

Subject code :

17315

Page 1 of 18

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject code :

Page **2** of **18**

17315

Q No.	Answer	marks
1-A	Any 4	
1A-a	Sensible Heat: - Sensible heat is the heat that must be transferred to raise or	1
	lower the temperature of a substance or mixture of substance.	
	Heat capacity: It is the amount of heat required to increase the temperature of	1
	one gram of substance by one degree.	
1A-b	Law of conservation of mass: It states that	2
	For any process input= output+accumulation	
1A-c	Value of R:	1
	1.987 Kcal/kmol.K	
	8.315 J/mol.K	1
1A-d	$CO+2H_2 \rightarrow CH_3OH$	2
	Stoichiometric coefficient of $CO:H_2 = 1:2$	
1 A-e	Law for real gas is	1
	Vander Waal's equation of state:	
	$(P+a/V^2)(V-b)=nRT$	1
	Where a & b are constants	
1A-f	Law of conservation of energy:	1
	Energy input= energy output + accumulation	1
1-B	Any 2	12
1B-a	Basis: 100 kmoles of feed	
	A fed= 60 kmol	
	B fed=30 kmol	
	Inert fed = 10 kmol	
	Reaction is $2A+B \longrightarrow C$	2

			Subject code :	17315	Page 3 of 1
	Conversion of A =80)%			
	A converted = $(80/10)$	00) *60 = 48 kmol			
	A unreacted= 60-48	= 12 kmol			
	B reacted = 24 kmol				
	B unreacted = $30-24$	= 6 kmol			
	C formed= 24 kmol	l			2
	Inert= 10 kmol				
	Composition of pro	duct stream:			
	component	kmol	Mol%		
	A	12	23.07		
	В	6	11.54		
	С	24	46.15		2
	Inert	10	19.23		
	total	52			
В-р	Basis: 1000 kg benze 1000 Kg feed 28% benzene 72% toluene	ene-toluene	Distillate Xkg 52% benzene, Bottom product Y 5% benzene	kg	1
	Overall balance is 1000= X+ Y Benzene balance is				1

	Subject code :	17315	Page 4 of 18
	(28/100)* 1000= 0.52X + 0.05Y		1
	Solving		
	X = 489.36kg and $Y = 510.64$ Kg		
	Distillate= 489.36kg		2
	Bottom product = 510.64 Kg		
1B-c	Basis: 1 Kg HCl acid		1
	$4HCl + O_2 \rightarrow 2Cl_2 + 2 H_2O$		
	HCl fed = $1/36.5 = 0.027$ kmoles		1
	From reaction		
	Oxygen theoretically required = $0.027/4 = 6.85 \times 10^{-3}$		1
	% excess = 30		
	Oxygen fed = $8.9*10^{-3}$ kmoles		1
	Air fed = 0.042 kmoles		1
	= 1.22 kg		1
2	Any 4		16
2-a	Basis: 1000 Kg/hr HCHO formed		
	$CH_3OH \rightarrow HCHO + H_2$		
	HCHO formed = 1000/ 30 = 33.33 kmole/h		1
	From reaction, CH_3OH reacted = 33.33 kmole/h		1
	Conversion = 65%		
	Conversion= (kmoles of CH ₃ OH reacted/kmoles of CH ₃ OH fed)* 100	0	1
	Therefore CH_3OH fed = 51.28		
	Feed rate of methanol= 51.28 * 32 kmol/h		
	= 1640.96 Kg/h		1
2-b	Hess's law:		

	Subject code : 17315	Page 5 of 18
	It states that the heat involved in a chemical reaction is same whether the	2
	reaction takes place in a single or in several steps.	
	A \longrightarrow B $\Delta T1$	
	$B \longrightarrow C \Delta T2$	2
	$C \longrightarrow D \Delta T3$	
	$A \longrightarrow D \Delta T$	
	Then	
	$\Delta T = \Delta T 1 + \Delta T 2 + \Delta T 3$	
2-c	Basis: 4.73 kg coal	
	$C+O_2 \rightarrow CO_2$	
	At NTP, P= 101.325 KPa	
	T= 273 K	1
	PV=nRT	
	Or n = PV/RT	
	Moles of $CO_2 = 0.237$ kmoles	1
	Weight of $CO_2 = 0.237*44 = 10.428 \text{ kg}$	
	Carbon in the sample = $(12/44)10.428 = 2.844$ kg	1
	Carbon content in the sample = $(2.844/4.73)100$	
	= 60.13%	1
2-d	Basis: 2000 kg wet solid	
		1
	→ Water Xkg	
	2000 Kg feed	
	70% solid \longrightarrow dryer	
	Product V kg	

