
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 1 of 31

17330

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent

figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may

vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based

on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.

No

.

Sub

Q. N.

Answer Marking

Scheme

1. A) Attempt any six of the following : 12

 1) Define Big ‘O’ Notation. 2M

 Ans: Big O is a mathematical notation that represents time complexity of an algorithm. O

stands for order of term.
(Definition : 2

marks)

 2) Define data structure and give its classification. 2M

 Ans: A data structure is a specialized format for organizing and storing data.

i) Data can be organized in many ways and data structures is one of these ways.

ii) It is used to represent data in the memory of the computer so that the processing of

data can be done in easier way.

iii) Data structures is the logical and mathematical model of a particular organization

of data

(Definition: 1

mark,

classification:

1 mark)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 2 of 31

17330

Classification:

 3) Define searching. Give its type 2M

 Ans: It is the process of finding a data element in the given data structure.

1. Linear search

2. Binary search

(Definition:1

mark, types:1

mark)

 4) Define recursion. State any two application where recursion used.

(**Note: Any other application also to be considered**)

2M

 Ans: Recursion is the process of calling function by itself. A recursive function body contains

function call statement that calls itself repeatedly.

Applications:-

1. To compute GCD

2. To display Fibonacci series

(Definition: 1

mark, two

applications:1/

2 mark each)

 5)
Define following w.r.t tree

a) Ancestor

b) Descendant nodes

2M

 Ans: a) Ancestor: All the nodes that are along the path from root node to a particular node

are called as ancestor of that particular node, that is parent nodes are ancestor nodes.

b) Descendant nodes: All the nodes that are reachable from the root node or parent

node are the descendant nodes of that parent node or root node.

(Definition

of each

term:1 mark)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 3 of 31

17330

 6)
Define following w.r.t tree

a) In-degree

b) Out - degree

2M

 Ans:

a) In-degree: - In degree of a node is number of edges coming towards the node.

b) Out-degree: - Out degree of a node is number of edges going out from the node.

(Definition of

each term: 1

mark)

 7)
State any four sorting technique.

2M

 Ans: 1. Bubble sort

2. Selection sort

3. Insertion sort

4. Radix sort

5. Shell sort

6. Quick sort

7. Merge sort

(Any four

techniques:1/

2 mark each)

 8)
List any four application of graph.

2M

 Ans: 1. To represent road map

2. To represent circuit or networks

3. To represent program flow analysis

4. To represent transport network

5. To represent social network

6. Neural networks

(Any four

applications:1

/2 mark each)

 B) Attempt any two of the following: 8M

 1) What is complexity of an algorithm? Describe time complexity and space complexity.

[Example optional]

4M

 Ans:

Complexity of an algorithm:

The complexity of an algorithm is a measure that describes its efficiency in terms of

amount of time and space required for an algorithm to process.

(Definition of

complexity:1m

ark,

description of

time

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 4 of 31

17330

Time complexity:-
Time complexity of an algorithm is the amount of computer time required to execute an

algorithm.

Example:

Consider three algorithms given below:-

Algorithm A: - a=a+1

Algorithm B: - for x = 1 to n step 1

a=a+1

Loop

Algorithm C: - for x=1 to n step 1

for y=1 to n step 1

a=a+1

Loop

Frequency count for algorithm A is 1 as a=a+1 statement will execute only once.

Frequency count for algorithm B is n as a=a+1 is key statement executes n time as the

loop runs n times.

Frequency count for algorithm C is n as a=a+1 is key statement executes n2 time as the

inner loop runs n times, each time the outer loop runs and the outer loop also runs for n

times.

Space complexity:-
Space complexity of an algorithm is the amount of memory required for an algorithm.

The space needed by the program is the sum of the following components:-

 Fixed space requirements: - It includes space for instructions, for simple variables,

fixed size structured variables and constants.

 Variable space requirements: - It consists of space needed by structured variables

whose size depends on particular instance of variables.

Example: - additional space required when function uses recursion.

complexity:1
1/2

marks, space

complexity:1
1/2

mark)

 2) Describe binary search algorithm. Give example to search an element using binary

search algorithm.

