

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION <u>Model Answer</u>

Subject code : 17312

Page 1 of 36

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject code : 17312

Page 2 of 36

Q No.	Answer	marks
1	Any 10	20
1-a	organic chemistry: it is the study of substances obtained from living organisms	1
	and chemical compounds that contain carbon-hydrogen bonds.	
	inorganic chemistry: Inorganic chemistry is the study of the synthesis,	1
	reactions, structures and properties of compounds of the elements and chemical	
	compounds that do not contain carbon-hydrogen bonds	
1-b	structural formula of	
	i) ethanoic acid- CH ₃ -C-OH	1
	Ο	
	ii) formaldehyde- H-C-H	1
	" 0	
1-c	Physical properies of Alkane:	¹ /2 mark
		each
	1) First four members(C1 to C4) of alkane are gases, next thirteen members	eden
	(C5 to C17) are colourless liquids and higher alkanes are solids.	
	2) Liquid alkanes are lighter than water.	
	3) Alkanes are insoluble in water but freely soluble in organic solvent.	
	4) Boiling point and specific gravity increases with increase in molecular	
	weight.	

-

_

	Subject code : 17312	Page 5 of 36
	a) Benzene	
	b) Toluene	
	These are cyclic compounds having six membered ring of carbon atoms	
	with alternate single and double bonds	
-h	Functional group – It is a group of atoms bonded together in a unique fashion	1
	which is present in the molecule & it is responsible for its characteristics	
	chemical properties.	
	e.g. –OH,-COOH are the functional groups of alcohol & acid respectively.	1
-i	Raoult's law: It states that the partial vapor pressure of each component of an	2
	ideal mixture of liquids is equal to the vapor pressure of the pure component	
	multiplied by its mole fraction in the mixture.	
l-j	Indicator : A chemical indicator is a substance that undergoes a distinct	1
	observable change when conditions in its solution change. This could be a color	
	change, precipitate formation, bubble formation, temperature change, or other.	
	or	
	An indicator is an organic substance used in very small amount to determine the	
	end point in a titration by a visual change of color.	
	ex: phenolphthalein, Methyl orange ,starch etc.(any 2)	1
l-k	IUPAC NAME OF	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		Subject code : 17312	Page 6 of 36
	i) n- propyl alcoholEthanol		1
	ii) sec-butyl alcohol2butanol		1
1-1	Alcohol and phenol		1 mark
	PHENOL	ALCOHOL	each for
	phenol reacts with FeCl ₃ whereas normal	alcohol can not	any 2
	Phenols are acidic	Alcohols are not acidic	
	Phenols are acidic and dissolve in a	Alcohols are not acidic and will not	
	basic solution.	dissolve in a basic solution	
	When phenol react with FeCl ₃ it	Alcohols produce no color change.	
	changes its colour from green to purple.		
	Phenols produce a brown tarry mass	Not observe in alcohol	
	when combined with chromic acid		
	phenols dissolve in aqueous NaOH,	Not observe in alcohol	
	Aromatic	Aliphatic	
2	Any 4		16
2-a	Organic compounds are classified into	o four categories on the basis of	
	structure.		
	Aliphatic compounds :		
	Which consist of open chain of carbon atoms are called aliphatic compounds.		
	Example : (Any 1)		
	a) Propane CH ₃ ⁻ CH ₂ ⁻ CH3		
	b) Acetic acid CH ₃ -COOH		
	Alicyclic compounds:		
	These are cyclic compounds composed of ring of carbon atoms with properties		