		Subject code :	17315	Page 6 of 1
		1% moisture		
	Overall balance is			
	2000 = X + Y			1
	Balance for solid			
	0.70 * 2000 = 0.99 * Y			1
	Y = 1414.14 kg			
	X = 585.86			
	Water removed = 585.86 kg			1
	Product obtained = 1414.14 kg			
2-е	Basis:15 kg propane			
	Moles $n = 15/44 = 0.341$ kmoles			1
	At NTP, P= 101.325 KPa			1
	T= 273 K			
	PV=nRT			1
	Or $V = nRT/P$			
	= 0.341* 8.314 * 273/101.325			1
	$= 7.64 \text{ m}^3$			
2-f	Basis: 1 mol liquid C ₅ H ₁₂			
	$\Delta H^0_R = \Sigma \Delta H^0_{f(pr)} - \Sigma \Delta H^0_{f(react)}$			2
	= [(-393.51*5)+(-285.83*6)]- (-173.49)			
	= -3509.04KJ			2
3	Any 4			16
3-a	Basis: Fixed mass of gas at at constant temperatu	ire		
	Initial volume V1= $1m^3$			1
	Initial pressure P1= P1atm			
	Final volume $V1 = V2m^3$			

	Subject code : 17	315	Page 7 of 18
	Final pressure P2= 1.85P1atm		1
	P1V1/T1 = P2V2/T2		1
	P1*1/T = 1.85P1*V2/T		
	$V2=0.5405 m^3$		1
3-b	Basis: 1 kmol methane gas		
	$Q = n[19.2494(T2-T1) + 52.1135*10^{-3}/2(T2^{2} - T1^{2}) + 11.973*10^{-6}/3 (T2^{2} - T1^{-6}) + 11.973*10^{-6}/3 (T$	$2^{3}-$	2
	$T1^{3}$) - 11.3173 * 10 ⁻⁹ /4 ($T2^{4} - T1^{4}$)		
	$Q = 1[19.2494(523-303) + 52.1135*10^{-3}/2(523^{2} - 303^{2}) + 11.973*10^{-6}/2(523^{2} - 303^{2}) + 11.9$	3 (1
	$523^3 - 303^3$) - 11.3173 * 10 ⁻⁹ /4 ($523^4 - 303^4$)		
	= 4234.86 + 4735.03 + 459.9 - 187.84		1
	= 9241.96 KJ		
3-с	Basis:100 kg coal		
	Burnt C Xkg		
	1000 Kg feed		1
	63% C burner		
	24% ash		
	Refuse Y kg		
	7% C, 93% ash		
	Component balance for ash		
	24= 0.93 Y		1
	Or $Y = 25.80 \text{ Kg}$		
	Balance for carbon		
	63 = X + 0.07 * 25.80		
	X= 61.194 Kg		1