4M

 Ans:

Binary search algorithm:

Binary search requires sorted list to perform searching. First find the lower index and

upper index of an array and calculate mid with the formula (lower+upper)/2.Compare

the search element with mid position element. If both are equal then stop the search

process. If both are not equal then divide list into two parts. If the search element is less

than mid position element then change the upper index value and use first half of the

list for further searching process. If the search element is greater than mid position

element than change the lower index value and use second half of the list for further

searching process. Again find lower and upper index value and calculate mid value.

Repeat the process till element is found or lower index value is less than or equal to

upper index value.

(Description:2

marks,

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 5 of 31

17330

Example:

Input string:- 10,20,30,40,50,60,70,80,90,100

Search element: - 80 (S)

Array X [10]: used to store elements, lower is lower index of array, upper is upper

index of array.

Step 1:-

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9]

10 20 30 40 50 60 70 80 90 100

Lower=0, upper=9 ; mid=9/2=4.5=4

S! =X [4] i.e. 80! =50

80>50 so lower=lower+1=5

Step 2:

X[5] X[6] X[7] X[8] X[9]

F G H I J

lower=5, upper=9; mid=5+9/2=7

S=X [7] i.e 80=80

Search successful.

 3)
Describe circular queue. Give its advantages.

4M

Ans:

A circular queue is a linear data structure where it store all elements in a specific order. It has

two ends front and rear where front is used to delete an element and rear is used to insert an

element. The last location of circular queue is connected to first location of the same. It

follows circular path while performing insertion and deletion.

(Description: 3

marks, any

one

advantage:1

mark)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 6 of 31

17330

Advantage:-

 It allows insertion of an element in a queue when queue has empty space in it.

Before insertion, it checks for circular queue full. If queue is not full then it

performs insert operation to add man element in it.

2. Attempt any four of the following : 16

 a) Describe working of inserting sort. Demonstrate working of insertion sort algorithm

to sort 6 elements.

4M

 Ans: In insertion sort, sorting is done on the basis of shift and insert principle. In first pass, 1st

index element is compared with o
th

 index element. If o
th

 index element is greater than 1
st

index element then store 1
st
 index element into a temporary variable and shift o

th
 index

element to its right by one position. Then insert temporary variable value in o
th

 position.

In pass 2 compare 2
nd

 index element with o
th

 index and then 1
st
 index elements. If

required perform shift and insert operations. In each pass fix one position and compare it

with all elements placed before it. Continue this process till last position element is

compared with all elements placed before it.

Example- Input list: 25, 15,5,24,1,30

(Description:2

marks,

example:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 7 of 31

17330

At the end of pass 4 the list is in sorted order.

 b) Find out prefix equivalent of the following expression:

i) [(A + B)] + C] * D ii) A [(B*C)+D]

4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 8 of 31

17330

 Ans:

Prefix conversion:- *++ABCD

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 9 of 31

17330

Prefix conversion:-A+*BCD

(c) Write an algorithm to insert a new node as the last of a singly linked list. Give

example.

4M

Ans:

Inserting node at last in the SLL (Steps):

1. Create New Node

2. Fill Data into “Data Field“

3. Make it’s “Pointer” or “Next Field” as NULL

4. Node is to be inserted at Last Position so we need to traverse SLL up to Last Node.

5. Make link between last node and new node

temp -> link = new_node;

(Algorithm:2

marks,

example:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 10 of 31

17330

Example:-

 (d) Describe concept of binary tree. State its application. 4M

Ans:

A binary tree is a tree where each node from the tree has maximum two child nodes.

Each node can have one child, two child nodes or no child node in a binary tree. A child

node on a left side of parent node is called as left child node. A child node on a right side

of parent node is called as right child node.

Applications:

1. To create expression tree.

2. To create Binary search tree.

3. To represent hierarchical data into the memory

(Description:3

marks, any

one

application:1m

ark)

 e) Write a program to insert element in queue. 4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 11 of 31

17330

Ans:

Implementation insertion on Queue Using array:

#include<stdio.h>

#include<conio.h>

#define max 3

int rear=-1;

int front=-1;

int queue[max];

void insert();

void insert()

{

int insert_item;

if(rear==(max-1))

printf("\n queue is full");

else

{

printf("\n enter element to be inserted:");

scanf("%d",&insert_item);

rear=rear+1;

queue[rear]=insert_item;

if(front==-1)

{

front=0;

}

}

}

void main()

{

insert();

}

(Correct logic

:2 marks,

correct

syntax:2

marks)

 (f) Write a program to search an element in an array. Display position of element.

