

(ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

(Subject Code: 17435)

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any <u>SIX</u> of following	12 Marks
1	a)i)	Define active transducer. Give two examples.	2 M
	Ans:	Active transducer is transducers which do not required power supply for converting one	1 M
		form of energy to another.	
		<u>OR</u>	
		Active transducer is transducer which do not required power supply for converting non- electrical quantity (like temperature, pressure, humidity etc.) into electrical quantity.e. g. Thermocouples, Piezoelectric transducer etc.	1 M
	ii) State the difference between absolute and secondary instruments.		
	Ans:	Absolute instrument:- The absolute instrument measures the measurement in terms of physical constants of the instruments.	1 M
		Examples -Tangent Galvanometer, Rayleigh's current Balance.	
		Secondary Instruments: -These instruments are so constructed that the quantity being Measured can only be measured by observing the output indicated by the instrument.	1 M
		Examples -voltmeter, ammeter.	
	iii)	State the role of delay line in CRO.	2 M
	Ans:	The delay line is used in CRO to delay the signal for some time in the vertical sections. As horizontal channel consists of trigger circuit and time based generator. This causes more time to reach signal to horizontal plates than vertical plates. For synchronization of reaching input signal at same time to both the plates in CRT.	2 M

iv)	Write the units of temperature.		2 M
Ans:	Several scales and units exist for measuring being Celsius (denoted °C; formerly called especially in science, Kelvin (denoted K).	g temperature, the most common centigrade), Fahrenheit (denoted °F), and,	2 M
v)	State any four applications of DSO.		2 M
Ans:	 State any four applications of DSO. Any four application of DSO: It can be used to measure ac as well as dc voltages and currents. It can calculate the mean value, peak value, peak to peak value, duty cycle, etc. It can be used to measure frequency, time period, time interval between two signals, and phase for periodic as well as non-periodic signals. It is used to give the visual representation for a target of radar such as aero plane, ship etc. In medical fields, it is used to display cardiograms that are useful for diagnosis of heart of the patient. It can be used to determine the modulation characteristic and detect the standing waves in transmission lines. It can be used to observe the V- I Characteristics of diodes, transistors. It can be used to observe the B-H curves, P-V diagrams. It can be used to observe the radiation pattern generated by the transmitting antenna. 		¹∕₂ M each
vi)	Compare RF and AF type signal genera	tor(Any two)	2 M
Ans:	RF signal generator	AF signal generator	1M for each point
	This type of signal generator is used to generate RF or radio frequency signals.This applie over to 20RF signal generators use frequency synthesizers to provide the stability and accuracy neededAF signal technick	type of signal generator is used for audio cations. Signal generators such as these run the audio range, typically from about 20 Hz kHz and more. signal generator uses free running oscillators, ugh some used frequency locked loop iques to improve stability.	
vii)	State the need of transducer.		2 M
Ans:	: A transducer is required to converts a signal in one form of energy to a signal in another Where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.). The process of converting one form of energy to another is known as transduction.		
viii)	State the principle of piezoelectric trans	ducer. State its any one application.	2 M
Ans:	Principle of piezoelectric transducer:		Principal-

	displacement, force, pressure, strain and acceleration converting them to Electric charge are termed as Piezoelectric Transducers.	
	This transducer produces electric voltage When there is application of mechanical stress or forces along certain planes.	
	Applications:	
	 These are used for the measurement of Displacement. Piezoelectric crystal is also used for measurement of force, pressure or acceleration. 	
b)	Attempt any <u>TWO</u> of following:	8 Marks
i)	Write the classification of transducers. Classify the following transducers 1)Thermistor 2)LVDT ?	4 M
Ans:	Transducer classification (any four criteria) Primary & secondary transducer	Classificati on-2M
	 Active & passive transducer. Analog & Digital transducer. Transducer & inverse transducer. 	
	· Electrical & mechanical transducer	
	Thermistor :- Passive Transducer LVDT :- Secondary transducer.	1M 1M
ii)	Define following: 1)Sensitivity 2)Accuracy	4 M
Ans:	Sensitivity: The ratio of change in the output of an instrument to the change in input. It is expressed in terms of milivolt, microvolt or tenth of a degree. Accuracy: Accuracy refers to the closeness of a measured value to a standard or known	2M for each define
		4.34
III)	Draw and explain shunt resistor type DC ammeter.	4 M 2M
AIIS:	⁺ o −o + I _{sh} F _m D'Arsonval movement	Diagram & 2M- Explanatio n
	Explanation:-	
	Where ,Rm=Internal resistance	
	Rsh= Resistance of the shunt	
	Ish= Shunt current	
	I=current to be measured	
	Vshunt= Vmovement	

