reductions) which specifies the syntax form of source language. This reduction defines the basic syntax construction and appropriate compiler routine (action routine) to be executed when a construction is recognized. The action routine interprets the meaning and generates either code or intermediate form of construction. e.g. The syntax phase takes as input tokens generated by lexical phase and if meaning is correct it generates a parse tree. The output of syntax analysis phase for the string 'c=a+b' in the form of syntax tree is as follows 	
	C +	
4)	Explain compile and go loader.	4M
Ans:	 "Compile and go" loader: The assembler runs in one part of the memory and place the assembled machine instructions and data as they are assembled directly into their assigned memory locations. When assembly is completed, the assembler causes a transfer to the starting instruction of the program. Advantages:- I. It is very easy to design and implementation. Relocation can be perform by translator itself. No object files are required. It is suitable for experimental program language like Basic. Disadvantages:- For execute program it is necessary to compile a program every time. It is very difficult to handle the multiple modules (Linking problem) 	(Description: 2 marks, Diagram :2 marks)

				(ISO/IEC - 27001 - 2005 Certi WINTED 16 EXAMINA		
				Model Answer	Subject Code:	17517
		с	a d	ç d A C a d Fig:-Steps in bottom up	S C A C A C A C A C	4
4.	a)	Attempt any	three:			(3×4=12)
	1)	Explain four	r cards in the ol	bjects desk of assembler i.e	. ESD, TXT, RLD and	END. 4M
	Ans:	There are fou The ESD car symbols are labels in the The ESD car external sym normal labels ESD card fo Columns 1 2-4 5-14 15-16 17-24 25 26-28 29 30-32 33-72 73-80 The TXT ca be placed. On Load Address non-related d	rr sections of the rd the informati symbols that c source program rd contains the bols are symbols in the source pro- rmat: Contents Hexadecimal byte Characters ESD Blank ESD identifier (ID Name, padded wit ESD type code (T' Relative address o Blank Length of program Blank Card sequence num rd contains the lance the loader has (PLA) to relative lata or initial val	 c object deck for a direct link ion necessary to build the e an be referred beyond the are used only by the assemb information necessary to buils that can be referred beyor rogram are used only by the x '02' b) for program name (SD) external sy h blanks YPE) r blank notherwise blank 	ing loader. external symbol. The ex subroutine level. The r oler. uild the external symbo ond the subroutine leve assembler. mbol(ER) or blank for entry (L mbol(ER) or blank for entry (L e address at which data program, it adds the Pro FXT card may be instru	(Explanation of each card, diagram optional:1 mark each) 1. The 1. The
		TXT card fo	ormat			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

17517

Columns	Contents	
1	Hexadecimal byte X'02'	
2-4	Characters TXT	
5	Blank	
6-8	Relative address of first data byte	
9-10	Blanks	
11-12	Byte Count (BC) = number of bytes of information in cc. 17-72	
13-16	Blank	
17-72	From 1 to 56 data bytes	
73-80	Card sequence number	

The RLD cards contain the following information 1. The location and length of each address constant that needs to be changed for relocation or linking. 2. The external symbol by which the address constant should be modified. 3. The operation to be performed. RLD card format

Columns	Contents
1	Hexadecimal byte X'02'
2-4	Characters RLD
5-18	Blank
19-20	Relative address of first data byte
21	Blanks
22-24	Byte Count (BC) = number of bytes of information in cc. 17-72
25-72	Blank
73-80	Card sequence number
he END card	specifies the end of the object deck.
ND card for	nat

