

> WINTER-16 EXAMINATION Model Answer

 Subject code
 17423
 Page 1 of 37

 Important Instructions to examiners:

 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).

- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-16 EXAMINATION Model Answer

Subject code

17423

Page 2 of 37

O No	Answer	Marking
Q 110.	AllSwei	wiai King
		scheme
1.a	Attempt any six	12
1a-i	Isothermal process:	1
	An isothermal process is a change of a system, in which the temperature remains	
	constant: $\Delta T = 0$.	
	This typically occurs when a system is in contact with an outside thermal reservoir	
	(heat bath), and the change occurs slowly enough to allow the system to continually	
	adjust to the temperature of the reservoir through heat exchange.	
	Isobaric process:	1
	An isobaric process is a thermodynamic process in which the pressure stays	
	constant: $\Delta P = 0$.	
1a-ii	Types of colloidal systems:	2
	• Foam	
	• solid foam	
	• Aerosol	
	• emulsion	
	• solid emulsion(gel)	
	• smoke	
	• sol	
	• solid sol	
1a-iii	Corrosion is defined as the gradual deterioration or destruction of a metal by	2
	chemical or electrochemical reactions with its environment.	

	Subject code 17423	Page 3
	 Example: Rusting of iron when exposed to atmospheric conditions. Formation of green film of basic carbonate on the copper when exposed to moist air containing CO₂. 	
1a-iv	The phase rule states that the number of degrees of freedom in a physical system at equilibrium is equal to the number of components in the system minus the number of phase plus the constant2.mathematically ,it is stated as follows: F = C - P + 2 C - number of components, P -number of phases F - number of degrees of freedom.	2
1a-v	 Statements of first law of thermodynamics Whenever a certain quantity of one kind energy disappears, an exactly equivalent amount of some other kind must appear. It is not possible to construct a perpetual motion machine which can produce work without consuming energy. The total energy of an isolated system always remains constant. The sum of the energy in the universe is constants. In an open system, there is always exchange of energy between the system and the surroundings but its sum is constant at all times. 	2(any one statemen t)
1a-vi	Classification of Engineering materials :	2

			Subject code	17423	Page 4 of 3
	Engine	Metals	- Ferrous meta	metals	
	Non-metallic materials	Synthetic ma	aterials erials		
1a-vii	The type	s of corrosion are:			2
	a) dry co	rrosion or chemical corrosion			
	1	corrosion by oxygen			
	2	Corrosion by other gases.			
	b) wet co	rrosion or electrochemical corrosion.			
1.b	Attempt a	ny two			8
1b-i	Methods	for preparation of colloidal solutio	n (any one metho	od in detail)	4
	A) D	ispersion methods			
	i)	Mechanical dispersion			
	ii)	Electrical dispersion			
	iii)	Peptization			
		Electrical dispersion (Bredig's arc 1	method)		
		This methods is used to prepare	hydrosols of me	tals such as silve	r,
		gold & platinum. This method uses	s two electrodes th	hat are made of th	e
		metal of which sol is to be prepare	ed. These electrod	es are immersed i	n
		deionized water containing a trace	e of alkali contai	ned in a container	r.
		Water is cooled by immersing the c	ontainer in an ice	or water bath.	

Subject code 17423	Page 5 of 37
An arc is struck between the two electrodes held close together. The	
large amount of heat generated by the spark across the electrodes	
vaporizes some of the metal & the vapors condense immediately in	
water to yield colloidal solution. The small amount of alkali added to	
the water helps to stabilize the sol. This method is used for preparing	
silver & gold sols.	
High voltage source Metal electrodes Deionised water + alkali Ice bath	
Peptization is the process responsible for the formation of stable dispersion of	
colloidal particles in dispersion medium. In other words it may be defined as a	
process of converting a precipitate into colloidal sol by shaking it with dispersion	
medium in the presence of small amount of electrolyte. The electrolyte used in this	
process is called as peptizing agent.	
This is particularly important in colloid chemistry or for precipitation reactions in	
an aqueous solution. When colloidal particles bear a same sign electric charge, they	
mutually repel each other and cannot aggregate together. Freshly precipitated	
aluminum or iron hydroxide is extremely difficult to filter because the very fine	

Subject code 17423	Page 6 of 37
colloidal particles directly pass through a paper filter. To facilitate the filtration, the	
colloidal suspension must be first flocculated by adding a concentrated solution of	
salt to the system. Multivalent cations are more efficient flocculants than	
monovalent cations: $AlCl_3 > CaCl_2 > NaCl$. The electrical charges present at the	
surface of the particles are so "neutralised" and disappear. More correctly speaking,	
the electrical double layer existing at the surface of the particles is compressed by	
the added electrolyte and collapses at high ionic strength. The electrical repulsion	
no longer hinders the aggregation of particles and they can then coalesce to form a	
flocculent precipitate that is easy to filter. If the precipitate is washed with an	
excessive volume of deionizer water, the electrical double layer present at the	
surface of the particles expands again and the electrical repulsion reappears: the	
precipitate peptizes and the particles pass again through the filter.	
Mechanical dispersion using colloidal mill	
The solid along with the liquid is fed into a colloidal mill. The colloidal mill	
consists of two steel plates nearly touching each other and rotating in opposite	
directions with high speed. The solid particles are ground down to colloidal size	
and then dispersed in the liquid. Colloidal graphite and printing inks are made by	
this method.	