		Subject code :	17315	Page 8 of 18
Unburnt carbo	on = 0.07*25.80 = 1.806 Kg			
% of original	C unburnt = (1.806/ 63)*100			1
	= 2.867%			
3-d				
$N_2 + 3H_2$	\rightarrow 2NH ₃			1
1 kmol N ₂ = 3	3 kmol H ₂			
25 " =	?			
Molal flow ra	te of $H_2 = 75$ kmol/hr			1
% conversion	of N ₂ =(N2 reacted/ N2 fed)*100			
25 = (N2 read	eted/ 25)*100			
N_2 reacted =	6.25 kmol/h			1
From reaction	n NH ₃ formed = 12.50 Kmol/h			
Kg NH ₃ form	med = 12.50 * 17 = 212.5 Kg			1
3-e Basis: 1 kmol	I NH ₃			
Q = n[Cpm2($T_2 - T_0$) - Cpm1($T_1 - T_0$)]			2
= 1[37.70	063(422-298) - 35.8641(311-298)]			
= 4209.35	KJ			2
3-f Basis: 100 kn	nol air			
Avg. mol.wt	of air = $M_1X_1 + M_2X_2$			1
	= 28 * 0.79 + 32 * 0.21			
	= 28.84			1
Density = P*	Mav / RT			1
= 10	1.325 * 28.84/ 8.314 * 273			
= 1.2	287 Kg/m ³			1
4 Any 2				16

	Subject code :	17315	Page 9 of 1
4-a Basis: Mixture of N ₂ , CO ₂ , O ₂			
Let X_1 , X_2 , X_3 be the mol fraction of N_2 , C	O ₂ , O ₂ respectively.		1
1st person 28 $X_1 + 44 X_2 + 32 X_3 = 30.08$			1
2^{nd} person 14 X ₁ + 44 X ₂ + 32 X ₃ = 30.08			1
$X_1 + X_2 + X_3 = 1$			1
Solving the equations, we get			
$X_1 = 0.81$			
$X_2 = 0.11$			2
$X_3 = 0.08$			
Volume % of $N_2 = 81\%$			
Volume % of CO₂ = 11%			2
Volume % of $O_2 = 8\%$			
4-b Basis: Mixture of N ₂ , CO ₂			1
$\mathbf{X}_{\mathrm{CO2}} = 1\text{-} \mathbf{X}_{\mathrm{N2}}$			1
Avg. mol.wt = $M_1X_1+M_2X_2$			1
$31 = 28 X_{N2} + 44(1 - X_{N2})$			
Solving, X _{N2} =0. 8125			2
X _{CO2} =0.1875			
Partial pressure of $N_2 = Total pressure * mol.fr$			1
= 101.325 * 0.8125			2
= 82.33 KPa			
4-c Basis: 100 kg flaked seeds			
Hex <u>ane</u>	hexane+oil		1
seeds extractor			1
18.6% oil,			
69% solid	cake Y kg0.8% oil, 87.79	% solid	

	S	ubject code :	17315	Page 10 of 1
	Component balance for solids			
	69 = 0.877 Y			1
	Or Y = 78.68 Kg			1
	Oil in cake = $(0.8/100)78.68$			
	= 0.63 Kg			1
	Oil balance is			
	18.6 = 0.63 + oil recovered			1
	Oil recovered = 17.97 kg			1
	% oil recovery = (17.97/18.6)* 100 = 96.61%			1
5	Any 2			16
5-a	Basis: 100 Kg of coke			
	Amount of carbon in coke = $0.9 \times 100 = 90 \text{ Kg}$			
	Amount of C = $90/12 = 7.5$ katom			1
	Reaction : $C + O_2 - CO_2$			
	From reaction, 1 katom C = 1 kmol O_2 12 Kg C = 32 Kg O_2			
	90 Kg C = $(32/12) \times 90$ Kg O ₂			
	O_2 theoretically required = (32/12) x 90 = 240 Kg			
	O_2 theoretically required = (240 x1000) / 32 = 7500 m	mol		1
	Moles of O_2 theoretically required for 100 kg coke combustion = 750 mol ans (a)	for complete		
	O_2 theoretically required = 240 / 32 = 7.5 kmol			1
	Air theoretically required = $7.5 * (100/21) = 35.71$ km	mol		
		% excess		