	Columns	Contents						
	1	1 Hexadecimal byte X'02'						
	2-4	Characters END						
	5	Blank						
	6-8	Start of execution	entry (ADDR), if other	than beginning of program				
	9-72	Blanks						
	73-80	Card sequence nur	nber					
2)	Generate the parse	tree for followin finish) $\pm 2 + Rate$	g expression.	0	4M			
	RATE	TRATE						
	START	FINISH	2 RATE STAF	T FINISH				
3)	START Write the matrix fo	FINISH FINISH	RATE STAF	T FINISH	4M			
3) Ans:	START Write the matrix fo Cost = rate*(start -	FINISH FINISH or the following e finish) + 2 * Rate	2 RATE STAF	T FINISH	4M (Correct Matri			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no.	FINISH or the following e finish) + 2 * Rate	2 RATE STAF expression. e * (start-finish)-10 Operand 1	100 RT FINISH	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no. 1	FINISH or the following e finish) + 2 * Rate Operator	2 RATE STAF	100 RT FINISH	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - <i>Matrix line no.</i> 1 2	FINISH FINISH or the following e finish) + 2 * Rate Operator - *	RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE	100 AT FINISH 0 0 0 0 0 0 0 0 0 0 0 0 0	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no. 1 2 3	FINISH FINISH or the following e finish) + 2 * Rate Operator - * *	2 RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE 2	100 T FINISH 0 0 0 0 0 0 0 0 0 0 0 0 0	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - <i>Matrix line no.</i> 1 2 3 4	FINISH FINISH or the following e finish) + 2 * Rate Operator - * *	RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE 2 START	0 Operand 2 FINISH M1 RATE FINISH	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no. 1 2 3 4 5	FINISH FINISH or the following e finish) + 2 * Rate Operator - * * *	2 RATE STAF Expression. e * (start-finish)-10 Operand 1 START RATE 2 START M4	0 Operand 2 FINISH M1 RATE FINISH 100	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - <i>Matrix line no.</i> 1 2 3 4 5 6	FINISH FINISH or the following e finish) + 2 * Rate Operator - * * *	RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE 2 START M4 M3	0 Operand 2 FINISH M1 RATE FINISH 100 M5	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no. 1 2 3 4 5 6 7	FINISH FINISH or the following e finish) + 2 * Rate Operator - * * * +	2 RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE 2 START M4 M3 M2	0 Operand 2 FINISH M1 RATE FINISH 100 M5 M6	4M (Correct Matri : 4 marks)			
3) Ans:	START Write the matrix fo Cost = rate*(start - Matrix line no. 1 2 3 4 5 6 7 8	FINISH FINISH or the following e finish) + 2 * Rate Operator - * * * + + =	2 RATE STAF expression. e * (start-finish)-10 Operand 1 START RATE 2 START M4 M3 M2 COST	0 Operand 2 FINISH M1 RATE FINISH 100 M5 M6 M7	4M (Correct Matri : 4 marks)			

	Ans:	Top-down Parser When the parser starts constructing the parse tree from the start symbol and then tries to transform the start symbol to the input, it is called top-down parsing. Recursive descent parsing: It is a common form of top-down parsing. It is called recursive as it uses recursive procedures to process the input. Recursive descent parsing suffers from backtracking. Backtracking process using different rules of same production. This technique may process the input string more than once to determine the right production. Top-down parsing technique parses the input, and starts constructing a parse tree from the root node gradually moving down to the leaf nodes. The types of top-down parsing are depicted below: Top-Down Recursive Descent Parsing Recursive descent is a top-down parsing technique that constructs the parse tree from the top and the input is read from left to right. It uses procedures for every terminal and non-terminal entity. This parsing technique recursively parses the input to make a parse tree, which may or may not require back-tracking. But the grammar associated with it (if not left factored) cannot avoid back-tracking. But the grammar associated with it (if not left factored) cannot avoid back-tracking. A form of recursive-descent parsing that does not require any back-tracking is known as predictive parsing . This parsing technique is regarded recursive as it uses context-free grammar which is recursive in nature. Back-tracking Top-down parsers start from the root node (start symbol) and match the input string against the production rules to replace them (if matched). The following example of CFG: S $\rightarrow rXd rZd$ X \rightarrow oa lea Z \rightarrow al i	(Description : 2 marks; 2 marks for Description of any two type of top down parser)
l	b)	Attempt any one:	(1×6=6)
	1)	Explain conditional macro expansion with the help of example.	6M
1	Ans:	Two important macro-processor pseudo-ops AIF and AGO permit conditional reordering of the sequence of macro expansion. This allows conditional selection of	(explanation:4 marks , example