[Linear search or binary search program shall be considered.]

4M

 Ans: Linear search:-

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10]={10,20,30,40,50,60,70,80,90,100};

int i,num;

printf("LINEAR SEARCH");

printf("\n INPUT LIST:-\n");

for(i=0;i<=9;i++)

(Correct logic:

2 marks,

correct

syntax:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 12 of 31

17330

printf("%d\t",a[i]);

printf("\nEnter search element:");

scanf("%d",&num);

for(i=0;i<=9;i++)

{

if(a[i]==num)

{

printf("\n Element found at %d index position ",i);

break;

}

}

if(i==5)

printf("\n Element not found");

getch();

}

OR

Binary search:-

#include<stdio.h>

#include<conio.h>

void main()

{

int a[10]={10,20,30,40,50,60,70,80,90,100};

int i,mid,num,upper=9,lower=0, flag=0;

clrscr();

printf("BINARY SEARCH");

printf("\n INPUT LIST:-\n");

for(i=0;i<=9;i++)

printf("%d\t",a[i]);

printf("\nEnter search element:");

scanf("%d",&num);

while(lower<=upper)

{

mid=(upper+lower)/2;

if(a[mid]==num)

{

flag=1;

printf("\n Element found at %d index position ",mid);

break;

}

if(a[mid]>num)

upper=mid-1;

else

lower=mid+1;

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 13 of 31

17330

}

if(flag==0)

printf("\n Element not found");

getch();

}

3. Attempt any four of the following 16

 a) Describe PUSH and POP operation on stack using array representation. 4M

 Ans: Stack is a linear data structure which follows Last-In First - Out (LIFO) principle

where, elements are inserted (push) and deleted (pop) from only one end called as stack

top.

Push Algorithm:

Step 1: [Check for stack full/ overflow]

 If stack top is equal to max-1 then write “Stack Overflow”

return

Step 2: [Increment top]

top= top +1;

Step 3 : [Insert element]

stack [top] = item;

Step 4 : return

Pop Algorithm:

Algorithm:

Step 1: [Check for stack empty/ underflow]

 If stack top is equal to -1 then write “Stack Underflow”

return

Step 2: [Copy data]

item=stack[top];

Step 3 : [decrement top]

top = top-1;

Step 4 : return

(PUSH

operation:2

marks & POP

operation: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 14 of 31

17330

 b) What is priority queue? Describe working of priority queue with suitable example. 4M

Ans:

A priority queue is a queue in which the intrinsic ordering among the elements decides

the result of its basic operations i.e. the ordering among the elements decides the manner

in which Add and Delete operations will be performed. In a priority queue,

1. Each element is assigning a priority.

2. The elements are processed according to, higher priority element is processed before

lower priority element and two elements of same priority are processed according to the

order of insertion.

(Represent either with array or linked list)
Array representation: Array element of priority queue has a structure with data, priority

and order. Priority queue with 5 elements:

OR

Above figure shows priority. Queue with 5 elements where B & C have same priority

number. Each node in above priority queue contains three items.

(Priority

queue: 1

mark,

Working: 2

marks,

Example :1

mark)

 c) Describe working of doubly linked list. Write syntax used for double linked list in

program

4M

 Ans: A doubly linked list is a linked list in which each node contains two links- one pointing

to the previous node and pointing to the next node.

Each node contains three parts.

1. Data: contains information. E.g.10, 20, etc.

2. Next pointer: Contains address of the next node.

3. Prev pointer: Contains address of the preceding node.

Example:

(Working: 2

marks,

Example: 1

mark,

Syntax:1

mark)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 15 of 31

17330

The syntax for doubly linked list is-

Struct node

 {

int data;

Struct node *next, * prev;

}

 d) Write algorithm for morder traversal for binary tree. Demonstrate with suitable

example.

(**Note: Any Binary Tree Traversal shall be considered**)

4M

 Ans:

Algorithm for Inorder Traversal:

 Step 1: Visit left subtree in inorder.