	:	Subject code	17423	Page 7 of 3
1b-ii	Supprising Jesting Fig. Colloid mill Metal rods Water + KOH Jesting Fig. Electro-dispersion	as intergranular att	ack (IGA) is	
10-11	form of corrosion where the boundaries of crys susceptible to corrosion than their insides. (<i>Cf.</i>	as intergranular att tallites of the mater transgranular corro	ack (IGA), is ial are more sion.)	a 2
	This situation can happen in otherwise corrosio boundaries are depleted, known as <i>grain bound</i> inhibiting elements such as chromium by some	n-resistant alloys, v lary depletion, of th mechanism. In nicl	when the grain le corrosion- kel alloys and	1

Subject code 17423	Page 8 of 37
austenitic stainless steels, where chromium is added for corrosion resistance, the	
mechanism involved is precipitation of chromium carbide at the grain boundaries,	
resulting in the formation of chromium-depleted zones adjacent to the grain	
boundaries (this process is called sensitization). Around 12% chromium is	
minimally required to ensure passivation, a mechanism by which an ultra thin	
invisible film, known as passive film, forms on the surface of stainless steels. This	
passive film protects the metal from corrosive environments. The self-healing	
property of the passive film make the steel stainless. Selective leaching often	
involves grain boundary depletion mechanisms.	
2) Erosion corrosion is a degradation of material surface due to mechanical action,	2
often by impinging liquid, abrasion by a slurry, particles suspended in fast flowing	
liquid or gas, bubbles or droplets, cavitations, etc. The mechanism can be described	
as follows:	
• mechanical erosion of the material, or protective (or passive) oxide layer on its surface,	
• enhanced corrosion of the material, if the corrosion rate of the material	
depends on the thickness of the oxide layer.	

	Subject code 17423	Page 9 of
1b-iii	Lining :a layer of different material covering the inside surface of something.	1
	Importance of Lining	
	In order to attain certain desired features, the base metal may be lined with	
	another metal, rubber, glass & plastic. Lining mild steel pipe with a material able to	3
	withstand chemical attack permits its used to carry corrosive fluids.	
	Lining give the underlying structure protection against chemical attack. It	
	prevents contamination of metal. Due to lining effect of abrasion can be reduced. It	
	also provides high mechanical strength to the metal.	
	Importance of lining:	
	a. to protect against corrosion	
	b. to prevent the contamination of the materials being processed.	
	c. minimize the effect of a abrasion.	
	d. ease of cleaning.	
	e. provide high mechanical strength.	
2	Attempt any four	16
-	Emposition for Work dono in Isothermol Emposition of IDEAL and	10
2-a	Expression for work done in isotnermal Expansion of IDEAL gas	4
	undergoing a reversible expansion process. The evilader is in thermal equilibrium	
	with the surroundings so that the temperature of the gas remains constants while its	
	with the surroundings so that the temperature of the gas remains constants while its	
	The total work done by the gas in the expansion process as the picton moves from	
	The total work done by the gas in the expansion process as the piston moves from $V_{\rm constraint}$ and $V_{\rm con$	
	position to position 2 during which volume is changing from v_1 to v_2 (and its pressure is reduced from B , to B) is given by	
	pressure is reduced from P_1 to P_2) is given by	
	$\begin{array}{ccc} & & & VZ \\ W & - & W & - & \int \mathbf{P} dV & - & \int \mathbf{P} dV \end{array}$	
	$\mathbf{v}\mathbf{v} - \mathbf{v}\mathbf{v}_{1-2} = \mathbf{j} \mathbf{r}\mathbf{u}\mathbf{v} - \mathbf{j} \mathbf{r}\mathbf{u}\mathbf{v}$	
	1 v1	

	Subject code	17423	Page
The work done in reversible isothe	erm expansion of a gas is give	n by	
v2		2	
$W = P dV \int P dV$	(1)		
v1			
The ideal gas equation is			
PV = nRT			
P = nRT/V	(2)		
Substituting for P from eq (2) eq (2)	1 becomes)		
V2 v2	2		
$W = \int (nRT/V) dV = nRT \int d$	IV/V		
V1 v1			
Integrating gives			
$W = nRTlnV_2 / V_1$	(3)		
We have $P_1 V_1 = nRT_1$ and $P_2 V_2$	$n_2 = nRT_2$		
But T ₁ =T ₂ For Isother	rmal Process		
$\mathbf{P}_1\mathbf{V}_1=\mathbf{P}_2\;\mathbf{V}_2$			
$V_{2/} V_1 = P_1/P_2$			
With this, equation (3) becomes			
W = $nRTlnP_1/P_2$			
$W = nRT ln V_2 / V_1 = nRT ln P_1 / P_1$	2		
Since for an isothermal process,	$\triangle U = 0 \text{ and } \Delta T = 0,$		
Hence $H = 0$			
We have $\bigwedge U = O - W$			
For an Isothermal Process Δ U =	= 0.Therefore, the first law bec	comes $0 = O - W$	
O - W		···· č ··	