17435

IshRsh=ImRm and Rsh=ImRm/Ish Ish=I-Im

The coil winding of basic movement is small & it is light in weight. So this coil enables small currents to pass through it. It is required to pass current range through coil then the construction become bulky. In order to avoid this resistor is connected in parallel with the basic movement. This resistor is called is shunt resistor. So major amount of current passes through it & a small current passes through the coil.

$$R_{sh} = \frac{I_m R_m}{I - I_m}$$

Rearranging the above equation we get,

$$\frac{I}{I_m} = 1 + \frac{R_m}{R_m}$$

The ratio of total current to the movement current is known as multiplying power of shunt.

$$m = \frac{I}{I_m} = 1 + \frac{R_m}{R_{sh}}$$
$$R_{sh} = \frac{R_m}{(m-1)}$$

Q 2Attempt any FOUR of the following.16 Marksa)Describe lissagous figure. How are used to determine phase and frequency.4 MAns:One of the quickest methods of determining frequency is by using Lissagous patterns
produced on the
Screen. This pattern results when sine waves are applied simultaneously to both pairs of
the deflection plates. If one frequency is an integral multiple (harmonic) of the other, the
pattern will be stationary and is called a Lissagous figure.Describe-
2M
&
pattern will be stationary and is called a Lissagous pattern:
In this method of measurement using Lissagous pattern:
In this method of measurement a standard frequency is simultaneously applied to the other
set of plates. The resulting pattern depends on the integral & phase relationship between
two frequencies.Frequency floateneously applied to measure five and the pattern.
Spin in alternate directions and change shape. The pattern will stand still whenever fv and fh are in
$$fig.a$$
If $fig.a$ $fig.a$ Time fig.aFig.b $fig.a$ Fig.bThe fv = fh pattern stands still and is a single circle or ellipse. (As per fig a)

	 Working :- The operation of this type of flow meter is based on Faraday's law of electromagnetic Induction. The law state that whenever the conductor moves through a magnetic field, an e.m.f is induced in the conductor proportional to the relative velocity between the conductor & the magnetic field. It consists of a pipe, short section of which is subjected to a transverse magnetic field. The Conductive fluid is passed through this pipe. As fluid passes, its motion relative to field produces an e.m.f proportional to velocity according to Faraday's law. This output e.m.f is collected by the electrodes (kept at points of maximum potential 	
	Difference) and is given to external circuitry.	
c)	Explain the seebeck and peltier effect. State its application.	4 M
Ans:	 Seeback effect : Seeback effect states that whenever two dissimilar metals are connected together to form two junctions, out of which, one junction is subjected to high temperature and another junction is subjected to low temperature then e.m.f is induced proportional to the temperature difference between two junctions. Application: Seeback effect is used to measure the temperature difference between two objects. Peltier effect : Peltier effect state that two dissimilar metals closed loop, Id current forced to flow through the closed loop then one junction will be heated and other will become cool. Application: It can be used either for heating or for cooling, in practice the main application is cooling. It can also be used as a temperature controller that either heats or cools. 	Seebeck and peltier effect & applicatio n-1M for Each
d)	Draw and explain half wave rectifier type AC voltmeter.	4 M
Ans:	Diode $Input$ $PMMC$ R_1 C R_1 C R_1 C R_2 C R_1 C R_2 C R_1 C R_2 C R_1 C R_2 C R_2 C R_3 C R_4 C R_4 C R_5 C R_6 C R_7 R_7 C R_7 C R_7 C R_7 C R_7 R_7 C R_7 C R_7 C R_7 R_7 R_7 R_7 C R_7 R_7 C R_7 R_7 R_7 R_7 R_7 C R_7 R_7 R_7 R_7 C R_7	Diagram- 2M & Explanatio n- 2M
	 Explanation: The circuit given in which the rectifying element (diode) is connected in series with Sinusoidal voltage source, PMMC, and multiplier resistor. The Function of Multiplier is to limit the current drawn by the PMMC to ovoid it from damage. The diode conducts during positive half cycle and does not conduct during negative half cycle. The average current through the meter will be given by the expression. 	