Model Answer

TOTIONIIIS	oon 1	Δ1 ΠΔΤΔ 1				
1		A_2 DATA 2				
	1	A3. DATA 3				
	•	1 5, D1 1 1 5				
-						
I	Loop 2	AI, DATA 3				
		A2, DATA 2				
Ι	Loop 3	A1, DATA1				
	Дата 1	DC E'5'				
	DATA 1 DATA 2	DC F 3 DC F'10'				
	DATA 3	DC F'15'				
In the b	below exa	ample, the operands, labels and	d the numb	per of	instructior	ns
generated	l change i	n each sequence. The program can	written as fo	llows:-		
	•					
	MACRO					
&ARG0	MACRO VARY	&COUNT,&ARG1,&ARG2,&ARG	33			
&ARG0 &ARG0	MACRO VARY A	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1	33			
&ARG0 &ARG0	MACRO VARY A AIF	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2 &ARG2	33			
&ARG0 &ARG0	MACRO VARY A AIF A AIF	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EO 2).FINI	G3			
&ARG0 &ARG0	MACRO VARY A AIF A AIF A	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3	33			
&ARG0 &ARG0 .FINI	MACRO VARY A AIF A AIF A MEND	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3	G3 EXPAN	ded so	URCE	
&ARG0 &ARG0 .FINI	MACRO VARY A AIF A AIF A MEND	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3	G3 EXPAN	DED SO	URCE	
&ARG0 &ARG0 .FINI	MACRO VARY A AIF A AIF A MEND	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3	G3 EXPAN	DED SO	URCE	
&ARG0 &ARG0 .FINI LOOP1	MACRO VARY A AIF A AIF A MEND	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3	G3 EXPAN LOOP1	DED SO · · A 1,D	URCE PATA1	
&ARG0 &ARG0 .FINI LOOP1	MACRO VARY A AIF A AIF A MEND VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3	G3 EXPAN LOOP1	DED SO A 1,E A 2,E	URCE PATA1 PATA2	
&ARG0 &ARG0 .FINI LOOP1	MACRO VARY A AIF A MEND VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3	G3 EXPAN LOOP1	DED SO A 1,D A 2,D A 3,D	URCE PATA1 PATA2 PATA3	
&ARG0 &ARG0 .FINI LOOP1	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3	G3 EXPAN LOOP1 LOOP2	DED SO A 1,D A 2,D A 3,D A 1,D	URCE PATA1 PATA2 PATA3 PATA3	
&ARG0 &ARG0 .FINI LOOP1 LOOP2	MACRO VARY A AIF A MEND VARY VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2	G3 EXPAN LOOP1 LOOP2	DED SO A 1,D A 2,D A 3,D A 1,D A 2,D	URCE PATA1 PATA2 PATA3 PATA3 PATA3	
&ARG0 &ARG0 .FINI LOOP1 LOOP2	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY ·	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2	G3 EXPAN LOOP1 LOOP2	DED SO A 1,E A 2,E A 3,E A 1,E A 2,E	URCE PATA1 PATA2 PATA3 PATA3 PATA3	
&ARG0 &ARG0 .FINI LOOP1 LOOP2	MACRO VARY A AIF A AIF A MEND VARY VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2	G3 EXPAN LOOP1 LOOP2	DED SO A 1,E A 2,E A 3,E A 1,E A 2,E A 1,E	URCE PATA1 PATA2 PATA3 PATA3 PATA3	
&ARG0 &ARG0 .FINI LOOP1 LOOP2	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY · · VARY · · · VARY	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2	G3 EXPAN LOOP1 LOOP2 LOOP3	DED SO A 1,C A 2,C A 3,C A 1,C A 2,C A 1,C	URCE PATA1 PATA2 PATA3 PATA3 PATA3 PATA1	
&ARG0 &ARG0 .FINI LOOP1 LOOP2 LOOP3	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY · · VARY · · · · ·	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2 1,DATA1	G3 EXPAN LOOP1 LOOP2 LOOP3	DED SO A 1,E A 2,E A 3,E A 1,E A 1,E A 1,E	URCE PATA1 PATA2 PATA3 PATA3 PATA1	
&ARG0 &ARG0 .FINI LOOP1 LOOP2 LOOP3	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY · · VARY · ·	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2 1,DATA1	G3 EXPAN LOOP1 LOOP2 LOOP3	DED SO A 1,D A 2,D A 3,D A 1,D A 2,D A 1,D	URCE PATA1 PATA2 PATA3 PATA3 PATA1	
&ARG0 &ARG0 .FINI LOOP1 LOOP2 LOOP3 DATA1 DATA1	MACRO VARY A AIF A AIF A MEND · · VARY · · VARY · · VARY · · VARY · · · VARY · ·	&COUNT,&ARG1,&ARG2,&ARG 1,&ARG1 (&COUNT EQ 1).FINI 2,&ARG2 (&COUNT EQ 2).FINI 3,&ARG3 3,DATA1,DATA2,DATA3 2,DATA3,DATA2 1,DATA1	G3 EXPAN LOOP1 LOOP2 LOOP3	DED SO A 1,E A 2,E A 3,E A 1,E A 1,E	URCE PATA1 PATA2 PATA3 PATA3 PATA3 PATA1	