	Subject code 17423	Page 11 of 3
	Thus, In an isothermal process ,Heat absorbed by a system gets completely	
	converted into work or the work is done at the expense of heat absorbed and the	
	temperature remains constant.	
	Work done in isothermal reversible expansion of an ideal gas is given by	
	$W = nRTlnV_2 / V_1 = nRTlnP_1 / P_2$	
2-b	The galvanic series :	
	The galvanic series (or electropotential series) determines the nobility of metals and semi-metals. When two metals are submerged in an electrolyte, while electrically connected, the less noble (base) will experience galvanic corrosion. The rate of corrosion is determined by the electrolyte and the difference in nobility. The difference can be measured as a difference in voltage potential. Galvanic reaction is the principle upon which batteries are based.	2
	GALVANIC SERIES of Dissimilar Metals.	2
	Largest, corrosive part, positive.	
	1. Magnesium	
	2. Ninc	
	3. Cadmlum	
	4. Aluminum	
	5. Steel	
	6. Iron	
	7. Stainless-Steel	
	8. Solder	
	9. Lead	
	10. Tm	
	11. Nickel	

	Subject code 17423	Page 12 of 37
	12. Brass	
	13. Copper	
	14. Bronze	
	15. Silver Solder	
	16. Silver	
	17. Titanium	
	18. Graphite	
	19. Gold	
	20. Platinum	
	Smallest, protected part, negative.	
2-c	Derivation of phase rule	2
	Lets assume that we have a heterogeneous system in equilibrium consisting of C	
	components distributed in P phases .	
	The composition of each phase containing C component is determined by	
	specifying C -1 mole fraction since the some of mole fraction of components	
	present in any phase is equal to 1.If we specify mole fractions of components ,say	
	2,3,4,then mole fraction of component 1 is obtained as	
	$X_1 = 1-(X_1+X_2+X_3+)$. Thus as regarding composition, each phase possess C-1	
	variables. Since there are P phases, it follows that the whole system possesses P(C-	
	1) composition variables.	
	State of the system will depend upon temperature and pressure, these 02 variables	
	are also to be specified .Thus our system of C components and P phases possesses	
	P(C-1) + 2 intensive variables.	2
	In order to define the state of system completely ,it is necessary to have as many	
	equations as there are variables .Since the number of equations is equal to the	
	number of variables ,the number of unknown variables that must be arbitrarily	
	fixed or specified to define the system completely or the number of degree of	
		1

	Subject code 17423	Page 1	13 of 3
	freedom (F) or variance of the system will be		
	F = Number of variables – Number of Equations		
	= (P(C-1) + 2) - C(p-1)		
	= PC - P + 2 - PC + C		
	$\mathbf{F} = \mathbf{C} \cdot \mathbf{P} + 2$		
		1 1	
2-d	The applications of adsorption are:	1 marks	
	a. in production of high vacuum:	each for	
	b. in gas masks	any 4	
	c. in heterogeneous catalysts		
	d. in removing colouring matter from solutions		
	e. in chromatography		
	f. in dehumidification		
	g. in water purification.		
	a) In production of high vacuum: in order to remove traces of air from a partially		
	evacuated container. it is connected to a small bulb filled with activated charcoal or		
	silica gel and cooled with a liquid air. The activated charcoal adsorbs the traces of		
	air resulting in the production of very high vacuum in the container.		
	b) In gas masks: gas masks are personal protective devices containing activated		
	charcoal. The activated charcoal removes poisonous, toxic gases from air by		
	adsorption and thus purifies the air for breathing.		
	c) In heterogeneous catalysis :		
	solid catalyzed gas phase reactions proceed through the adsorption of gaseous		
	reactants on the surface of a solid catalyst.		
	d) In removing colouring matter from solutions: animal charcoal removes colours		

	Subject code 17423	Page 14 of 37
	of solutions by adsorbing colour causing impurities. Animal charcoal is used as a	
	decolouriser in the manufacture of cane sugar.	
	e) In dehumidification:	
	silica gel removes moisture present in the air by adsorption .hence, silica gel is used	
	for dehumidification of air in the storage facility of delicate electronic instruments.	
	f) In chromatographic analysis: with the help of chromatographic techniques, it is	
	possible to separate and analyze mixture containing small quantities of organic	
	substances. The component of a mixture has different adsorption tendencies.	
	g) in water purification and softening of water: in water purification by using	
	charcoal bed, the bed acts not only as filter but also as a good adsorbent, which	
	adsorbs impurities which has an objectionable taste and odour.water treatment	
	using ion exchange resins is also considered as an adsorption operation.	
2-e	Ductility : ductility is a solid material's ability to deform under tensile stress;	1
	this is often characterized by the material's ability to be stretched into a wire	
	Plasticity : plasticity is the propensity of a material to undergo permanent	1
	deformation under load.	
	Hardness: Hardness is a measure of how resistant solid matter is to various	1
	kinds of permanent shape change when a compressive force is applied. Some	
	materials (e.g. metals) are harder than others (e.g. plastics). Macroscopic	
	hardness is generally characterized by strong intermolecular bonds, but the	
	behavior of solid materials under force is complex; therefore, there are	
	different measurements of hardness: scratch hardness, indentation hardness,	
	and rebound hardness.	
	Strength: In materials science, the strength of a material is its ability to	1
	withstand an applied load without failure or plastic deformation. The field of	
	strength of materials deals with forces and deformations that result from their	