		 The lower current source supplies a reverse current to the integrator, so that its output decreases linearly with time. When the output reaches a pre-determined minimum level, the voltage comparator again changes state and switches on the upper current source. The output of the integrator is a triangular waveform whose frequency is determined by the magnitude of the current supplied by the constant current sources. The comparator output delivers a square wave voltage of the same frequency. The resistance diode network alters the slope of the triangular wave as its amplitude changes and produces a sine wave with less than 1% distortion. 			
	f)	Compare digital and analog instruments.	(Any four)	4 M	
	Ans:	Analog instrument	Digital instruments	1M for Each point	
		The instrument that displays analog signals is called as an analog instrument.	The instrument that displays digital signals is called as an digital instrument		
		The accuracy of analog instrument is less	The accuracy of digital instruments is more		
		The resolution of analog of analog	The resolution of digital instruments is		
		The analog instrument require more power	The digital instrument requires less power.		
		Examples PMMC instrument DC voltmeter ,DC ammeter	Examples Logical analyzer, Digital analyzer, computer base instruments.		
Q. 3		Attempt any FOUR of the following.		16 Marks	
	a)	Describe the working of analog AC amm	eter.	4 M	
	Ans:	Atternation: 1. Shunt can be used with A.C ammeter decrease their range. 2. Most AC ammeter use a current transition that the first second	Transformer Transformer Load Ac Ammeter balog Ac Ammeter er to increase their range but cannot be used to insformer instead of shunts to change the scale	Explanatio n-4M	

Draw LCR-Q meter.State its application. 4 M c) **Diagram-**Ans: **2M** & Applicatio n- 1M Tuning С C_{θ} each Capactior Circuit E_c Q Meter Oscillator $= 0.02 \Omega$ Applications: (2Marks-consider Any 2 points) 1. In the Measurement of different parameters like inductance, capacitance, resistance, dissipation factor, quality factor, current, voltage, phase angle between the current and voltage, conductance, susceptance etc. quickly with very high precision. 2. Data collection and Automation is made easy with a wide variety of interfaces such as; USB, USB Host Port, RS-232 and GPIB interfaces, which are available on all of IET's LCR-Q meters. 3. They are highly used in industry. Explain how frequency and voltage measurement is done in CRO with suitable d) 4 M example.

<u>17435</u>

			<u>(OR)</u>		
	Can con Frequent ways O signal v switch O the signal	nsider same type of acy Measurement : n calibrated ciao : I whose frequency is ON the sweep general al on the screen.	of example for DC Measurem The frequency can be measured in this method, the frequency c to be measured is applied to the rator then count the number of	Tent. I accurately on CRO by two an be found out indirectly. The e vertical input terminal and division covered by one cycle of	
		$T = \left(\frac{ti}{div}\right)$ The frequencies $f = 1/T$	$\frac{\text{me}}{\text{ision}} \times \left(\frac{\text{No. c}}{\text{ency can be ca}}\right)$	of division cycle	
		EXAMPLE O	N CREQUENCY MEAS	UREMENT -	
		from fig (
		No. of div	isions completed by	1 cycle of waveform	
		is 3 &	if Time/div knob	OD (RO IS at	
		1ms/div.	then,		
		$T = \begin{bmatrix} 1 \end{bmatrix}$	XI03] X [3]		
		T= 3	×1035		
		The frequ	enw is calculated as		
		f	1		
] =			
			(3X103)		
		=	0.333 × 10		
		f= 0	.33 KHZ		
e)	List the	e temperature ran	ge and material used for J,K,	S,R thermocouple.	4 M
Ans:	G	TT C			1M for Each Paint
	Sr. No.	transducer	Material used	(degree. Celsius)	Lach Point
	1	J	Iron-Constantan	-180 to +850	
	2	K	Chromel-Alumel	-200 to +1300	
	2	R C		0.45 + 1.400	
	3	3	10% Rhodium	-U to +1400	
	4	R	Platinum-Platinum/ 13% Rhodium	-0 to +1600	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