			Subject code :	17315	Page 11 of 1 8
	Air actually supplied	= Air theoretically require	ed (1+)		
	Air actually supplied	50 = 35.71 x (1+)	= 53.57 kmol		1
	Air actually supplied	= 53.57 kmol			
	O_2 in air supplied =	$53.57 \ge 0.21 = 11.25 $ km	nol		
	N_2 in air supplied =	$53.57 \ge 0.79 = 42.32 \text{ km}$	ol		1
	O_2 reacted for complete	ete combustion of coke =	7.5 kmol		
	Material Balance of	O_2			
	O_2 in air supplied =	1			
	O_2 Unreacted = 11.23				
	CO_2 produced = (1/1)				
	Analysis of Gases at the end of Combustion:				
	Component	Quantity, Kmol	Mole%		2
	CO ₂	7.5	14		
	N ₂	42.32	79		
	O ₂	3.75	07		
	Total	53.57	100		
-b	Basis : 15000 mol/h	of N ₂ - H ₂ mixture			
	Molal flow rate of ga	s mixture = 5 kmol/h			
	$X N_2 = 25/100 = 0.25$	1			
	$X H_2 = 75/100 = 0.75$				
	$C_P^{o} \text{ mix} = \Sigma C_P^{o} \text{ mix} \cdot X \text{ i} = X N_2 \cdot C_P^{o} N_2 + X H_2 \cdot C_P^{o} H_2$				
	= 0.25 (29.5909 + 0.75 (28.6105-	-5.141x 10 ⁻³ T + 13.1829 x ⊦1.0194 x 10 ⁻³ T − 0.1476 x	$10^{-6}T^2 - 4.968 \times 10^{-9}T^3$) $10^{-6}T^2 + 0.769 \times 10^{-9}T^3$)		2