	Labels starting with a period (.) such as the output of the macro processor. The st the macro processor to skip to the s corresponding to & COUNT is a1; otherw the statement following the AIF pseudo-op performs an arithmetic test and branches an unconditional branch pseudo-ops or '0 on some other statement. AIF & AGO processor expands the statements in macro	FINI are macro labels and do not appear in tatement AIF (& COUNT EQ1) .FINI direct tatement. Labeled .FINI if the parameter wise the macro processor is to continue with ops. AIF is conditional branch pseudo ops it only if the tested condition is true. AGO is Go to' statement. It specifies label appearing controls the sequence in which the macro p instructions.	
2)	Compare advantages and disadvantage	es of top down and bottom up parser.	6M
Ans:	Top down parser		(Any 6 Points of
	Top Down Parser	Bottom-up Parser	comparison: 1
	Easy to implement.	Difficult to implement.	mark each)
	It never waste time on sub trees which does not have 'S' symbol at root.	It waste time on sub trees for which start state is not defined.	
	It can back track while creating parse tree.	Bottom up parser cannot back track.	
	It cannot handle left recursion.	It can handle left recursion	
	Not applicable for complex grammar.	It can handle complex grammar.	
	It is not efficient parsing method	It is highly efficient parsing method.	
		OR	
	 Advantages:- It is easy to implement It never wastes time on sub trees the parsing does this. Disadvantages:- It is not efficient parsing method as co It cannot handle left recursion. It is not applicable to large scale of gr Wastes time on trees that don't materinput with the leftmost branch of the to Bottom up parser Advantages:- It is efficient parsing method. Left recursion framer is handled by bo It is applicable to large scale of grammethod. It is applicable to large scale of grammethod. Bottom up parser It is applicable to large scale of grammethod. Bottom-up parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision it has more data than was available to the parse postpones decision the parse p	at cannot have an S at the root. Bottom up ompare to bottom up parser ammar. ch the input (compare the first word of the tree). Bottom-up parsing doesn't do this. ottom up parser. nar. t have an S at the root. s about which production rule to apply until top-down.	

9-10

11-12

13-16

17-72

73-80

Blanks

Blank

From 1 to 56 data bytes

Card sequence number

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) **WINTER-16 EXAMINATION** Subject Code:

Model Answer

17517

	Attempt any tw	vo:		(2×8=16)
1)	What are the s direct linking l	specification oader?	ons of data structures and formats of data bases used i	n 8M
Ans:	1. The ESD c The externa The normal ESD card for	ards conta il symbols a label in the rmat:	in the information necessary to build the external symbo are symbols that can be referred beyond the subroutine leve e source program is used only by the assembler.	 (Any 4 Data Structure : 2 marks Each)
	Colu	imns	Contents	
		1	Hexadecimal byte X'02'	
		2-4	Characters ESD	
		5-14	Blank	
		15-16	ESD identifier (ID) for program name (SD) external symbol(ER) or blank for entry (LD)	
		17-24	Name, padded with blanks	
		25	ESD type code (TYPE)	
		26-28	Relative address or blank	
		29	Blank	
		30-32	Length of program otherwise blank	
		33-72	Blank	
		73-80	Card sequence number	
	2. The TXT of data is to b adds the Pro-	30-32 33-72 73-80 card conta e placed. (ogram Loa	Length of program otherwise blank Blank Card sequence number ins the blocks of data and the relative address at whice Dnce the loader has decided where to load the program, d Address (PLA) to relative address. The data on the TX	h it T
	card may be	instruction	n, non- related data or initial values of address constants.	
	TXT card form	nat:		
	Columns		Contents	
	1	Uovodo	cimal byta X'02'	
	$\frac{1}{24}$	Charact	TYT	
	2-4 5	Diaraci		
	5	D alact	I duran - f f'unt data harta	
	0-8	Kelativ	e address of first data byte	

Byte Count (BC) = number of bytes of information in cc. 17-72

17517

- 1. The RLD cards contain the following information
- **2.** The location and length of each address constant that needs to be changed for relocation or linking.
- 3. The external symbol by which the address constant should be modified.
- 4. The operation to be performed.