	Subject code 17423	Page 15 of 37
	acting on a material. A load applied to a mechanical member will induce	
	internal forces within the member called stresses.	
2-f	Mechanism of dry corrosion :	4
	Types of dry corrosion:	
	(i) corrosion by oxygen	
	(ii) corrosion due to other gases	
	(i) corrosion by oxygen:	
	corrosion by oxygen is the the corrosion of a metal due to chemical attack of	
	oxygen in dry environment at low or high tempit results in the formation of metal	
	oxide layer on the metal surface according to the following reaction :	
	$2M + n O2 \rightarrow 2MOn$	
	Initially a thin layer of oxide film is formed and it gradually grows with time. The	
	nature of metal oxide film/layer formed decides the prevention or continuation of	
	corrosion. The oxide film produced based on its nature can be classified as:	
	(i)stable oxide film : it acts as a barrier between metal and oxygen and thus	
	prevents further corrosion. it may be porous or non-porous in nature	
	(ii) unstable oxide film : when the oxide film is umstable , it decomposes back to	
	the metal and oxygen. Hence oxidation corrosion is not possible in case of nobel	
	metals such as Ag, Au as they are protected by this manner.	
	(ii)volatile oxide film : when oxide film formed is volatile, it volatalises as soon as	
	it is formed and metal surface is exposed to further corrosion. Hence it leads to	
	continuous and excessive corrosion.	
	OR	
	Corrosion by other gases	

	Subject code 17423	Page 16 of 3 7
3	Attempt any four	16
3-a	Langmuir Adsorption Equation	
	Langmuir proposed that dynamic equilibrium exists between adsorbed gaseous	
	molecules and the free gaseous molecules. Using the equilibrium equation,	1
	equilibrium constant can be calculated.	
	$A(g) + B(S) \xleftarrow{K_a}{K_d} AB$	
	Where K_a represents equilibrium constant for forward reaction and K_d represents	
	equilibrium constant for backward direction.	
	According to Kinetic theory,	
	Rate of forward reaction = K_a [A] [B]	
	Rate of backward reaction = K_d [AB]	
	At equilibrium, Rate of forward reaction is equal to Rate of backward reaction	
	$K_a[A][B] = K_d[AB]$	
	Or, $\frac{K_a}{K_d} = \frac{[AB]}{[A]B]}$	1
	$K = \frac{K_a}{K_d} = \frac{\begin{bmatrix} AB \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix}}$	
	The above equation represents the equilibrium constant for distribution of	
	adsorbate between the surface and the gas phase.	
	Derivation	
	Langmuir Equation which depicts a relationship between the number of active sites	
	of the surface undergoing adsorption (i.e. extent of adsorption) and pressure.	
	To derive Langmuir Equation and new parameter ' θ ' is introduced. Let θ the	

Subject code	17423	Page 17 of 37
number of sites of the surface which are covered with	gaseous molect	ıles.
Therefore, the fraction of surface which are unoccupied by gas	eous molecules	will
be $(1 - \theta)$.		
Now, Rate of forward direction depends upon two factors	: Number of s	sited
available on the surface of adsorbent, $(1 - \theta)$ and Pressure, 1	P. Therefore rat	e of
forward reaction is directly proportional to both mentioned factor	ors.	
Rate of forward reaction $\propto P(1 - \theta)$		
Rate of adsorption $\propto P(1 - \theta)$		
Or, Rate of adsorption = $K_a P (1 - \theta)$		
Similarly, Rate of backward reaction or Rate of Desorption de	pends upon nur	nber
of sites occupied by the gaseous molecules on the surface of ads	sorbent.	1
Rate of desorption $\propto \theta$		
Or, Rate of desorption = $K_d \theta$		
At equilibrium, rate of adsorption is equal to rate of desorption.		
$K_a P (1 - \theta) = K_d \theta$		
We can solve the above equation to write it in terms of θ .		
$\mathbf{K}_{\mathbf{a}}\mathbf{P} - \mathbf{K}_{\mathbf{a}}\mathbf{P} \ \mathbf{\theta} = \mathbf{K}_{\mathbf{d}} \ \mathbf{\theta}$		
$K_a P = K_a P \ \theta + K_d \ \theta$		
$\mathbf{K}_{a}\mathbf{P}=\left(\mathbf{K}_{d}+\mathbf{K}_{a}\mathbf{P}\right)\mathbf{\theta}$		
$A = \frac{K_a P}{M_a P}$		
$C = \frac{1}{K_d + K_a P}$		
Divide numerator and denominator on RHS by K_d , we get		

	Subject code 17423	Page 18 of 3
	$\Theta = \frac{\frac{K_a}{K_d}P}{\frac{K_d}{K_d} + \frac{K_a}{K_d}P}$	
	Now put	
	$K = \frac{K_a}{K_d}$	1
	in above equation we get $\theta = \frac{KP}{KP}$	
	1+ <i>KP</i> Langmuir Adsorption Equation	
	This is known as Langmuir Adsorption Equation.	
3-b	i)Rubber Lining:	
	Rubber Lining is an application method used to protect multiple types of systems	1
	by lining corrosion and abrasion-resistant rubber upon the surface or inside of pipes	
	and tanks.	
	Lining is done by hand by our experienced staff for a durable finished product, so	
	having application accuracy by qualified liners and crews are a must.	
	The equipments to be lined, working conditions and environment are different for	
	each customer. Therefore, selecting the most suitable material is a crucial	
	procedure that we provide to cater to their specification	
	Applicatiion:	
	Steeland non ferrous industry	
	Organic chemical industry	
	Fertilizer industry	
	Pollution control equipment	