	Subject code : 17312	Page 9 of 36
	ethane, structural formula-C ₂ H _{6.etc}	
	2)alkenes: double bond between C=H called as alkenes. general formula of	
	C_nH_{2n}	
	ex: ethene, structural formula- $C_2 H_{4.}$	
	propene, structural formula- C_3 H ₆ , H ₃ C-CH=CH ₂ etc.	
	3)alkynes: triple bond between C=H called as Alkynes. general formula of	
	C_nH_{2n-2}	
	ex: ethyne, structural formula-HC≡CH.	
	Propyne, structural formula-H ₃ C-C≡CH.	
	etc.	
2-c	Rules for nomenclature (any 4)	4
	1. Select the longest continuous chain of carbon atoms, it is known as main or	
	parent chain & other chains attached to it are known as side chains. The no. of	
	carbon atoms present in main chain determines the parent name of hydrocarbon.	
	C	
	1	
	C-C-C-C-C-C	
	2. Number the c atoms of parent chain from the end which gives smallest	
	possible no the carbon carrying the branches.	
	C	
	1	
	C-C-C-C-C-C	
	1 2 3 4 5 6 7	
	3. Prifix the name of substituent to the name of parent hydrocarbon & indicate	
	its position on parent shain	

Subject code : 17312	Page 10 of 36
CH ₃	
1	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	
3-methyl heptane	
4. When more than one substituent's are present on the main chain their names	
are given as per alphabetical order, inserting hyphen (-) in between the names	
of substituents.	
$CH_3 C_2H_5$	
1 1	
H ₃ C-CH-CH ₂ -CH ₂ -CH ₂ -CH ₃	
3-ethyl-2-methyl heptane	
5. When the same substituent is present two or more times in the molecule then	
it is indicated by di, tri, tetra etc to the substituent name.	
CH ₃ CH ₃	
1 1	
H_3C - CH - CH_2 - CH_2 - CH_2 - CH_3	
2,3-dimethyl heptane	
6. The position of double bond or triple bond is indicated by prefixing the no. of carbon preceding such bonds.	f
$H_3C-CH_2-CH=CH-CH_2-CH_2-CH_3$ 3-heptene	
IUPAC NAMES ARE:	
I)1chloro 2,2di methyl propane	1
ii)propanone	1
iii)2amino2methyl propanoic acid	1
iv)3chloro propene	1

			Subject code :	17312	Page 11 of 36
2-е	An organic comp solid chemical con	ound is any me	ember of a large class of gaseo e molecules contain carbon.	ous, liquid, or	4
	Functional Group	Name	Example		
		Alkane	CH ₃ CH ₂ CH ₃ (propane)		
	c==c	Alkene	CH ₃ CH=CH ₂ (propene)		
	с—сн	Alkyne	CH ₃ C CH (propyne)		
	F, Cl, Br, or I	Alkyl halide	CH ₃ Br (methyl bromide)		
	—он	Alcohol	CH ₃ CH ₂ OH (ethanol)		
	—o—	Ether	CH ₃ OCH ₃ (dimethyl ether)		
	NH2	Amine	CH ₃ NH ₂ (methyl amine)		
	о —С—н	Aldehyde	CH ₃ CHO (acetaldehyde)		
	ск	Ketone	CH ₃ COCH ₃ (acetone)		
		acyl chloride	CH ₃ COCl (acetyl chloride)		

	Subject code : 17312	Page 12 of 36
	Carboxylic acid CH ₃ CO2H (acetic acid)	
	$ \underbrace{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } Ester \qquad CH_3CO_2CH_3 \text{ (methyl acetate)} $	
	$ \begin{array}{c} 0 \\ \parallel \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
2-f	Any two reactions of Alkanes:	
		2 mark
	1.Combustion	each for
	The combustion of carbon compounds, especially hydrocarbons, has been the	any 2
	most important source of heat energy for human civilizations throughout	
	recorded history. The practical importance of this reaction cannot be denied, but	
	the massive and uncontrolled chemical changes that take place in combustion	
	make it difficult to deduce mechanistic paths. Using the combustion of propane	
	as an example, we see from the following equation that every covalent bond in	
	the reactants has been broken and an entirely new set of covalent bonds have	
	formed in the products. No other common reaction involves such a profound	
	and pervasive change, and the mechanism of combustion is so complex that	
	chemists are just beginning to explore and understand some of its elementary	
	features.	
	$CH_3-CH_2-CH_3 + 5O_2 \longrightarrow 3CO_2 + 4H_2O + heat$	
	2.Halogenation	
	Halogenation is the replacement of one or more hydrogen atoms in an organic	