RLD card format:

Columns	Contents
1	Hexadecimal byte X'02'
2-4	Characters RLD
5-18	Blank
19-20	Relative address of first data byte
21	Blanks
22-24	Byte Count (BC) = number of bytes of information in cc. 17-72
25-72	Blank
73-80	Card sequence number

1. The END card specifies the end of the object deck.

END card format:

<

Enter cara tormat.	
Columns	Contents
1	Hexadecimal byte X'02'
2-4	Characters END
5	Blank
6-8	Start of execution entry (ADDR), if other than beginning of
	program
9-72	Blanks
73-80	Card sequence number

2. GEST specifies the Global External Symbol Table format.

 101 /	
12 bytes per entry	

External symbol	Assigned core address
(8 bytes)	(4 bytes)
(characters)	(decimal)

3. The LESA specifies the local External Symbol Array.

Subject Code:

	4 bytes per	
2)	Explain code generation phase of compiler with respect to database and	ON <i>I</i>
	algorithms.	8NI (4 marks for
Ans:	CODE GENERATION:	(4 marks for databases, 4 marks for algorithm)
	The purpose of the code generation phase is to produce the appropriate code (assembly or machine language). The code generation phase has the matrix as input. It uses the code productions (macro definitions) which define the operators that may appear in the	uigorunni)
	to generate proper address and code conversions.	
	 Databases used: Matrix: each entry has its operator defined in the code pattern database. Identifier table and literal table: they are used to determine the data type and locations of the variables so that proper accessing code with the correct address is generated. Code productions (macro definition): a permanent data base defining all possible matrix operators. 	
	Standard code definition for -,+,*,=	
	- L 1, & OPERAND 1 S 1, & OPERAND 2 1, M&N ST * L 1, & OPERAND 1 M 0, & OPERAND 2 1, M&N ST + L 1, & OPERAND 1 A 1, & OPERAND 1 A 1, & OPERAND 2 1, M&N ST = L 1, & OPERAND 2 1, & OPERAND 2 1, & OPERAND 1 ST	

Subject Code:

17517

	 By using above standard definition for +,-,*, =, the code will be generated for respective arithmetic statement. Code generation algorithm: The code generation process is implemented in a way that is used by the assembler macro processor. Prepare Matrix for each entry of the code. The operation field of each matrix line is treated as "macro-call" and the matrix operands (M_i) on a line are used as "macro-argument". Next step is to optimize a code using either "Machine-dependent" or "machine-independent" optimization techniques. The code generation optimization can be done using three possible ways: i) during matrix optimization, ii) during code generation, or iii) during post-pass after assembly code is generated. Code generation during matrix optimization: Load operands M_i to registers according to the matrix entry. If an operand, M_i, is (at execution time) already in the register, it is not reloaded. Else, "next matrix line code generation" stores the temporary matrix as it is the only line that knows whether the previous temporary matrix will be 	
3)	needed immediately Apply interchange sort on following numbers:	8M
3)	43, 25, 37, 12, 67, 96, 40, 9	0111
Ans:	Ist Iteration : 43 25 37 12 67 96 40 9 43 25 37 12 67 96 40 9 43 25 37 12 67 96 40 9 43 25 37 12 67 96 40 9	(8 marks for correct answer)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER-16 EXAMINATION

Model Answer

Subject Code:

		5 ^{de} Iteration :	
		$\downarrow \downarrow \downarrow$	
		12 25 37 9 40 43 67 96	
		12 25 9 37 40 43 67 96	
		6 ^{ck} Iteration :	
		12 25 9 37 40 43 67 96	
		12 9 25 37 40 43 67 96	
		7 th Iteration :	
		↓ ↓ 12 9 25 37 40 43 67 96	
		9 12 25 37 40 43 67 96	
(Sorted List : 9, 12, 25, 37, 40, 43, 67, 96	(44.10)
6.		Attempt any four:	(4×4=16)
	1)	Explain a single pass algorithm for macro processor.	4 M
	Ans:	If we wanted to provide for macro definitions within macros. The basic problem here is that inner macro is defined only after the outer one has been called in order to provide for any use of the inner macro we would have to repeat both the macro- definition and the macro-call passes. However there is a simpler solution that has added advantages of reducing all macro processing to a single pass. There are two additional variables introduced in the one –pass design a macro definition input (MDI) indicator and a Macro Definition Level Counter (MDLC). The MDI and MDLC are switches (counters) used to keep track of macro calls and macro definitions. The MDI indicator has the value "ON" during expansion of a macro call and the value "OFF" at all other times. The actual expansion of macro calls is performed in the read box. READ tests the switch MDI. If it is "ON", lines are read from the Macro Definition Table (MDT). The reading of a MEND line indicates the end of a macro and terminates expansion of call: MDI is reset to "OFF" and the next line is obtained from the regular input stream. Note that lines returned by READ may include macro definition's; expanded macro code comes out of READ looking just like any other code and may therefore include macro definitions. The macro definition level counter is incremented by 1 when a MACRO pseudo-op is encountered and decremented by 1 when a MACRO pseudo-op is encountered and decremented by 1 when a MACRO stand MENDs, gets stored in MDT.	(Description of Working of Single pass Macro Processor : 4 marks)