Subject code 17423	Page 19 of 37
ii)Glass Lining:	
Glass resistance is excellent resistance to all acids .it is subjected to alkali attack.	1
Glass is also damage by thermal shock. Methods foe glass lining are:	
Wet spray process: The metal surface of a vessel on which glass lining is to be	
done is cleaned. A suspension called slip consisting of enamel powder and	
emulsifying agent I sprayed like a paint on metal surface, then the coat is drayed	
and then the vessel is transfer to a furnace and fired at temp that result in fusion of	
partials.	
Hot dust method:	
It is generally applicable to cast iron components' he process is similar to wet	
spray only after coating dry powder cover coat enamels is dusted.	
Application:	
Reactor	
Acid storage tank	
Pipeline	
Column	
iii)Lead Lining:	1
Lead lining is the process of applying lead to sheet metal, plastics or castings.	
Vulcan GMS uses a variety of contact cements and epoxies based on the	
application.	
Lead can be saw cut, router cut or die cut to produce the lead blank needed for the	
application. We can use other processes like spinning or forming to generate the	
needed profiles.	
Vulcan can apply the sheets or shapes with pressure if needed to ensure a solid	
bond or expansion. We can also use a variety of techniques to ensure that there are	
no joints (overlap joints, stop joints, lead burned joints or corner extrusions) which	

	Subject code 17423	Ра	ge 20 of 37
	could cause radiation leaks.		7
	We also can lead line nearly any application for products such as X-Ray tube		
	housing, X-Ray tunnels, X-Ray tanks and collimators, which are all typically used		
	in the medical X-ray and security markets.	1	
	iv)Plastic Lining		
	Lined tanks are widely used in the finishing industry—especially for corrosives.		
	The lining protects the tank from corrosion and the tank contents from		
	contamination, and the substrate provides structural integrity. In electroplating, the		
	lining also provides electrical insulation.		
3-c	Second Law of Thermodynamics Statement:		
	The Second Law of Thermodynamics states that the state of entropy of the entire	2	
	universe, as an <u>isolated system</u> , will always increase over time The entropy change		
	of the surroundings and the entropy change of the system itself. Given the entropy		
	change of the universe is equivalent to the sums of the changes in entropy of the		
	system and surroundings:		
	$\Delta Suniv = \Delta Ssys + \Delta Ssurr = qsysT + qsurrT$		
	In an isothermal reversible expansion, the heat q absorbed by the system from the		
	surroundings is		
	$qrev=nRT\ln V2V1$	2	
	Since the heat absorbed by the system is the amount lost by the surroundings,		
	<i>qsys=-qsurr</i> .Therefore, for a truly reversible process, the entropy change is		
	$\Delta Suniv = nRT \ln V2V1T + -nRT \ln V2V1T = 0$		
	If the process is irreversible however, the entropy change is		
	$\Delta Suniv = nRT \ln V2V1T > 0$		
	If we put the two equations for $\Delta Suniv$ together for both types of processes, we are		

	Subject code 17423	Page 21 of 3 7
	left with the second law of thermodynamics,	
	$\Delta Suniv = \Delta Ssys + \Delta Ssurr \ge 0$	
	where $\Delta Suniv$ equals zero for a truly reversible process and is greater than zero for an irreversible process. In reality, however, truly reversible processes never happen	
	(or will take an infinitely long time to happen), so it is safe to say all	
	thermodynamic processes we encounter everyday are irreversible in the direction	
	they occur.	
	The second law of thermodynamics can also be stated that "all spontaneous	
	processes produce an increase in the entropy of the universe".	
3-d	Enthalpy is a defined thermodynamic potential, designated by the letter "H", that	2
	consists of the internal energy of the system (U) plus the product of pressure (P)	
	and volume (V) of the system	
	H = U + PV	
	Since enthalpy, H, consists of internal energy, U, plus the product of pressure (P)	
	and the volume (V) of the system, which are all functions of the state of the	
	thermodynamic system, enthalpy is a state function.	
	The enthalpy of a homogeneous system is defined as	
	H = U + pV	1
	where	
	H is the enthalpy of the system	
	U is the internal energy of the system	
	p is the pressure of the system	
	V is the volume of the system.	