 Step 2: Visit root node.

 Step 3: Visit right subtree in inorder

Example:

Inorder traversal is: B, A, C.

In this traversal method 1
st
 process left subtree, then root element & then right subtree.

OR

Algorithm for Preorder Traversal:

 Step 1: Visit root node.

 Step 2: Visit left subtree in preorder.

 Step 3: Visit right subtree in preorder.

(Algorithm: 2

marks,

Example: 2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 16 of 31

17330

Example:

Preorder traversal is: A, B, C.

In this traversal method 1
st
 process root element then left subtree & then right subtree.

OR

Algorithm for Postorder Traversal:

 Step 1: Visit left subtree in postorder.

 Step 2: Visit right subtree in postorder.

 Step 3: Visit root node

Example:

Preorder traversal is: B, C, A.

In this traversal method 1
st
 process left subtree then right subtree & then root element.

 e) Draw tree structure for following expression.

[3A + 7B] – [(6D – 4E) ^ 6C]

4M

 Ans:

(Correct

answer :4

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 17 of 31

17330

 f) What is collision resolution techniques? State its types. 4M

Ans:

When the hash function generates the same integer on different keys, it result into

collision. Two records cannot be stored in the same location.

A method used to solve the problem of collision is called the collision resolution

techniques.

Types:

1. Open addressing

i) Linear probing

ii) Quadratic probing

iii) Rehashing

iv) Chaining

(Defining

Collision

resolution

techniques:2

marks, Listing

Types:2

marks)

4. Attempt any four of the following : 16

 a) Compare Top-down approach v/s Bottom –up approach[any four points]. 4M

Ans:

Top-down approach Bottom-up approach

A top-down approach starts with

identifying major components of

system or program decomposing them

into their lower level components &

iterating until desired level of module

complexity is achieved .

A bottom-up approach starts with

designing most basic or primitive

Component & proceeds to higher

level components.

In this we start with topmost module

& Incrementally add modules that is

calls.

Starting from very bottom,

operations That provide layer of

abstraction are implemented.

Top down approach proceeds from

the abstract entity to get to

the concrete design

Bottom up approach proceeds

from the concrete design to get to

the abstract entity.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 18 of 31

17330

Top down design is most often used

in designing brand new systems

Bottom up design is sometimes

used when ones reverse

engineering a design; i.e. when one

is trying to

figure out what somebody else

designed in an existing system.

Top-down approach is simple and not

data intensive.

Bottom-up approach is complex

as well as very data intensive

Top-down approaches are backward-

looking.

Bottom-up approaches are

forward-looking.

Example is c programming.

Example is C++ programming.

 b) How stack is used in Recursion? Describe with suitable example. 4M

 Ans:

1. Recursion is calling a function from itself repeatedly. A function call to the recursive

function is written inside the body of a function.

2. In the recursive call each time a function executes the same number of statements

repeatedly. Each function contain local variables.

3. When a recursive function is called, before executing the same function again, the

local variables are saved in the data structure stack. This way in each execution local

variables values are copied to the stack.

4. When the recursive function terminates one by one each element is removed from the

stack and we get the result.

 Example: Factorial of number, Tower of Hanoi. Fibonacci Series

int factorial (int no)

{

If(no==1)

 Return 1;

Else

Fact=fact*factorial(no-1);

}

Fact= fact* factorial (no-1); This statement gives recursive call to the function.

Each time when factorial function is called stack stores the value of current local

variables and then next variable. If factorial of 5 then first time stack will have 5 then in

2nd call 4 … till the last call stack gets the element. Once it is empty all variable values

are pop & result is calculated.