	divider and pulse shaping circuits to produce a series of horizontal bars below the line	
	frequency and vertical bars above the 15.6KHz.	
	Vertical bars are used to check and set horizontal linearity. Similarly Horizontal bars are	
	used to check and set vertical linearity Picture centering and aspect ratio is checked and	
	set with cross hatched pattern by counting the number of squares on the vertical and	
	horizontal sides of the screen.	
b)	Draw block diagram of harmonic distortion analyzer. Explain its working.	<u>4 M</u>
Ans:	Block Diagram :	Diagram-
		2M &
	Harmonic distortion analyser	Working-
	Signal Notch 2 Sw	2M
	source filter Indicator	
	·	
	Amplifice	
	under test	
	Explanation:	
	The signal has very low distortion and this can be checked by reading its o/p distortion by	
	connecting directly into analyser	
	The signal from source is fed to the amplifier under test. This generates harmonics and	
	original fundamental frequency.	
	The original fundamental frequency is removed by notch filter. The switch is first placed	
	in position 1 and total content of fundamental & harmonics (E_T) is measured. Then the	
	switch is moved to position 2 to measure just the harmonics ($E_{\rm H}$). The value of THD total	
	narmonic distortion is then found	
	$THD = {}^{E}T {}^{E}T \times 100$	
	Explain the role of vertical deflection and horizontal system in CRO.	
c)	Explain the role of vertical deflection and horizontal deflection between in CRO	<u>4 M</u>
Ans:		Explanatio
	vertical Deflection System consists of Attenuator Network, Vertical amplifier.	n-2NI for
	Altenuator reduces the amplitude of the signal before applying to the vertical amplifier.	norizontai
	(renge of frequencies, which can be produced accurately, on CDT screen) of an accillageous	aenection
	(range of frequencies which can be produced accurately of CKT screen) of an oscilloscope	
	(in terms of v/cm.) The gain of vertical amplifier determines the smallest signal that the	10r
	is directly proportional to the gain of the vertical amplifier	deflection
	EET Input Amplifier	uenecuon
	Main Amplitier	
	Phase Driver	
	Phase Driver Inverter Amplifier	
	Phase Driver Amplifier	

Draw neat circuit diagram of LVDT. State it's any four applications. 4 M e) 2M – Ans: **Diagram:** Diagram $\& \frac{1}{2} M$ for ac Source each Moveable COLE Form Applicatio n Secondary 1 Secondary 2 Series opposition connection **Application of LVDT:** 1. It is used for small displacement measurement i.e from fraction of mm to few cm. 2. It is used as secondary transducer to measure force, pressure, weight in electrical quantity. 3. It is used to measure the thickness of metal sheet roll. 4. It is used to measure tension in a cord. 5. LVDTs are commonly used for position feedback in servomechanisms, and for automated measurement in machine tools and many other industrial and scientific applications. Draw and explain the working of linear potentiometer. **4 M** f) Ans: **Diagram:2** Diagram M & Working:2 Μ Slider or "Wiper" mounted on moving member Short Circuit Force Summing Member To Output V Circuitry Potentiometer **Typical Linear Potentiometer Configuration** Working: The potentiometer is also called as pots and it one of the most commonly used devices for measuring the displacement of the body. The potentiometer is the electrical type of transducer or sensor and it is of resistive type because it works on the principle of change of resistance of the wire with its length. The resistance of the wire is directly proportional to the length of the wire, thus as the length of the wire changes the resistance of the wire also changes to change the resistance one sliding contact is provided is called as wiper. The movement of this wiper is translator so called as linear potentiometer.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