Working of Macro	
1. Start	
2. Initialize MDTC = 1	
MNTC = 1	
MDI = OFF	
MDI C = 0	
3 Read- perform read operation of macro	
4 Search MNT for match found of operation code	
5 Is macro name found ? macro call	
If ves $MDI = 'ON'$	
MDTP = MDT Index from MNT entry	
Setup ALA	
Goto step 3	
If no go to stan 6	
6 La magna nacuda en 2magna definition	
5. Is macro pseudo-op (macro definition, If year MDL $C = MDL C + 1$	
If yes MDLC = MDLC + 1 If no then read code again	
7 Store macro name and current value of MDTC in MNT entry number in	
7. Stole macro name and current value of MDTC in MINT entry number in MNTC	
MINIC. 8 Increment MNTC by 1	
Bropara ALA	
9 Store macro name card in MDT	
J. Store matro hance card in WD1	
Increment MDLC by 1	
10 Read - perform read operation of macro	
11 Substitute index notation for arguments in definition	
Enter line is MDT	
Increment MDTC by 1	
12. Is MACRO pseudo-op	
If ves increment MDLC by 1 and goto step 10.	
If no	
Is MEND pseudo-op ?	
If yes	
Decrement MDLC by 1	
Goto step 13.	
If no, goto step 10	
13. If MDLC = 0	
If yes, goto step 3	
If no, goto step 10	
14. Write expanded code in source file card.	
15. Is END pseudo-op ?	
If yes	
Supply expanded source file to assembler processing	

	If no, goto step 3.	
2)	Illustrate the algorithm for hash search.	4M
Ans:	 Hashing: Hashing is the transformation of a string of characters into usually shorter fixed-length value or key that represents the original string. Hashing is used to index and retrieve items in a database because it is faster to find shorter hashed key than to find it using the original value. Binary search algorithms are operated on tabled that are ordered and packed. Therefore it has to be used in conjunction with sort algorithms which both ordered and pack the data. So a considerable improvement can be achieved by inserting elements in a random way. The random entry number K is generated from the key. If the Kth position is valid, then the new element is put there; if not then some other cell must be found for the insertion. Here the first problem is to generate a random number from the key. This can be achieved by dividing a four character keyword by the table length N and use the remainder. Another method is to treat a keyword as a binary fraction and multiply it by another binary fraction: I, SYMBOL 	(3 marks explanation: 1 mark example)
	 M 0, RHO 4) The result is 64 bit product in registers 0 and 1. If RHO is chosen carefully, the low order 31 bits will be evenly distributed between 0 and 1, and the second multiplication by N will generate number uniformly distributed over 0(N-1). This is known as power residue method. 	
	The second problem is the procedure to be followed when the first trial entry results in a filled position. This problem can be resolve by using one of the following methods:	
	 Random entry with replacement: A sequence of random numbers is generated from the keyword. From each of these a number between 1 and N is formed and the table is probed at that position. Probing are terminated when a void space is found. Random entry without replacement: this is the same as above expect that any attempt to probe the same position twice is bypassed. Open addressing: if the first probe gives a position K and that position is filled, then the next location K+1 is probed and so on until a free position is found. If the search runs off the bottom of the table, then it is renewed at the top. Example: Consider a table of 17 positions (N=17) in which the following 12 numbers are to be stored. 19, 13, 05, 27, 01, 26, 31, 16, 02, 09, 11, 21 	
	These items are to be entered in the table at the position defined by the remainder after division by 17; if that position is filled, then the next position is examined, etc. The following table shows progress entry for the 12 items. The column 'probes to find' gives the number of probes necessary to find the corresponding item in the tables; thus it takes 3 probes to find item 09, 2 probes to find item 11 and 1 to find item 26. The	