(Explanation

of how stack

used in

recursion: 2

marks,

Example:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 19 of 31

17330

 c) Write a code delete an element in queue. 4M

 Ans:

Delete queue(&a, &front, &rear)

Step 1: [check underflow]

if front=-1 then write “queue empty”

return

otherwise go to Step 2

Step 2: [copy data]

 data=a[front]

Step 3: [check front & rear pointer]

 if front=rear then front =rear=-1

 otherwise

 front=front+1

Step 4: End/ return to calling function

OR

void deletion()

{

if(front==-1 ||front==rear+1)

{

printf("Queue is empty\n");

return;

}

item=q[front];

front=front+1;

printf("Element deleted is::%d",item);

}

(Correct code:

4 marks)

 d) Define following terms:

i) Node ii) Null pointer

iii) Empty list iv) Information

4M

 Ans:

i) Node: It is a data element which contains info as well as address of next node.

ii) NULL pointer: It is used to specify end of list. The last element of list contains

NULL pointer to specify end of list.

iii) Empty list: A linked list is said to be empty if head (start) node contains NULL

pointer.

iv) Information: It is also known as data part. It is used to store data inside the node.

(Each term:1

mark Each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 20 of 31

17330

 e) Write an algorithm to traverse a singly linked list.

**NOTE: Description with example can also be considered.

4M

Ans:

Algorithm to traverse a singly linked list
1. if (start==NULL) then display "linked list is empty”.

2. Otherwise Visit each node of linked list and display its data till end of the list q=start //

Assign a temporary pointer q to starting node while(q!=NULL) do

Display q->data // display node information

q=q->link;

(Correct

stepwise

algorithm: 4

marks)

 f) Describe general tree and binary tree. 4M

 Ans: General Tree:

1. A general tree is a data structure in that each node can have infinite number of

children

2. In general tree, root has in-degree 0 and maximum out-degree n.

3. In general tree, each node have in-degree one and maximum out-degree n.

4. Height of a general tree is the length of longest path from root to the leaf of tree.

Height(T) = {max(height(child1) , height(child2) , … height(child-n)) +1}

5. Subtree of general tree are not ordered.

Binary tree:

(General

tree:2 marks,

Binary tree:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 21 of 31

17330

1. A Binary tree is a data structure in that each node has at most two nodes left and

right

2. In binary tree, root has in-degree 0 and maximum out-degree 2.

3. In binary tree, each node have in-degree one and maximum out-degree 2.

4. Height of a binary tree is : Height(T) = { max (Height(Left Child) , Height(Right

Child) + 1}

5. Subtree of binary tree is ordered.

5. Attempt any two of the following : 16

 a) Sort following elements by radix sort algorithm

87.3, 2.34, 7.29, 3.59, 45.8, 3.79, 3.20, 422.

{**Note: As radix sort cannot be applied on decimal number, consider all number

without decimal i.e. 873,234,729,359,458,379,320,422)**}

8M

 Ans: Sorting of Given Numbers: -

Pass 1:

Element 0 1 2 3 4 5 6 7 8 9

873 873
 234 234
 729 729
 359 359

458 458
 379 379

320 320
422 422

Output of Pass 1: 320,422,873,234,458,729,359,379

Pass 2:

Element 0 1 2 3 4 5 6 7 8 9

320 320
422 422
873 873
234 234
458 458
729 729
359 359
379 379

Output of Pass 2: 320,422,729,234,458,359,873,379

(Correct

sorting on

given

numbers;8

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 22 of 31

17330

Pass 3:

Element 0 1 2 3 4 5 6 7 8 9

 320 320
422 422

 729 729
234 234

 458 458
359 359

 873 873
 379 379

Output of Pass 3: 234,320,359,379,422,458,729,873

OR

87 2 7 3 45 3 3 422

087 002 007 003 045 003 003 422

Pass 1:

Output of Pass 1: 002, 422, 003, 003, 003, 045, 087, 007

Pass 2:

Output of Pass 2: 002, 003, 003, 003, 007, 422, 045, 087

Elements 0 1 2 3 4 5 6 7 8 9

087 087

002 002

007 007

003 003

045 045

003 003

003 003

422 422

Elements 0 1 2 3 4 5 6 7 8 9

002 002

422 422

003 003

003 003

003 003

045 045

087 087

007 007

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 23 of 31

17330

Pass 3:

Output of Pass 3: 002,003,003,003,007,045,087,422

Elements 0 1 2 3 4 5 6 7 8 9

002 002

003 003

003 003

003 003

007 007

422 422

045 045

087 087

 b) Convert the given infix expression to postfix expression using stack and the details

of stack at each step of conversation.