	Attempt any FOUR of following:	16 Marks
a)	Describe how flow is measured using Doppler type ultrasonic flow meter.	4 M
Ans:	Describe now now is measured using DoppleT type utrasonic now meter.	Explanation : 4M
	<i>Note: Explanation: 4marks only describe is ask in question</i> Doppler flow meters use a single-head sensor design allowing fast, simple mounting on the outside of pipes. The single-head transducer includes both transmit and receive piezo-electric crystals in the same housing.	
	Doppler flow meters use the principal that sound waves will be returned to a transmitter at an altered frequency if reflectors in the liquid are in motion. This frequency shift is in direct proportion to the velocity of the liquid. It is precisely measured by the instrument to calculate the flow rate. So the liquid must contain gas bubbles or solids for the Doppler measurement to work. The fluid velocity can be expressed as $v = c (f_r - f_t)/2 f_t \cos \Phi$ (1) where $f_r = received frequency$ $f_t = transmission frequency$ v = fluid flow velocity $\Phi = the relative angle between the transmitted ultrasonic beam and the fluid flow$	
	c = the velocity of sound in the fluid	
b)	Draw the block diagram of spectrum analyzer. Explain its working.	4 M
Ans:	 Working: A spectrum analyser provides a calibrated graphical display on its CRT, with frequency on the horizontal axis and amplitude (voltage) on the vertical axis. Displayed as vertical lines against these co-ordinates are sinusoidal components of which the i/p signal is composed. The height represents the absolute magnitude and the horizontal location represents the frequency. Referring to the block diagram of the basic spectrum analyser, the saw tooth generator provides the saw tooth voltage which drives the horizontal axis element of the scope and this saw tooth voltage is the frequency controlled element of the voltage tuned oscillator. As the oscillator sweeps from f min to f max of its frequency band at a linear 	Working:2 M & Block Diagram 2M

	 produce an IF, whenever a frequency The frequency component and voltag to produce a difference frequency, i.e component is amplified and detected plates of the CRO producing a displa analyzers are widely used in radar, o Diagram: 	component is met during its sweep. e tuned oscillator frequency beats together e. IF. The IF corresponding to the if necessary and then applied to the vertical y of amplitude versus frequency. Spectrum ceanography and biomedical fields.	
	Define signal generator. State the need of	signal generator	4 M
Ans:	A class of generators that are available as general test purpose are usually designated a Need of Signal Generators: Signal Generator for testing the electronic circuits, frequency So the need is 1. The frequency of the signal should b 2. The amplitude should be controllable 3. Finally, the signal should be distortio	 signal generator. separate instruments to provide signals for as signal generators. rs provide various signal which are required response at transmitting and receiving stage. e known and stable. from very small to relatively large values. n free. 	Define:1M & Need:3M
<u>d</u>)	Compare thermister and PTD(Any four)		4 M
Ans:	Thermister	RTD	1 M for
	 1.Thermistor is made up of semiconductor Materials. 2.Semiconductor materials have Negative Temperature Coefficient (NTC) of resistance.Hence, the resistance of a thermistor decreases with an increase in temperature and increases with a decrease in temperature. 3.The resistance temperature characteristics of thermistor are highly nonlinear. 4.It has large temperature coefficient of resistance i.e. thermistor highly sensitive to temperature compared to RTD. 5.It has low operating temperature range compared to RTD i.e., minus 100 to plus 300°C. 6.Size of thermistors are small . 7.They are not costlier 	 RTD is made up of metals. Metals have Positive Temperature Coefficient (PTC) of resistance. Hence,the resistance of RTD increases with an increase in temperature and decreases with a decrease in temperature. The resistance temperature characteristics of RTD's are linear. It is less sensitive to temperature compared to thermistor. It has-a wide operating temperature range i.e., minus 200 to plus 650°C. RTD's are relatively larger in size. 	Each point

	as compared to RTD.	thermistor.	
		8. They have low self resistance.	
	8. They have high self resistance. Thus,	9. RTD's provide high degree of accuracy	
	they	and long term stability	
	require shielding cables to minimize	10 They are used in laboratory and	
	interference, problems	industrial applications	
		industrial applications.	
	9. Thermistors also provide an accuracy of		
	±		
	0.01°C.		
	10. They are widely used for dynamic		
	temperature measurement.		
e)	Draw the circuit for 2 wire and 3 wire sys	stem of RTD.	4 M
An	:		Each
	Diagram for 2 wire system of RTD		Diagram:2
			M
			171
		——————————————————————————————————————	
	₽Ź		
	~ ~		
		• B	
	2-wires ((Type W)	
	2 11100 (() po (i)	
	Diagram for 3 wire system of RTD		
	NW E	L2 RT	
		L3	
	My S	24	
	R2	R3	
f)	Describe the working of capacitive transd	ucer. State its two applications.	4 M
An			Working:3
	Describe the working of capacitive transduce	er. State its two application.	M &
	Diagram with Working: The capacitive Tran	nsducer is worked on the principle of change	Application:
	of capacitance which caused by i) change in	overlapping area, ii) change in the distance	1/2 M
	d between the plates and iii) change in dielec	etric constant.	
	This changes causes by the physical variable	s like displacement, force and pressure and	
	change in dielectric constant caused by the c	vhange in media like liquid gas level	
		$c \Lambda/d$	
		$c_{\Lambda} u$	
	= €	$t_{\rm T}$ t()A/U	
1			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