	Subject code : 17312 Page 13 of 3
c	compound by a halogen (fluorine, chlorine, bromine or iodine). Unlike the
с	complex transformations of combustion, the halogenation of an alkane appears
t	o be a simple substitution reaction in which a C-H bond is broken and a new
C	C-X bond is formed. The chlorination of methane, shown below, provides a
s	simple example of this reaction.
	$CH_4 + Cl_2 + energy \longrightarrow CH_3Cl + HCl$
s	Since only two covalent bonds are broken (C-H & Cl-Cl) and two covalent
b	bonds are formed (C-Cl & H-Cl), this reaction seems to be an ideal case for
n	nechanistic investigation and speculation. However, one complication is that
a	all the hydrogen atoms of an alkane may undergo substitution, resulting in a
n	nixture of products, as shown in the following unbalanced equation. The
r	relative amounts of the various products depend on the proportion of the two
r	reactants used. In the case of methane, a large excess of the hydrocarbon favors
f	formation of methyl chloride as the chief product; whereas, an excess of
c	chlorine favors formation of chloroform and carbon tetrachloride.
	$CH_4 + Cl_2 + energy$ ——
	$> CH_3Cl + CH_2Cl_2 + CHCl_3 + CCl_4 + HCl$
Г	The following facts must be accomodated by any reasonable mechanism for the
h	nalogenation reaction.
	1. The reactivity of the halogens decreases in the following order: $F_2 >$
	$Cl_2 > Br_2 > I_2.$
	2. We shall confine our attention to chlorine and bromine, since fluorine
	is so explosively reactive it is difficult to control, and iodine is generally

	Subject code : 17312	Page 14 of 36
	unreactive.	
	3.Thermal Cracking	
	The complex alkanes with high molecular weights that are found in crude oil	
	are frequently broken into smaller, more useful alkanes by thermal cracking;	
	alkenes and hydrogen gas are also produced by using this method. Thermal	
	cracking is typically performed at high temperatures, and often in the presence	
	of a catalyst. A mixture of products results, and these alkanes and alkenes can	
	be separated by fractional distillation.	
3	Any 4	16
3-a	Method of preparation of alkene (any two)	4
	By Wurtz Reaction:	
	When alkyl halides are heated with sodium metal in the presence of dry ether,	
	alkanes are obtained (generally having double number of C-atoms than in alkyl	
	halides). This reaction is known as Wurtz reaction and used for the preparation	
	of symmetrical alkanes.	
	$\begin{array}{c} Dry \ ether \\ R-X \ + \ 2Na \ + \ X-R \> R-R \ + \ 2NaX \\ Eg:- \\ CH_3-Br \ + \ Na \ + \ Br-CH_3 \ \longrightarrow \ CH_3-CH_3 \ + \ 2NaBr \\ methyl \ bromide \ ethane \end{array}$	
	2) From unsaturated Hydrocarbons	
	Alkanes can be prepared by the catalytic hydrogenation of unsaturated	
	hydrocarbons in the presence of catalyst 'Ni' or 'pt' at $200 \square C$ to $300 \square C$.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code : 17312	Page 15 of 36
General Equation: $R-CH=CH_2 + H_2 \xrightarrow{Ni} R-CH_2-CH_3$ Where R is H or Alkyl group Eg. $CH_2=CH_2 + H_2 \xrightarrow{Ni} CH_3-CH_3$ ethene ethane $CH_3-C=CH + H_2 \xrightarrow{Ni} CH_3-CH=CH_2 \xrightarrow{Ni} \Delta CH_3-CH_2-CH_3$ properties properties properties of the set of the s	
Or(
3)by dehalogenation of vicinal dihalides,	
4) by cracking of alkanes,	
5)by dehydrohalogenation of alkyl halides	
Any 2 of above methods should be given marks)	
-b i) Isomerism:	2
An isomer is a <u>molecule</u> with the same <u>molecular formula</u> as another molecule	÷,
but with a different <u>chemical structure</u> .	
That is, isomers contain the same number of atoms of each element, but have	e
different arrangements of their atoms. Isomers do not necessarily share simila	r
properties, unless they also have the same <u>functional groups</u> . There are two	D
main formsof isomerism : <u>structural isomerism</u> (or constitutional isomerism)
and stereoisomerism (or spatial isomerism).	
ii)Polymerisation:	
A chemical process that combines several monomers to form a polymer o	r 2
polymeric compound. polymerization. chemical action, chemical change	,
chemical process - (chemistry) any process determined by the atomic and	1
molecular composition and structure of the substances involved	
-c Baeyer's Angle Strain Theory :	4