	aaluma (maabaa ta fi	d' airrea tha	www.how.of.washoo.w	a a a a a a a d a d a marcina a dla a d dla a	
	column probes to fill				
	of 3 and it would take				
	of 5 and it would take				
	Position	Item	probes to find	probes to find not	
	0	Item	probes to mit	1	
	1	01	1	6	
	2	19.02*	1	5	
	3	02	2	4	
	4	21	1	3	
	5	05	1	2	
	6		-	-	
	7			1	
	8			1	
	9	26,09*	1	7	
	10	27,09*	1	6	
	11	09, 11*	3	5	
	12	11	2	4	
	13	13	1	3	
	14	31	1	2	
	15			1	
	16	16	1	1	
			16	54	
	Length of the table	2	N = 17		
	Items stored		M=12		
	Density		p = 12/17 = 0.705		
	Probes to store		$T_{s} = 16$		
	Average probes to	find	$T_p = 16/12 = 1.33$		
	Average probes to	find	$T_n = 54/16 = 3.37$		
3)	What are the uses of	4M			
Ans:	Uses of	(1 mark binders:			
	1. Binders				2 marks linking
	1. It is a program wh	loader: 1 mark			
	"binding" subrout	dynamic binders			
	2. Instead of placing	for each)			
	text as a file or car	d deck. This	file is called as load i	module because it is in a form	
	of ready to load				
	3 . It performs the fur				
	2. Linking loader of				
	1 Many modern				
	programs larger				
	can be executed				
	2. When a compu	ter does not	use virtual memor	ry, running a larger program	
	3) Ans:	column 'probes to fin item is not in the table of 3 and it would takePosition012345678910111213141516Length of the table Items stored 	item is not in the table; thus the sec of 3 and it would take 4 probes to fPosition Item 00101219,02*3302421505678926,09*101027,09*111109,11*12111313143115161616Length of the table Items stored Density Probes to store Average probes to find Average probes to find3)What are the uses of binders, liniAns:Uses of1Binders1It is a program which performs "binding" subroutines together.2Instead of placing the relocated text as a file or card deck. This of ready to load.3It performs the function of alloc2Linking loader overlays1Many modern computers us programs larger than physic can be executed even if total 2. When a computer does not	column 'probes to find' gives the number of probes to item is not in the table; thus the search for the number of of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not of 3 and it would take 4 probes to find that the item is not a to 2 the item is not in the item is not a to 2 the item is not in the item is not a to 2 the item is not a the item is not a to 2 the item is not the item is not a to 2 the item is not a the item is not a to 2 the item is not a to 2 the item is not a to 2 the item is not a the item is not a the item is not a the item item is not the item item is not a the item item is not a the item item is not a the item item item item is not a the item item item item item item item ite	column 'probes to find' gives the number of probes necessary to determine that the item is not in the table; thus the search for the number 54 would give an initial position of 3 and it would take 4 probes to find that the item is not present.Position Item probes to find probes to find not 010116219,02*153022442113505126171027, 09*161109, 11*351211241313121611171654181121916541027, 09*11109, 11*3121124311215116111654161117Items storedMe12Density $p = 12/17 = 0.705$ Probes to store $T_s = 16$ Average probes to find $T_p = 16/12 = 1.33$ Average probes to find $T_p = 54/16 = 3.37$ 3)What are the uses of binders, linking loader overlays and dynamic binders?Ans:Uses of1Binders1It is a program which performs the same function as the direct-linking loader in "binding" subroutines together.2Instead of placing the relocated and linked te