		Application: i) It is used for the measurement of force and pressure. ii) It is used for measurement of humidity in gases. iii) It is used for measurement of volume, density liquid level, weight etc. (consider Any other relevant application)	
Q.6		Attempt any <u>FOUR</u> of following:	16 Marks
	a)	State any four applications of digital multimeter.	4 M
	Ans:	 Applications of digital multimeter: i) Voltage measurement. ii)Current Measurement. iii)Resistance Measurement. iv) Time and frequency measurement. v) Component testing by means of forward and reverse voltage, resistance. vi) Continuity test of circuits. (consider any four application) 	1M to each point
	b)	Draw the block diagram of digital voltmeter and explain its working.	4 M
	Ans:	(Consider any type of DVM- Digital ramp type voltmeter/Integrated type DVM/Dual Slope type/Successive approximation type) Diagram:	Diagram: 2M & Working: 2M
		Ramp Type DVM	
		Working:	
		 The operating principle is to measure the time that a linear ramp takes to change the input level to the ground level or vice-versa. This time period is measured with an electronic time interval counter and the count is displayed as a number of digits on display. The ramp may be positive or negative. In this case a negative ramp has been selected. At the start of the measurement a ramp voltage is initiated [counter is reset to '0' & sample rate multivibrator gives a pulse which initiates the ramp generator 1 	