	Subject code : 17312 Pag	e 16 of 36
≻	Van't Hoff and Lebel proposed tetrahedral geometry of carbon.	
≻	The bond angel is of 109° 28' (or 109.5°) for carbon atom in tetrahedral	
	geometry (methane molecule).	
۶	Baeyer observed different bond angles for different cycloalkanes and also	
	observed some different properties and stability. \neg	
۶	On this basis, he proposed angle strain theory.	
۶	The theory explains reactivity and stability of cycloalkanes.	
۶	Baeyer proposed that the optimum overlap of atomic orbitals is achieved	
	for bond angel of 109.50. In short, it is ideal bond angle for alkane	
	compounds.	
۶	Effective and optimum overlap of atomic orbitals produces maximum bond	
	strength and stable molecule.	
۶	If bond angles deviate from the ideal then ring produce strain.	
۶	Higher the strain higher the instability.	
۶	Higher strain produce increased reactivity and increases heat of	
	combustion.	
۶	Baeyer proposed "any deviation of bond angle from ideal bond angle value	
	(109.50) will produce a strain in molecule. Higher the deviation lesser the	
	instability".	
	Baeyer's theory is based upon some assumptions as following. 1. All ring	
	systems are planar. Deviation from normal tetrahedral angles results in to	
	instable cycloalkanes. 2. The large ring systems involve negative strain	
	hence do not exists. 3. The bond angles in cyclohexane and higher	
	cycloalkanes (cycloheptane, cyclooctane, cyclononane) are not larger	
	than 109.50 because the carbon rings of those compounds are not planar	
	(flat) but they are puckered (Wrinkled).	
\succ	The ring of cyclopropane is triangle. All the three angles are of 60 o in place	

	Subject code : 17312 Page 17 of 36
	of 109.50 (normal bond angle for carbon atom) to adjust them into triangle
	ring system.
\triangleright	In same manner, cyclobutane is square and the bond angles are of 900 in
	place of 109.50 (normal bond angle for carbon atom) to adjust them into
	square ring system.
\triangleright	The deviation for cyclopropane and cyclobutane ring systems then normal
	tetrahedral angle will produce strain in ring. The ring strain will make them
	unstable as compare to molecules having tetrahedral bond angle.
\succ	So, cyclopropane and cyclobutane will easily undergo ring opening
	reactions to form more stable open chain compounds.
\succ	Now compare the stability of cyclopropane and cyclobutane
\succ	The bond angle in cyclopropane is 60°. The normal tetrahedral bond angle
	value is 109.5° . That is why, deviation = (normal tetrahedral bond angle) –
	(actual bond angle) Deviation = $109.5^{\circ} - 60 = 49.5^{\circ}$ The bond angle in
	cyclobutane is 90°. The normal tetrahedral bond angle value is 109.5°. That
	is why, deviation = (normal tetrahedral bond angle) – (actual bond angle) 3
	Page Deviation = $109^{\circ} 5' - 90 = 19.5^{\circ}$. Deviation for cyclopropane is 49.5°
	Deviation for cyclobutane is 19.5° The deviation is higher for cyclopropane
	than cyclobutane therefore cyclopropane is more prone to undergo ring
	opening reactions. As a result of this, the strain is more in cyclopropane as
	compare to cyclobutane. It will make cyclopropane less stable than
	cyclobutane. So, cyclopropane easily undergoes ring opening reaction as
	compare to cyclobutane. According to Baeyer, the relative order of stability
	for some common cycloalkanes is as under. Cyclopentane > Cyclohexane >
	Cyclobutane > Cyclopropane Actual observed order of stability for these
	cycloalkanes is as under. Cyclohexane > Cyclopentane > Cyclobutane >
	Cyclopropane According to Baeyer, the bond angle in cyclopentane is 108°