 EXPRESSION P* Q ↑ R – S/T +[U/V]

8M

 Ans:

SYMBOL

SCANNED

STACK RESULTANT

 [

P [P

* [* P

Q [* PQ

↑ [*↑ PQ

R [*↑ PQR

- [- PQR↑*

S [- PQR↑*S

/ [-/ PQR↑*S

T [-/ PQR↑*ST

+ [+ PQR↑*ST/-

[[+[PQR↑*ST/-

U [+[PQR↑*ST/-U

/ [+[/ PQR↑*ST/-U

V [+[/ PQR↑*ST/-UV

] [+ PQR↑*ST/-UV/

] NIL PQR↑*ST/-UV/+

THE POSTFIX EXPRESSION IS:PQR↑*ST/-UV/+

(Correct

Postfix

Expression: 8

marks)

 c) Describe DFS with suitable examples. 8M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 24 of 31

17330

 Ans:

The aim of DFS algorithm is to traverse the graph in such a way that it tries to go far

from the root node.

Stack is used in the implementation of the depth first

search. Back tracking used in this algorithm

Algorithm

Step1: Start

Step2: Initialize all nodes as unvisited

Step3: Push the starting node onto the stack. Mark it as waiting.

Step4: Pop the top node from stack and mark is as visited. Push all its adjacent no

des into the stack &mark them as waiting.

Step 5 .Repeat step 4 until stack is empty. Step 6: Stop

For example, consider the following graph G as follows:

Suppose we want to find and print all the nodes reachable from the node J

(including J itself). The steps for the DFS will be as follows:

a) Initially, push J onto stack as follows: stack: J

b) Pop and print the top element J , and then push onto the stack all the neighbors of

J as follows:

Print J STACK D, K

c) Pop and print the top element K, and then push onto the stack all the unvisited

neighbors of k Print K STACK D, E,G

d) Pop and print the top element G, and then push onto the stack all the neighbors of

G. Print G STACK D, E,C

e) Note that only C is pushed onto the stack, since the other neighbor, E is not

pushed because E has already been pushed onto the stack).

f) Pop and print the top element C and then push onto the stack all the neighbors of

C Print C STACK D, E,F

g) Pop and print the top element F Print F STACK D,E

(Description: 4

marks,

Example: 4

marks (any

valid example

shall be

considered))

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 25 of 31

17330

h) Note that only neighbor D of F is not pushed onto the stack, since D has already

been pushed onto the stack.

i) Pop and print the top element E and push onto the stack all the neighbors of D

Print E STACK: D, Pop and print the top element D, and push onto the stack

all the neighbors of D Print D STACK :empty

j) The stack is now empty, so the DFS of G starting at J is now complete.

Accordingly, the nodes which were printed K, G, C, F, E, D These are the nodes

reachable from J.

6. Attempt any two of the following: 16

 a) How stack is useful in reversing a list? write a C program to reverse a list using

stack

8M

 Ans:

Stack is useful to reverse a list. It can be simply done by pushing the individual elements

of list one by one on the stack, till end of list is reached and there is no more elements to

push on stack. The elements are then popped one by one till the stack is empty.

Eg. Consider the list to reverse as 1, 2, 3, 4, 5, 6.

This can be done using stack as:

Reverse of list is: 6,5,4,3,2,1

Program to reverse a list using stack.

#include <stdio.h>

#define MAXSIZE 7

#define TRUE 1

#define FALSE 0

struct Stack

{

 int top;

 int array[MAXSIZE];

} st;

void initialize()

{

(Explanation:

4 marks,

program: 4

marks (Any

other relevant

logic can be

considered.)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 26 of 31

17330

 st.top = -1;

}

int isFull()

 {

 if(st.top >= MAXSIZE-1)

 return TRUE;

 else

 return FALSE;

}

 int isEmpty()

{

 if(st.top == -1)

 return TRUE;

 else

 return FALSE;

}

void push(int num)

{

 if (isFull())

 printf("Stack is Full...\n");

 else

{

 st.array[st.top + 1] = num;

 st.top++;

 }

}

 int pop()

{

 if (isEmpty())

 printf("Stack is Empty...\n");

 else

{

 st.top = st.top - 1;

 return st.array[st.top+1];

 }

}

void printStack()