	Subject code	17423	Page 22 of 37
The enthalpy is an extensive prope	rty. This means that, for homoge	eneous syster	ns,
the enthalpy is proportional to the	size of the system. It is convenie	ent to introdu	ce
the specific enthalpy h =H/m where	e m is the mass of the system, or	r the molar	
enthalpy $H_m = H/n$, where n is the	number of moles (h and H_m are	intensive	
properties). For inhomogeneous sy	stems the enthalpy is the sum of	the enthalpi	es
of the composing subsystems			
$H = \Sigma_k H_k$			
where the label k refers to the vario	ous subsystems. In case of contin	nuously vary	ing
p, T, and/or composition the summ	ation becomes an integral:		
$H=\int ho h\mathrm{d}V,$ wherep is the density.			
The enthalpy H(S,p) of homogeneous	ous systems can be derived as a o	characteristic	
function of the entropy S and the p	ressure p as follows: we start fro	om the first la	ıw
of thermodynamics for closed syste	ems for an infinitesimal process		
$\mathrm{d}U = \delta Q - \delta W.$			
Here, δQ is a small amount of heat	added to the system and δW a s	mall amount	of 1
work performed by the system. In a	a homogeneous system only revo	ersible proce	sses
can take place so the second law of	f thermodynamics gives $\delta Q = T d$	dSwith T the	
absolute temperature of the system	. Furthermore, if only pV work	is done, δW =	=

	Subject code	17423	Page 24 of 3
Element	Content		
Carbon, C	0.25 - 0.290 %)	
Copper, Cu	0.20 %		
Iron, Fe	98.0 %		
Manganese, Mn	1.03 %		
Uses:			
Used for simple structur	ral applications such as cold formed fas	steners and bolts	1
ii)SS304:			
Composition :			
Element	Content		
Carbon	0.03		
Manganese	2.00		
Silicone	1.00		
Uses:			
304 stainless steel is use	ed for a variety of household and indu	strial applications	
such as screws,[4] mach	ninery parts, car headers, and food-har	dling equipment.	
304 stainless steel is also	o used in the architectural field for exte	erior accents such	
as water and fire feature	28.		1
iii)Aluminium Alloy:			

		Subject code	17423	Page 25 of 3
	The typical alloying element			
	are copper, magnesium, manga	nnese, silicon, tin and zinc		
	Uses: in making Aircraft			1
	iv)Mild Steel:			
	Composition :			
	Element	Content		
	Carbon, C	0.25 - 0.290	%	
	Copper, Cu	0.20 %		
	Iron, Fe	98.0 %		
	Manganese, Mn	1.03 %		
	Uses:General purpose engineer	ring material		
4	Attempt any four			16
4-a	Phase diagram for water system:			4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

			Subj	ect code	17423	Page 27 c
	Its used	l for pumps, valves,	fittings & pipes,also used	for tanks, ID and	d FD fans,	
	reaction	n vessels,filter pres	s, scrubbers, filtercloth, c	rates, and trays.		
c	Zei	roth law of thermo	odynamics:			4
	If the not	two systems are ir y must be in therm ion of temperature.	n thermal equilibrium ind al equilibrium with each	ependently with other. This law	a third syst helps define	tem, e the
1 d						1 mark
	S.No	PROPERTY	LYOPHILIC COLLOIDS	LYOPHO	BIC COLLO	DIDS each for
	1.	Mode of preparation.	Forms easily by mere shaking or warming the dispersed phase with dispersion medium E.g. Gelatine in water.	Forms only by Example: AS ₂	special meth S_3 in water.	any 4
	2.	Size of particle	The particles are true molecules and are just bigger in size (Molecular colloids).	The particles thousands of n colloids).	are aggreg nolecules (As	gates ssocia
	3.	Nature	Reversible and once precipitated can readily pass into colloidal state by direct contact with dispersion medium because particles are solvent loving.	Irreversible an can not easily state because hating.	nd once pre	ecipita collo e solv
	4.	Visibility	The particles are not easily detected even under ultra microscope.	The particles under ultra mic	are easily croscope.	deteo
	5.	Charge	The charge of particles depends upon Pu of medium and it	The particles negative charge	carry pos e.	sitive

			Sub	ject code	17423		Page 28 of 37
	6.	Stability	may be positive, negative or neutral. These are stable and are self – stabilized.	These are un require traces stabilisation.	nstable and of electro	hence lyte for	
	7.	Action of electrolytes	Co-agulation can be brought about by the addition of large amount of electrolyte.	Co-agulation ca by small amour	an be broug at of electrol	ht about yte.	
	8.	Viscosity	It is much higher than that of dispersion medium.	It is about dispersion med	same as ium.	that of	
	9.	Surface	It is lower than dispersion medium	It is about dispersion medi	same as ium.	that of	
	10.	Tyndall effect	Less distinct	More distinct.			
	11.	Electrophoresi s	The particles may or may not show electrophoresis.	The particles sh	now electrop	horesis.	
	12.	Hydration	The particles are heavily hydrated due to love for solvent.	The particles hydrated due to	are not app hate for sol	oreciably vent.	
	13.	Conc. Of dispersed phase	Higher concentrations of dispersed phase are possible.	Only low dispersed phase	concentration are possible	ons of e.	
	14.	Colligative property	They have relatively high osmotic pressure, depression in freezing point and high lowering in vapour pressure.	They have hig less depression less elevation i less lowering of	h osmotic p in freezin in boiling p f vapour pres	pressure, g point, oint and ssure.	
4-e							
	i)Unifo	rm Corrosion: n or general corros	ion is the most classical f	form of corrosion	but is not		2
	always the most important in terms of cost or safety.						
	It is cha	aracterized by the e	xistence of several indivi	dual electrochem	ical processe	es	
	that occ	cur uniformly over	the whole of the surface	considered.			
	The con	nsequences of unifo	orm corrosion are a decre	ase in metal thick	tness per uni	t	