$ H_2 + \frac{1}{2} O_2 → H_2O C + O_2 → CO_2 From reactions : 1 kmol of H_2 = 0.5 kmol O_2 2 kg of H_2 = 16 kg O_2 1 katom of C = 1 kmol O_2 12 kg of C = 32 kg O_2 Therotical requriment of O_2 for H_2 = 0.15 x (16/2) = 1.20 Kg Therotical requriment of O_2 for C = 0.85 x (32/12) = 2.27 Kg Total therotical requriment of O_2 = 1.20 + 2.27 = 3.47 Kg Amount of air required for combustion = (3.47/0.23) = 15.09 kg ans (Air contais 23% O_2 and 77 % N2 on weight basis) Amount of air supplied = 15.09 x 1.15 = 17.35 kg N2 in supplied air = (0.23 x 17.35) /28 = 0.477 kmol O2 in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O2 in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO2 (0.85/12) katom C = ? CO2 produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO2 O2 and N2$	Page 13 of 18
C + O ₂ → CO ₂ From reactions : 1 kmol of H ₂ = 0.5 kmol O ₂ 2 kg of H ₂ = 16 kg O ₂ 1 katom of C = 1 kmol O ₂ 12 kg of C = 32 kg O ₂ Therotical requriment of O ₂ for H ₂ = 0.15 x (16/2) =1.20 Kg Therotical requriment of O ₂ for C = 0.85 x (32/12) = 2.27 Kg Total therotical requriment of O ₂ = 1.20 + 2.27 = 3.47 Kg Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O ₂ and 77 % N ₂ on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N ₂ in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O ₂ in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O ₂ in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	1
From reactions : 1 kmol of $H_2 = 0.5$ kmol O_2 2 kg of $H_2 = 16$ kg O_2 1 katom of $C = 1$ kmol O_2 12 kg of $C = 32$ kg O_2 Therotical requriment of O_2 for $H_2 = 0.15$ x (16/2) =1.20 Kg Therotical requriment of O_2 for $C = 0.85$ x (32/12) = 2.27 Kg Total therotical requriment of $O_2 = 1.20 + 2.27 = 3.47$ Kg Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O_2 and 77 % N_2 on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N_2 in supplied air = (0.27 x 17.35) /28 = 0.477 kmol O_2 in supplied air = (0.23 x (17.35-15.09)] /32 =0.016 kmol We have , 1 katom of $C = 1$ kmol CO_2 (0.85/12) katom $C = ?$ CO_2 produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO_2 O_2 and N_2	
$2 \text{ kg of } H_2 = 16 \text{ kg } O_2$ $1 \text{ katom of } C = 1 \text{ kmol } O_2$ $12 \text{ kg of } C = 32 \text{ kg } O_2$ Therotical requriment of O_2 for $H_2 = 0.15 \text{ x} (16/2) = 1.20 \text{ Kg}$ Therotical requriment of O_2 for $C = 0.85 \text{ x} (32/12) = 2.27 \text{ Kg}$ Total therotical requriment of $O_2 = 1.20 + 2.27 = 3.47 \text{ Kg}$ Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O_2 and 77 % N_2 on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N_2 in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O_2 in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O_2 in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO_2 (0.85/12) katom C = ? CO_2 produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO_2 O_2 and N_2	
1 katom of C = 1 kmol O ₂ 12 kg of C = 32 kg O ₂ Therotical requriment of O ₂ for H ₂ = 0.15 x (16/2) =1.20 Kg Therotical requriment of O ₂ for C = 0.85 x (32/12) = 2.27 Kg Total therotical requriment of O ₂ = 1.20 + 2.27 = 3.47 Kg Amount of air required for combustion = (3.47/0.23) = 15.09 kg ans (Air contais 23% O ₂ and 77 % N ₂ on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N ₂ in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O ₂ in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O ₂ in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	
12 kg of C = 32 kg O ₂ Therotical requirement of O ₂ for H ₂ = 0.15 x (16/2) =1.20 Kg Therotical requirement of O ₂ for C = 0.85 x (32/12) = 2.27 Kg Total therotical requirement of O ₂ = 1.20 + 2.27 = 3.47 Kg Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O ₂ and 77 % N ₂ on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N ₂ in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O ₂ in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O ₂ in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	
Therotical requriment of O ₂ for H ₂ = 0.15 x (16/2) =1.20 Kg Therotical requriment of O ₂ for C = 0.85 x (32/12) = 2.27 Kg Total therotical requriment of O ₂ = 1.20 + 2.27 = 3.47 Kg Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O ₂ and 77 % N ₂ on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N ₂ in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O ₂ in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O ₂ in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	1
Therotical requriment of O_2 for $C = 0.85 \times (32/12) = 2.27 \text{ Kg}$ Total therotical requriment of $O_2 = 1.20 + 2.27 = 3.47 \text{ Kg}$ Amount of air required for combustion = $(3.47/0.23) = 15.09 \text{ kg}$ ans (Air contais 23% O_2 and 77 % N_2 on weight basis) Amount of air supplied = $15.09 \times 1.15 = 17.35 \text{ kg}$ N_2 in supplied air = $(0.77 \times 17.35)/28 = 0.477 \text{ kmol}$ O_2 in supplied air = $(0.23 \times 17.35)/32 = 0.125 \text{ kmol}$ O_2 in dry product = $[0.23x(17.35-15.09)]/32 = 0.016 \text{ kmol}$ We have , 1 katom of $C = 1 \text{ kmol} CO_2$ (0.85/12) katom C = ? $CO_2 \text{ produced } = (1/1) \times (0.85/12) = 0.071 \text{ kmol}$ The product flue gases contain CO_2 O_2 and N_2	
Total therotical requiment of $O_2 = 1.20 + 2.27 = 3.47$ Kg Amount of air required for combustion = (3.47/0.23) =15.09 kg ans (Air contais 23% O_2 and 77 % N_2 on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N_2 in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O_2 in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O_2 in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO_2 produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	
Amount of air required for combustion = $(3.47/0.23) = 15.09 \text{ kg} \text{ ans}$ (Air contais 23% O ₂ and 77 % N ₂ on weight basis) Amount of air supplied = $15.09 \times 1.15 = 17.35 \text{ kg}$ N ₂ in supplied air = $(0.77 \times 17.35)/28 = 0.477 \text{ kmol}$ O ₂ in supplied air = $(0.23 \times 17.35)/32 = 0.125 \text{ kmol}$ O ₂ in dry product = $[0.23x(17.35-15.09)]/32 = 0.016 \text{ kmol}$ We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = $(1/1) \times (0.85/12) = 0.071 \text{ kmol}$ The product flue gases contain CO ₂ . O ₂ and N ₂	
(Air contais 23% O_2 and 77 % N_2 on weight basis) Amount of air supplied = 15.09 x 1.15 =17.35 kg N_2 in supplied air = (0.77 x 17.35) /28 = 0.477 kmol O_2 in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O_2 in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	1
Amount of air supplied = $15.09 \times 1.15 = 17.35 \text{ kg}$ N ₂ in supplied air = $(0.77 \times 17.35)/28 = 0.477 \text{ kmol}$ O ₂ in supplied air = $(0.23 \times 17.35)/32 = 0.125 \text{ kmol}$ O ₂ in dry product = $[0.23x(17.35-15.09)]/32 = 0.016 \text{ kmol}$ We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = $(1/1) \times (0.85/12) = 0.071 \text{ kmol}$ The product flue gases contain CO ₂ O ₂ and N ₂	
N ₂ in supplied air = $(0.77 \times 17.35)/28 = 0.477$ kmol O ₂ in supplied air = $(0.23 \times 17.35)/32 = 0.125$ kmol O ₂ in dry product = $[0.23x(17.35-15.09)]/32 = 0.016$ kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = $(1/1) \times (0.85/12) = 0.071$ kmol The product flue gases contain CO ₂ O ₂ and N ₂	
O_2 in supplied air = (0.23 x 17.35) /32 = 0.125 kmol O_2 in dry product = [0.23x(17.35-15.09)] /32 =0.016 kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO_2 produced = (1/1) x(0.85/12) = 0.071 kmol The product flue gases contain CO ₂ O ₂ and N ₂	1
O_2 in dry product = $[0.23x(17.35-15.09)]/32 = 0.016$ kmol We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = $(1/1) x(0.85/12) = 0.071$ kmol The product flue gases contain CO ₂ O ₂ and N ₂	1
We have , 1 katom of C = 1 kmol CO ₂ (0.85/12) katom C = ? CO ₂ produced = $(1/1) \times (0.85/12) = 0.071$ kmol The product flue gases contain CO ₂ . O ₂ and N ₂	
(0.85/12) katom C = ? CO ₂ produced = $(1/1) \times (0.85/12) = 0.071$ kmol The product flue gases contain CO ₂ . O ₂ and N ₂	
$CO_2 \text{ produced} = (1/1) \text{ x}(0.85/12) = 0.071 \text{ kmol}$	1
The product flue gases contain CO ₂ . O ₂ and N ₂	
The product flue gases contain CO_2 , O_2 and N_2	1
For ideal gases, Volume % = Mole %	