	Subject code : 17312	Page 18 of 36
	(the geometry is pentagonal) that is very close to tetrahedral angle (109.5°) ,	
	so it is almost free from ring strain. Baeyer also proposed some facts for	
	cyclohexanes that stood incorrect later on.	
	 Cyclohexane is unstable ring due to higher ring strain. 	
	\succ It is difficult to synthesize for cyclohexane and higher ring systems as	
	deviation from the normal tetrahedral value (109.5°) would be larger.	
	The larger deviation will result into more strain and the ring system will be	
	unstable. In conclusion, Baeyer proposed that ring systems smaller or larger	
	than cyclopentane or cyclohexane are unstable due to higher ring strain.	
	Therefore, he assumed that cyclopropane and cyclobutane easily undergo ring	
	opening reaction whereas larger ring systems are difficult to synthesize	
3-d	Uses of acetylene	¹∕₂ mark
		each
	1. Ethyne is useful for artificial ripening and preservation of fruits.	
	2. It is useful in acetylene lamps to generate light.	
	3. Ethyne is used to prepare various organic compounds.	
	4. It is also useful to manufacture important organic compounds like acetic	
	acid, acetaldehyde, ethyl alcohol and polymers like PVCetc.	
	5. It is useful to produce an oxyacetylene flame.	
	6. is widely used as a fuel and a chemical building block.	
	7. Acetylene is used to volatilize carbon in <u>radiocarbon dating</u> .	
	8. Acetylene is sometimes used for <u>carburization</u> (that is, hardening) of	
	steel when the object is too large to fit into a furnace	
3-е	Wurtz-Fittig Reaction	2
		1

	Subject co	ode : 17312	Page 20 of 36
1. Chain isomerism			2
Alcohols with four or mo	ore carbon atoms exhibit this	type of isomeris	m in
which the carbon skeleton	is different.		
CH3- CH2 - CH2- CH2OH			
Butan -1- ol			
CH ₃			
2 - Methylbutan -1-ol			
2 Desition isomerism			
Alconols with three or mo	bre carbon atoms can exhibit p	bosition isomerisi	m. In 2
this type of isomerism the	position of the functional grou	$\begin{array}{c} \text{up 1.e., the -OH } g \\ \hline \end{array}$	group
varies. In other words the	carbon atoms to which the -O	H group is attach	ned 1s
different.			
CH ₃ — CH ₂ — CH ₂ OH			
Propan -1- of			
CH ₃ — CH — CH ₃			
ОН			
Propan -2- ol			
-b i)Reduction of Ketone:			2
By Clemmensen reduction	of ketone with zinc amlgum A	nd HCl	_
$C_{\epsilon}H_{5}COCH_{2} + 4[H] \rightarrow C_{\epsilon}H_{5}COCH_{2} + 4[H] \rightarrow $	5CH2CH2+H2O		
ii)Action of alkyl Halide:	<u>, , , , , , , , , , , , , , , , , , , </u>		
he Friedel–Crafts reacti	ons are a set of reactions d	leveloped by Cl	narles 2
Friedel and James Crafts	in 1877 to attach substitu	ients to an arou	matic
ring. There are two main t	ypes of Friedel–Crafts reaction	s: alkylation reac	ctions