 is capable of being analyzed to produce a variety of different information. To view the display on the CRT the data from memory is reconstructed in analog form. Digitizing occurs by taking a sample of the input waveform at periodic intervals. In order to ensure that no information is lost sampling theory states that the sampling rate must be at least twice as fast as the highest frequency in i/p signal. Many different i/p channels are used with digital storage oscilloscopes. however if all these channels share a common store , through a multiplexer , then the memory available to each channels is reduced Oscilloscopes with up to 40 channels are commercially obtainable with a storage capability of 25000 dots Several oscilloscopes also have a floppy disc storage capability to allow nonvolatile storage of waveforms which can be later recalled into the oscilloscope and manipulated. d) Define four dynamic characteristics of instruments. 4 M Ans: Speed of response: It is defined as rapidity with which a measurement system responds to changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. (e) Explain working of multirange voltmeter with neat diagram using PMMC meter movement. 4 M 		$H_{1} = \frac{R_{2}}{V_{1}} + \frac{R_{3}}{V_{4}} + \frac{R_{4}}{V_{4}} + \frac{R_{5}}{V_{4}} + \frac{R_{6}}{V_{4}} + \frac{R_{7}}{V_{4}} + $	2M
 is capable of being analyzed to produce a variety of different information. To view the display on the CRT the data from memory is reconstructed in analog form. Digitizing occurs by taking a sample of the input waveform at periodic intervals. In order to ensure that no information is lost sampling theory states that the sampling rate must be at least twice as fast as the highest frequency in <i>i/p</i> signal. Many different <i>i/p</i> channels are used with digital storage oscilloscopes. however if all these channels share a common store , through a multiplexer , then the memory available to each channels is reduced Oscilloscopes with up to 40 channels are commercially obtainable with a storage capability of 25000 dots Several oscilloscopes also have a floppy disc storage capability to allow nonvolatile storage of waveforms which can be later recalled into the oscilloscope and manipulated. Define four dynamic characteristics of instruments. Ams: Speed of response: It is defined as rapidity with which a measurement system responds to changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. Fidelity: It is defined quantity without any dynamic error. Dynamic Error: It is the difference between true value of quantity (under measurement)changing with time. e) Explain working of multirange voltmeter with neat diagram using PMMC meter movement. 	Ans:	Diagram:	Diagram: 2M & Working:
 is capable of being analyzed to produce a variety of different information. To view the display on the CRT the data from memory is reconstructed in analog form. Digitizing occurs by taking a sample of the input waveform at periodic intervals. In order to ensure that no information is lost sampling theory states that the sampling rate must be at least twice as fast as the highest frequency in i/p signal. Many different i/p channels are used with digital storage oscilloscopes. however if all these channels share a common store , through a multiplexer , then the memory available to each channels is reduced Oscilloscopes with up to 40 channels are commercially obtainable with a storage capability of 25000 dots Several oscilloscopes also have a floppy disc storage capability to allow nonvolatile storage of waveforms which can be later recalled into the oscilloscope and manipulated. Define four dynamic characteristics of instruments. Ams: Speed of response: It is defined as rapidity with which a measurement system responds to changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity without any dynamic error. Dynamic Error: It is the difference between true value of quantity (under measurement)changing with time. 	e)	Explain working of multirange voltmeter with neat diagram using PMMC meter movement.	4 M
 Working: A digital oscilloscope digitizes the input signal so that all subsequent signals are digitized. A conventional CRT is used and storage occurs in electronic digital memory fig above shows a block diagram of a basic digital storage oscilloscope. The input signal is digitized and stored in memory in digital form .In this state it 	d) Ans:	 Working: A digital oscilloscope digitizes the input signal so that all subsequent signals are digitized. A conventional CRT is used and storage occurs in electronic digital memory fig above shows a block diagram of a basic digital storage oscilloscope. The input signal is digitized and stored in memory in digital form. In this state it is capable of being analyzed to produce a variety of different information. To view the display on the CRT the data from memory is reconstructed in analog form. Digitizing occurs by taking a sample of the input waveform at periodic intervals. In order to ensure that no information is lost sampling theory states that the sampling rate must be at least twice as fast as the highest frequency in i/p signal. Many different i/p channels are used with digital storage oscilloscopes. however if all these channels share a common store , through a multiplexer , then the memory available to each channels is reduced Oscilloscopes with up to 40 channels are commercially obtainable with a storage capability of 25000 dots Several oscilloscopes also have a floppy disc storage capability to allow nonvolatile storage of waveforms which can be later recalled into the oscilloscope and manipulated. Define four dynamic characteristics of instruments. Speed of response: It is defined as rapidity with which a measurement system responds to changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. Fidelity: It is defined as degree to which a measurement system indicates changes in the measured quantity. 	4 M 1 Mark for each characteristic s definition

		V_{3} V_{2} V_{1} V_{2} V_{1} V_{2} V_{1} V_{2} V_{1} V_{2} R_{2} R_{1} R_{2} R_{2} R_{2} R_{3} R_{2} R_{3} R_{3	
		damage. Selection of different value of multiplier is done by selector switch or potential divider arrangement is used.	
ſ)	List and explain different types of errors.	4 M
	Ans:	Errors are classified as 1)Gross Error, 2)Systematic Error- i)Instrumental Error, ii)observational error, ii)environmental error, 3)Random Error	listing of error: 2marks, explanation: 2marks
		1)Gross Error: It is the human mistakes in reading instruments and recording and calculating measurement results. It is caused by experimenter carelessness or equipment failure. It may be due to the person's bad habit of not properly remembering data at the time of taking down reading, writing and calculating, and then presenting the wrong data at a later time. This may be the reason for gross errors in the reported data, and such errors may end up in calculation of the final results, thus deviating results.	
		 2)Systematic Error: Systematic errors are of three types. i)Instrumental error-These errors arise due to three main reason i)Due to inherent shortcomings in the instrument ,ii)Due to misuse of Instruments and iii)Due to loading effects of instruments. ii)Environmental Error: These are due to conditions external to the measuring device including conditions in the area surrounding the instrument . These may be the effects of temperature , pressure, humidity, dust, vibrations or external magnetic or electrostatic field. ii)Observational Error: These are human factors involved in measurement . No two 	
		persons the same situation in exactly the same way. Error caused due to this is called Parallax error.3) Random Error: The error due to multitude of small factors which change or fluctuate from one measurement to another. These errors are randomly occurred so called as random errors.	