Subject code 17423	Page 29 of 37
time (or a weight loss per unit area per unit time) if the corrosion products are	
soluble, or a more or less uniform deposit of these products if they are insoluble.	
Uniform corrosion can be limited or prevented by an appropriate choice of	
material, including the use of metallic or organic coatings, modification of the	
medium (pH, temperature, concentrations of dissolved oxygen and electroactive	
impurities, addition of inhibitors, etc.), cathodic protection.	
ii)Pitting Corrosion:	
Pitting results when a small hole, or cavity, forms in the metal, usually as a result of	1
de-passivation of a small area. This area becomes anodic, while part of the	1
remaining metal becomes cathodic, producing a localized galvanic reaction. The	
deterioration of this small area penetrates the metal and can lead to failure. This	
form of corrosion isoften difficult to detect due to the fact that it is usually	
relatively small and may be covered and hidden by corrosion-produced compounds	
iii)Selective Corrosion:	
This process, also called "dealloying" or "selective leaching", involves the selective	1
dissolution of one of the elements in a single phase alloy or one of the phases in a	1
multiphase alloy	
The most well known example is the dezincification of brass (e.g. 70Cu - 30Zn). In	
this case, the brass takes on a red coppery tinge as the zinc is removed. It also	
becomes porous and very brittle, without modification to the overall dimensions of	
the part.	
This problem can be overcome by choosing an alloy that is less prone, such as a	
copper-rich cupro-nickel. Brasses with lower zinc contents or containing elements	
such as tin (1%) and/or small quantities of arsenic, antimony, or phosphorus have	
much greater resistance.	

		Subject code	17423	Pag	e 30 of 3
	Numerous other alloys are susceptible to s	selective corrosion in certa	ain conditions.]
	For example, denickelization can occur in				
	aluminium bronzes, while the graphitization phenomenon in grey cast irons is due				
	to slow dissolution of the ferrite matrix.				
4-f	i)Hydrocloric Acid: fiberglass-reinforced	l plastic (FRP) tank		1	-
	ii)Sulphuric Acid: Store in a metallic o	or coated fiberboard drum	n using a strong	g 1	
	polyethylene inner package				
	iii) Nitric Acid : Aluminium and its allov			1	
	iv)Caustic Soda: Stainless steel			1	
	Ty)Causile Solia. Stanness steer			1	
5	Answer any 4			16	-
5-a	Differentiate between physical and chemical adsorption			1 mark	-
	PHYSICAL ADSORPTION CHEMISORPTIONS				
	The forces operating in these are weak	The forces operating in	these cases are	any 4	
	vander Waal's forces.	similar to those of a che	mical bond.		
	The heat of adsorption are low i.e.	The heat of adsorption a	are high i.e.		
	about $20 - 40$ kJ mol-1	about 40 400 kJ mol-1	C 1	_	
	No compound formation takes place in these cases.	Surface compounds are	formed.		
	The process is reversible i.e. desorption	The process is irreversit	ole. Efforts to	_	
	of the gas occurs by increasing the	free the adsorbed gas gi	ve some definite	e	
	temperature or decreasing the pressure.	compound.		_	
	It does not require any activation	It requires any activation	n energy		
	This type of adsorption decreases with	This type of adsorption	first increases	_	
	increase of temperature.	with increase of tempera	ature. The effect	t	
	1	is called activated adsor	ption.		
	It is not specific in nature i.e. all gases	It is specific in nature an	nd occurs only		
	are adsorbed on all solids to some	when there is some poss	sibility of		
	extent.	compound formation be	tween the gas		
		being adsorbed and the	solid adsorbent.	_	
	I ne amount of the gas adsorbed is	The amount of the gas adsorbed is There is no such correlation exists.			
	related to the case of inquefaction of the				

		Subject code	17423	Page 31 of
	gas.			
5 h	It forms multimolecular layer.	It forms unimolecular l	ayer.	
5-0	Explain corrosion prevention and control	methods		
	The different methods to prevent corrosion:			
	1) Use of high purity metal. 2) Use of alloy a	2		
	1) Use of high purity metal: The impurities	У		
	and form tiny electrochemical cells with rest	e		
	undergoes corrosion at the region where the			
	resistance of any metal can be improved by	increasing the purity of	f the metal.	
	2) Use of alloy addition: Corrosion resistant	be 2		
	improved by alloying .ex. stainless steel co	nt		
	oxide film which protects the steel from furt			
5-c	Define system, surroundings, boundary. I	Differentiate open and	l closed system	
	System: The specified portion of the univers	se containing a definite	quantity/amour	nt 1
	of a specific substance or group of substance	b		
	a system.			
	Surrounding: The part of the universe other than the system which is separated			1
	from the system by a boundary is called the surroundings. Everything external to			
	the system is called surroundings.			
	Boundary: A boundary is a closed surface s	urrounding a system th	rough which	1
	energy and mass may enter or leave the syste			
	Open system : In which exchange of energy			
	boundary with its surroundings	1		
	Closed system : In which exchange of energy			
	boundary with its surroundings			
	Give the four properties of polyethylene			1 mark
5-d	1. It is rigid, waxy, white translucent, cheap	o material.		each for