	Subject code : 17312	Page 21 of 36
	and acylation reactions. Both proceed by electrophilic aromatic substitution.	
	The general reaction scheme is shown below.	
	RCI AlCl ₃ catalyst, reflux anhydrous conditions	
1-c	Preparation of phenols (any 2)	4
	i) By fusing sodium benzene sulphonate with caustic soda	
	NaOH NaOH	
	$C_6H_5SO_3Na \rightarrow C_6H_5ONa \rightarrow C_6H_5OH$	
	ii)By heating chlorobenzene under pressure with 10% solution of sodium	
	carbonate or sodium hydroxide at about 300 [°] C in the presence of copper salts as	
	a catalyst	
	$C_6H_5Cl + NaOH \rightarrow C_6H_5OH + NaCl$	
	iii) By Rasching method	
	iv) By passing benzene and air in the presence of vanadium oxide.	
	v) By oxidation of Cumene	
-d	Differentiate between primary, secondary and tertiary alcohols.	4
	To differentiate between primary, secondary and tertiary alcohols, four methods	
	are used (any 2 methods)	
	(1) Oxidation method (2) Action of hot reduced cu. (3) victor mayer's	
	method (4) Lucas test.	
	1) Oxidation method :- i) primary alcohols easily oxidized to aldehydes	
	and then to acids, containing same number of carbon atoms , as the	
	original alcohol.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code :	17312	Page 23 of 36
Isopropyl alcohol acetone		
(secondary)		
$\begin{array}{cccc} CH_{3} \\ CH_{3}-CHOH \\ CH_{3}-CHOH \end{array} \xrightarrow{\begin{array}{c} Cu/300^{0}C \\ CH_{3}-C=CH_{2} + H_{2}O \\ \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3}-C=CH_{2} + H_{2}O \\ \\ CH_{3} \end{array}}$		
Tertiary butyl alcohol isobutylene		
Azeotropic Mixture Azeotropes are defined as the mixtures of liquids which be temperature like a pure liquid and possess same composition of	oil at cor componen	nstant nts in
liquid as well as in vapour phase. Azeotropes are also called c mixtures because whole of the azeotropes changes into vapour s temperature and their components can not be separated distillation. Azeotropes are of two types as described below,	constant bo state at cor by fract	oiling Istant ional
(1) Minimum boiling azeotrope : For the solutions with post there is an intermediate composition for which the vapour p solution is maximum and hence, boiling point is minimum. At the the solution distills at constant temperature without change in con-	sitive devi pressure o his composition.	ation f the sition This

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		Subject of	code : 17312 F	Page 25 of 36
	ons should be same, i.e., 'A' and 'B' are identical in shape, size and character.	force should be weaker than $A - A$ and $B - B$ att ractive forces. 'A' and 'B' have different shape, size and character.	should be greater than $A - A$ and $B - B$ a ive forces. 'A' and 'B' h different shape, size an character.	ttract ave d
	6. Escaping tendency of 'A' and 'B' should be same in pure liquids and in the solution.	6. 'A' and 'B' escape easily showing higher vapour pressure than the expected value.	6. Escaping tendency both components 'A' ar is lowered showing low vapour pressure than expected ideally.	of id 'B' ver
	7.Examples: benzene + toluene: n-hexane + n-heptane;	7. Examples: Acetone +ethanol	7. Examples: Acetone + aniline;	
5	Any 4			16
5-a	A solution is a mixture in wh	ich substances are inter m	ixed so intimately that	1
	they can not be observed as a s	separate component.		
	Types of solutions :			3
	1) solid in liquid solutions			
	Example :Mercury	in zinc , Mercury in Gold,	b) CuSO ₄ .5H ₂ o	
	2) Liquid in liquid			
	Example : Alcoho	ol in water		
	3) Gas in liquid			
	Example : water va	pours in air, mist.		
	4) liquid in gas			
	example: CO ₂ dissolved in wat	er		
	5) liquid in solid			
	example: salt in water			
	6) gas in gas			