		Subject code :	17315	Page 14 of 18
Component	Quantity, Kmol	Mole%		2
CO ₂	0.071	12.6		
N ₂	0.016	2.8		
O ₂	0.477	84.6		
Total	0.564	100		
Any 2			<u> </u>	16
Basis: 1000 kg of De Waste acid, 55 % H Con.nitric acid 90% HNO ₃ Con.sulphuric acid 95% H ₂ SO ₄	esired mixed acid I ₂ SO ₄ ,20% HNO ₃ ending 100 60% F	Desired mix)0 kg H ₂ SO ₄ , 26% HNO ₃	ed acid	1
Let x,y and Z be the l	1			
Overall material Re				
X + Y + Z = 1000	1			
Material Balance Of				
0.55X + 0.95 Y = 0.60				
0.55X + 0.95 Y = 600				
600 – 0.55 X				
V -				

	Subject code :	17315	Page 15 of 18
0.95			1
$Y = 631.58 - 0.58 X - \dots (2)$			
Material Balance Of HNO ₃			
0.2X + 0.90 Z = 0.26 x 1000			
0.2X + 0.95Y = 260			
260 - 0.2 X			
Z =			
0.90			
$Z = 288.9 - 0.222 X - \dots (3)$			1
Putting values of Y and Z in equation (1)	from (2) and (3) and solution	ve for X	
X + (631.58-0.58 X) +(288.9 -0.222 X) =1	000		
0.198 X = 79.52			1
X = 401.6 kg			
We have $Y = 631.58 - 0.58 X$			
Y = 631.58 – 0.58 x 401.6 = 398.	65 Kg		1
We have $Z = 288.9 - 0.222 X$			
$Z = 288.9 - 0.222 \times 401.6 = 199.$.75 Kg		
Waste acid = 401.6 kg			
Concentrated sulphuric acid = 398.65 kg			
Concentrated nitric acid = 199.75 kg			
Basis: 1 Kmol /h benzene fed to reactor			
	_		
Benzene, HNO ₃ , H ₂ SO ₄ \rightarrow Reactor			
\rightarrow Product stream NB, DNB, HNO ₃ et	 c		