	 becomes a problem. One solution is overlays (or chaining). 3. Overlays are based on the facts that many programs can be broken into logical parts such that only one part is needed in memory at any time. 4. The program is divided by the programmer, in two main part (overlay root), that resides in memory during the entire execution and several overlays, (links or segments) that can be called, one at a time, by the root, loaded and executed. 5. The subroutines of a program are needed at different times. 3. Dynamic binders The dynamic binder loads only those subroutines in the program which are needed for execution thereby not loading all the subroutines of a certain program. This results in reduced usage of memory. 	
4)	Explain storage allocation concept in compiler.	4 M
Ans:	 The storage allocation phase first scans through the identifier table, assigning locations to each entry with a storage class of static. It uses a location counter, initialized at zero, to keep track of how much storage it has assigned. Whenever it finds a static variable in the scan, the storage allocation phase does the following steps: Updates the location counter with any necessary boundary alignment. Assigns the current value of the location counter to the address field of the variable. Calculate the length of the storage needed by the variable (by examining its attributes). Updates the location counter by adding this length to it. Once it has assigned relative address to all identifiers requiring STATIC storage locations, this phase creates a matrix entry: 	(correct explanation: 4 marks)
	 6. This allows code generation to generate the proper amount of storage. For each variable that requires initialization, the storage allocation phase generates a matrix entry: Initialize Variable 7. This tells code generation to put into the proper storage location the initial values that the action routines saved in the identifier table. 8. A similar scan of the identifier table is made for automatic storage and controlled storage. The scan enters relative location for each entry. An "automatic" entry and a "controlled"entry are also made in the matrix. Code generation use the relative location entry to generate the address part of instructions. No storage is generated at compile time for automatic or controlled. However, the matrix entry automatic does cause code to be generated that allocates this storage at execution time, i.e., when the generated code is executed it allocates automatic storage 	
	4) Ans:	 becomes a problem. One solution is overlays (or chaining). Overlays are based on the facts that many programs can be broken into logical parts such that only one part is needed in memory at any time. The program is divided by the programmer, in two main part (overlay root), that resides in memory during the entire execution and several overlays, (links or segments) that can be called, one at a time, by the root, loaded and executed. The subroutines of a program are needed at different times. Joynamic binders The dynamic binder loads only those subroutines in the program which are needed for execution thereby not loading all the subroutines of a certain program. This results in reduced usage of memory. 4) Explain storage allocation concept in compiler. Ans: The storage allocation phase first scans through the identifier table, assigning locations to each entry with a storage class of static. It uses a location counter, initialized at zero, to keep track of how much storage it has assigned. Whenever it finds a static variable in the scan, the storage allocation phase does the following steps: Updates the location counter with any necessary boundary alignment. Assigns the current value of the location counter to the address field of the variable. Calculate the length of the storage needed by the variable (by examining its attributes). Updates the location counter by adding this length to it. Once it has assigned relative address to all identifiers requiring STATIC storage locations, this phase creates a matrix entry: Initialize Variable This tells code generation to generate the proper amount of storage. For each variable that requires initialization, the storage allocation phase generates a matrix entry: Initialize Variable This tells code generation to put into the proper storage location the initial values that the action routines saved in the identifier t

Model Answer

	LIT Size AUTOMATIC Size	
	The nurness of this phase is to: (ontional)	
	1. Assign storage to all variables referenced in the source program.	
	2. Assign storage to all temporary locations that are necessary for intermediate	
	result, e.g. the results of matrix lines. These storage references were reserved	
	3. Assign storage to literals	
	4. Ensure that the storage is allocated and appropriate locations are initialized	
-	(Literals and any variables with the initial attribute)	
5)	Explain the concept of subroutine linkages.	4M
 Ans:	• A main program 'A' wishes to transfer to subprogram 'B'. The programmer,	(correct
	in program 'A', could write a transfer instruction (e.g. BAL 14 B) to	explanation: 4
	subprogram 'B'. However, the assembler does not know the value of this symbol reference and will declare it as an error (undefined symbol) unless a special mechanism has been provided	marks)
	 This mechanism is typically implemented with a relocating or a direct linking. 	
	• The assembler pseudo-op EXTRN followed by a list of symbol indicates that	
	these symbols are defined in other programs but referenced in the present	
	 program. Correspondingly, if a symbol is defined in one program and referenced in others 	
	we insert it into symbol list following the pseudo-op ENTRY.	
	• In turn the assembler will inform the loader that these symbols may be referenced by other programs.	
	• For examples, the following sequence of instructions may be a simple calling	
	sequence to another program:	
	EXTRN SUBROUT	
	L 15=A(SUBROUT)CALL SUBROUT	
	BAIR 14, 15	
	 END	
	• The above sequence of instructions first declares SUBROUT as an external	
	variable, that is variable referenced but not defined in this program.	
	 The load instruction loads the address of that variable into 15. The RALP instruction branches to the contents of register 15, which is the 	
	• The BALK instruction branches to the contents of register 15, which is the address of SUBROUT, and leaves the value of the next instruction in register 14.	