	Subject code : 17312	Page 26 of 36
	examples: mixtures of gases.	
	7) solid in solid	
	examples: copper in gold, zinc in copper	
5-b	paraffin hydrocarbon chemical compound also called alkane any of the	2
	saturated hydrocarbons having the general formula C nH 2 n+2, C being a	
	carbon atom, H a hydrogen atom, and n an integer.	
	The word "paraffin" is used to refer to the paraffin wax found in candles and	
	electrical insulation, as well as the fuel kerosene in some countries. Paraffin is	2
	made of long-chain alkanes, which are made up of only carbon and hydrogen	2
	atoms. In addition, all the chemical bonds in alkanes are single bonds. The two	
	main industrial sources of alkanes are crude oil and natural gas.	
	The general chemical formula for paraffin wax is C_nH_{2n+2} , where "n" has an	
	average value between 20 and 30. Paraffin wax is a type of hydrocarbon known	
	as an "alkane."	
5-c	ANY TWO REACTIONS OF ALKENES:	2 marks
	1.Markovnikov's Rule: The addition of a proton acid to the double bond of an	each for
	alkene results in a product with the acid hydrogen bound to the carbon atom	any 2
	that already has the greater number of hydrogens attached.	

	Subject code : 17312	Page 28 of 36
4.0	Catalytic Hydrogenation	
Th	is is the addition of a hydrogen molecule to a compound using a (usually Pt,	
Pd,	Ni) catalyst.	
Wł	nen the catalyst is in a different physical state to the other reactants it is	
cal	led Heterogeneous catalysis (E.g. a solid catalyst with a liquid and a gas).	
In	contrast a liquid catalyst in a reaction solution is an example of	
hoi	mogeneous catalysis (acid catalyzed alcohol dehydration).	
Du	ring catalytic hydrogenation, the hydrogen adsorbs onto the surface of the	
me	tal catalyst, and they add syn to the	
a 5. 1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	
Int	the presence of a catalyst—typically platinum, palladium, nickel, or	
rho	odium—hydrogen can be added across a triple or a double bond to take an	
alk	yne to an alkene or an alkene to an alkane. In practice, it is difficult to isolate	
the	alkene product of this reaction, though a poisoned catalyst—a catalyst with	
few	ver available reactive sites—can be used to do so. As the hydrogen is	
im	mobilized on the surface of the catalyst, the triple or double bonds are	
hyo	drogenated in a syn fashion; that is to say, the hydrogen atoms add to the	
san	ne side of the molecule.	
6.E	Iydrohalogenation	
All	kenes and alkynes can react with hydrogen halides like HCl and HBr.	

Subject code : 17312	Page 29 of 36
Hydrohalogenation gives the corresponding vinyl halides or alkyl dihali	des,
depending on the number of HX equivalents added. The addition of wat	ter to
alkynes is a related reaction, except the initial enol intermediate convert	s to the
ketone or aldehyde. If the alkene is asymmetric, the reaction will follow	,
Markovnikov's rule—the halide will be added to the carbon with more a substituent.	ılkyl
7. Ozonolysis of alkenes	
It is a reaction in which the double bond is completely broken and the a	lkene
molecule converted into two smaller molecules.	
R_2 R_4 R_2 R_4	
5-d alkyl halides reacts with aqueous sodium hydroxide to form alcohols.	
1) C_2H_5I + KOH \rightarrow C_2H_5OH +KI	2
Ethyl iodide (aqueous) ethanol	
2) CH_3Br + AgOH \rightarrow CH_3OH + AgBr	2
methyl bromide moist methyl alcohol silver oxide	
5-e Uses of alcohols: (any 4)	4
1.Industrial methylated spirits	

Subject code : 17312	Page 30 of 36
Ethanol is usually sold as industrial methylated spirits, which is ethanol with a	
small quantity of methanol and possibly some color added. Because methanol is	
poisonous, industrial methylated spirits are unfit to drink, allowing purchasers	
to avoid the high taxes levied on alcoholic drinks.	
2.Use of ethanol as a fuel	
Ethanol burns to produce carbon dioxide and water, as shown in the equation	
below, and can be used as a fuel in its own right or in mixtures with petrol	
(gasoline). "Gasohol" is a petrol/ethanol mixture containing approximately 10-	
20% ethanol. Because ethanol can be produced by fermentation, this is a	
useful method for countries without an oil industry to reduce the amount of	
petrol imports.	
$CH3CH2OH+3O2 \rightarrow 2CO2+3H2O$	
3.Ethanol as a solvent	
Ethanol is widely used as a solvent. It is relatively safe and can be used to	
dissolve many organic compounds that are insoluble in water. It is used, for	
example, in many perfumes and cosmetics.	
4.Methanol as a fuel	
Methanol also burns to form carbon dioxide and water:	
$2CH3OH+3O2 \rightarrow 2CO2+4H2O$	
It can be used a a petrol additive to improve combustion, and its use as a fuel in	