Subject code : 17	7315	Page 16 of 18
H_2SO_4		
Reaction 1: $C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$		
H_2SO_4		1
Reaction 2: $C_6H_5NO_2 + HNO_3 - C_6H_4(NO_2)_2 + H_2O$		
Benzene reacted = $0.9 \times 1 = 0.9 \text{ kmol/h}$		
Let X be the dinitrobenzene formed per hour		
(kmol nitrobenzene /h) / (kmol dinitrobenzene /h) = $17/1$		
Nitrobenzene produced = 17 x kmol		
From reaction 1 and 2		1
1 kmol of $C_6H_6 = 1$ kmol of $C_6H_5NO_2$		
= 1 kmol of $C_6H_4(NO_2)_2$		
Benzene reacted to produce nitrobenzene = $(1/1) \times 17 \times \text{kmol/hr}$		1
Benzene reacted to dinitrobenzene $= x \text{ kmol}$		
Benzene reacted = $0.9 = 17 \text{ x} + \text{ x}$		
x = 0.05 kmol/hr		
Nitrobenzene produce = $17(0.05) = 0.85$ kmol/h		1
1 kmol of $C_6H_6 = 1$ kmol HNO ₃		
Stoichometric requriment of nitric acid for		
1 kmol benzene $/h = 1/1 x 1 = 1 $ kmol/h		
		1
Nitric acid fed to reactor = 1 [$1 + (65/100)$] = 1.65 kmol/h		
Nitric acid fed to reactor = $1.65 \times 63 = 104.95 \text{ kg/h}$		
Nitrobenzene produce = $17(0.05) = 0.85 \times 123 = 104.55 \text{ kg/h}$		1
Benzene fed to reactor = $1 \times 78 = 78 \text{ kg/hr}$		
Nitric acid fed to reactor fed to produce of 2000 kg/br of nitrobangene -	_	1
$(103.95/104.55) \times 2000 = 1988.5 \text{ kg/hr}$	-	
$(103.73/107.33) \land 2000 - 1700.3 \text{ kg/III}$		

	Subject code : 17315	Page 17 of 18
	Benzene fed to reactor fed to produce of 2000 kg/hr of nitrobenzene = $(78/104.55) \times 2000 = 1492.1$ kg/hr	1
б-с	Basis : One day of operation	1
	Wet solids handled = 1000 kg	
	Let X be the Kg of product obtained from first dryer and Y be the Kg of water removed in first dryer.	
	Material Balance of solids over First Dryer :	
	0.50 * 1000 = 0.80 * X	1
	X = 625 Kg	
	Overall Material Balance over First Dryer :	
	X + Y = 1000	
	625 + Y = 1000	1
	Y= 375 Kg Input to second dryer is 625 Kg of wet solid containing 20% moisture Material Balance of solids over Second Dryer :	1
	0.8 * 625 = 0.98 * Z	
	Z = 510.20 Kg	
	Weight of final product = 510.20 Kg ans. (b)	
	Overall Material Balance over Second Dryer :	2
	625 = 510.20 + Water removed	
	Water removed in second dryer = $625 - 510.20 = 114.8$ Kg	

 Subject code : 17315	Page 18 of 18
Water in wet solids fed to first dryer $=0.5 * 1000 = 500 \text{ Kg}$	1
% of original water removed in first dryer	
= (375/500) *100 = 75 %	
% of original water removed in Second dryer	2
= (114.8/500) *100 = 22.96 %	
% of original water removed in first dryer = 75 %	
% of original water removed in Second dryer = 22.96 % ans. (a)	