{

 if(!isEmpty())

{

 int temp = pop();

 printStack();

 printf(" %d ", temp);

 push(temp);

 }

}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 27 of 31

17330

void insertAtBottom(int item)

 {

 if (isEmpty())

{

 push(item);

 }

else

 {

 int top = pop();

 insertAtBottom(item);

 push(top);

 }

}

void reverse()

{

 if (!isEmpty())

 {

 int top = pop();

 reverse();

 insertAtBottom(top);

 }

}

int getSize()

{

 return st.top+1;

}

int main()

{

 initialize(st);

 push(1);

 push(2);

 push(3);

 push(4);

 push(5);

 printf("Original Stack\n");

 printStack();

 reverse();

 printf("\nReversed Stack\n");

 printStack();

 getch();

 return 0;

}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 28 of 31

17330

Output

Original Stack

 1 2 3 4 5

Reversed Stack

 5 4 3 2 1

 b) Write a program to calculate number node in binary search tree.

8M

 Ans:

#include<stdio.h>

struct tree

{

 struct tree *lchild ;

 int data ;

 struct tree *rchild ;

};

struct tree *root ,*new, *curr ,*prev ;

int ch,n ;

char c ;

main()

{

 do

 {

 clrscr();

 printf("\n---------------------------");

 printf("\n M E N U ");

 printf("\n---------------------------");

 printf("\n 1 . C R E A T E ");

 printf("\n 2 . COUNT ");

 printf("\n 3 . E X I T ");

 printf("\n---------------------------");

 printf("\n Enter Your Choice => ");

 scanf("%d",&ch);

 switch(ch)

 {

 case 1 : create();

 break ;

(Correct

program: 8

marks) (Any

other relevant

logic can be

considered.)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 29 of 31

17330

 case 2 : printf("\nThe number of nodes in tree are :%d\n",count(root));

 getch();

 break ;

 case 3 : exit(0);

 }

 } while(ch != 3);

return(0);

}

/* FUNCTION TO CREATE A TREE */

int create()

{

 printf("\nEnter the Root Element ");

 scanf("%d",&n);

 root = (struct tree *) malloc(sizeof(struct tree));

 root -> lchild = NULL ;

 root -> data = n ;

 root -> rchild = NULL ;

 printf("\nDo you want to continue ? ");

 c = getch();

 while (c == 'y' || c =='Y')

 {

 printf("\nEnter the next Element ");

 scanf("%d",&n);

 new = (struct tree *) malloc(sizeof(struct tree));

 new -> lchild = NULL ;

 new -> data = n ;

 new -> rchild = NULL ;

 curr = root ;

 while (curr != NULL)

 {

 prev = curr ;

 if (curr -> data > new -> data)

 curr = curr -> lchild ;

 else

 curr = curr -> rchild ;

 }

 if(prev -> data > new -> data)

 prev -> lchild = new ;

 else

 prev -> rchild = new ;

 printf("\nDo you want to continue ? ");

 c = getch();

 }

}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 30 of 31

17330

 int count(struct tree *p)

 {

if(p == NULL)

return(0);

 else if(p->lchild == NULL && p->rchild == NULL)

 return(1);

else return(1 + (count(p->lchild) + count(p->rchild)));

 }

 c) Consider the graph ‘G’ in fig.

i) Find all simple paths from C- A.

ii) Find all simple paths from D-B.

iii) Find indeg [B] and outdeg[C].

iv) Find the adjacency matrix A for graph.

v) Give the adjacency list representation of graph.

8M

 Ans: i) Find all simple paths from C- A.

(a) C -> A

(b) C-> D-> A

ii) Find all simple paths from D-B.

(a) D-> C-> B

(b) D-> C-> A-> B

(c) D-> A-> B

iii) Find indeg [B] and outdeg[C].

(a) indeg [B] : 2

(b) outdeg [C] : 3

(i:1 mark,ii:1

mark,iii:2

marks,iv:2

marks,v:2

marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

__

Page 31 of 31

17330

vi) Find the adjacency matrix A for graph.

 A B C D

A 0 1 0 0

B 0 0 0 0

C 1 1 0 1

D 1 0 1 0

iv) Give the adjacency list representation of graph.