	Subject code 17423	Page 32 of 37
	2. Its softening point is 125-135°C.	any 4
	3. Resistant to strong acids, alkalis and salts at room temperature.	
	4. It is good electrical insulator	
	5. Mechanical properties are poor above 50°C	
	6. Resistant to sunlight and weather	
5-е	Explain Homogeneous and Heterogeneous system	
	Homogeneous systems: a system consisting of a single phase is called a	2
	homogeneous system. eg: as one phase, for e.g (NaCl + H2O) though this are	
	present Na+ and Cl- ions still it is a one phase system. Completely miscible liquids	
	constitute a one phase system (H2O+C2H5OH).	
	Heterogeneous system: a system consisting of more than one phase is called	2
	heterogeneous system. Ex:A mixture of diamond and graphite will constitute a two	
	phase system as they have different crystal structure.	
5-f	Explain mechanism of adsorption	
	Adsorption: Adsorption is the adhesion of atoms, ions, or molecules from a gas,	4
	liquid, or dissolved solid to a surface. This process creates a film of the adsorbate	
	on the surface of the adsorbent.	
	Step 2 : Migration into Pores of Adsorbent Step 1 : Diffusion to Adsorbent Surface Water vapor of Adsorbate	
	Mechanism of Adsorption:	
	It is mainly divided into three steps as follows \Box Step 1 : Molecule diffusion	

	Subject code 17423	Page 33 of 37
	process into the thin layer of fluid(Called as fluid film) which is attached on the	
	adsorbent. Step 2 : According to developing of diffusion, the surface diffusion	
	process which attached the vapour or gas along the pores. It is called as mixed	
	diffusion because there exist two diffusion of pore diffusion and surface diffusion.	
	□ Step 3 : Adsorption process in the pore adsorption sites	
6	Answer any 4	
6-a	Explain electroplating with neat sketch.	2
	Electroplating: Electroplating is another method through which iron or steel can be	
	protected and prevented from rusting and corroding. Here, the metal to be protected	
	is coated by a thin layer of another metal having non-rusting properties by reducing	
	it. Normally, the metals involved form the electrodes, which are processed inside	
	an electrolyte by passing electric current (DC) across the electrodes, through the	
	electrolyte. In this process the electrode which is connected to the negative of the	
	supply gradually gets covered with the metal of the electrode connected to the	
	positive of the electric supply which slowly disintegrates or reduces and becomes	
	attached over the other electrode. The electrode connected to the negative is the one	
	which is being electroplated for the required protection	

	Subject code 17423	Page 35 of 37
	Non-Equilibrium state: A non-equilibrium state refers to the state of existence of	2
	a given system or body in which the variation of the thermodynamic	
	potential quantifying the system is not equal to zero. A system or body in a non-	
	equilibrium state means that unbalanced potentials (or driving forces) exist within	
	the system	
6-d	What is caustic embrittlement?	4
	Caustic Embrittlement: Caustic embrittlement is a phenomenon that occurs in	
	boilers where caustic substances accumulate in boiler materials. It also can be	
	described as the cracking of riveted mild steel boiler plates. This occurs at	
	temperatures of 200°-250°C as a result of local deposition of concentrated	
	hydroxide. Caustic embrittlement focuses on the stressed parts of the boiler,	
	including cracks, bends, rivets and joints. Residual sodium carbonate, which is used	
	for the softening process, undergoes hydrolysis, forming sodium hydroxide at high	
	pressures and temperatures. Caustic embrittlement is also known as stress corrosion	
	cracking. There are many causes of caustic embrittlement, including the combined	
	action of the following three components: • A susceptible material • A given	
	chemical species • Tensile stress Sodium hydroxide (caustic soda) prevents scaling	
	when added to the boiler water. The presence of alkali in the crevices, found around	
	the rivet heads and other hot spots, combined with fabrication stress around rivet	
	holes, causes cracks in the steel boiler shells and tube plates. The alkaline water	
	enters the minute holes and cracks by capillarity action on the interior of the boiler.	
	The water then diffuses out of the cracks, leaving behind hydroxide salts that	
	accumulate when more water evaporates. The hydroxide then attacks the	
	surrounding material of the boiler and dissolves iron as sodium ferrite. This	
	corrosion at high pH levels produces hydrogen, which attacks the crystal structure	
	of iron, making it hard and brittle. This is highly dangerous because the tube can	

	Subject code 17423	Page 36 of 3
б-е	then fail at the boiler's normal operating temperature. Caustic embrittlement can be prevented through several methods, including: • Controlling the temperature and potential • Controlling the stress levels and hardness • Use of materials that do not crack when used in given environments • Avoiding alkali where necessary • Replacing sodium carbonates with sodium sulphates as softening reagents • Adding lignin, tannin or sodium sulphate that blocks hairline cracks as well as preventing infiltration of sodium hydroxide into the areas Draw neat labeled sketch of galvanic cell.	4
	zinc electrode sulfate sulfate sulfate oxidation	
6-f	Define pressure, volume, work and give their expression.	4
	Pressure: Pressure is an expression of force exerted on a surface per unit area	
	P=F/A	
	Volume: the amount of space that a substance or object occupies, or that is	
	enclosed within a container at specified temperature and pressure.	

	Subject code	17423	Page 37 of 37
V=nRT/P			
Work: refers to an activity in	volving a force and movement in th	ne direction of the	
force.			
W=F.S			