Subject code : 17312	Page 31 of 36
its own right is under investigation.	
5.Methanol as an industrial feedstock	
Most methanol is used to make other compounds, for example, me	ethanal
(formaldehyde), ethanoic acid, and methyl esters of various acids. Ir	n most
cases, these are then converted into further products.	
5-f Vapour pressure of solvent is lowered by addition of non-volatile solu	ite : 4
If a non-volatile solute is added to a volatile liquid, the vapour pressure	of the
solution is lower than the vapour pressure of pure solvent.	
pure liquid	
In pure liquid, the whole, surface of the liquid is occupied by the molecule	es of
the liquid. In case of solution, a part of surface of the solution is occupied	l by
the solute particles. This decreases number of molecules of liquid at the su	urface
of the solution. This reduces escaping tendency of solvent molecules, the	reby
lowering vapour pressure of the liquid (solvent).	
5 Any 4	16
5-a Ostwald's theory considers indicator to be a weak acid or base whose	4
unionised forms differently coloured. In presence of acid or base, ie pH cl	hange,
there is ionization of indicator and hence the colour change appears.	

	Subject code : 17312	Page 32 of 36
	For example	
	phenolphthalein	
	phenolphthalein is a weak acid (PhH)	
	PhH<>Ph- + H+(1)	
	(colourless (Pink in base)	
	in acid)	
	H+ + OH- <> H2O	
	In presence of an acid (H+) equilibrium (1) is displaced towards the left hand	
	side (a case of LeChatelier's principle); when strong base like NaOH is added,	
	this equilibrium is displaced towards right hand side and there is colour change	
	from colourless to pink when pH changes. This indicator is not suitable for	
	titrating weak base since weak base can't furnish enough OH- that can react	
	with H+ of the phenolphthalein and can impart pink colour only after excess of	
	weak base is added.	
6-b	Alkene - CnH_{2n} example: ethane C_2H_4 , PROPENE C_3H_6 , BUTENE C_4H_8 etc.	2
	Alkyne - CnH_{2n-2} example : ethyne(acetylene) C_2H_2 , PROPYNE C_3H_4 etc.	2
6-с	PHYSICAL PROPERTIES OF ALKYL HALIDES(any 4)	4
	1. Alkyl halides (RX) have higher boiling points (BP) than alkanes with	
	the same number of carbons.	
	2. As the molecular weight (MW) increases the boiling point (BP)	
	increases.	
	3. As branching increases, BP decreases.	

	Subject code : 17312	Page 33 of 36
	4. Alkyl halides are insoluble in water.	
	5. Alkyl halides are soluble in low polarity solvents.	
6-d	: these are obtained by prefixing the name of alkane by halogen.the paraffins	2
	reacts with halogens which replace one or more of their hydrogen atoms by	
	halogen atoms.the products obtained are called halogen derivatives of paraffins.	
	CLASSIFICATION	
	Alkyl halides are classified the same as hydrogens. The class of carbon the	2
	halide is attached to determines the classification of the halide.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
-e	1. Mono Hydric Phenol	2
	Those aeromatic phenols which contains only one OH group are called Mono	
	Hydric Phenol.	
	ex: C6H5OH	
	OH	
	2. Di Hydric Phenol	
	Those aeromatic phenols which contain two OH groups are called Di Hydric	
	Phenol.	

ОН		
USes of phenol : (an	y two)	
1) The main use of p and caprolactam (whenol is as a feedstock for phenolic resins, bisphenol A fan intermediate in the production of nylon-6).	A 2
 It is used in the materials, adhesiv perfumes, soaps. 	anufacture of many products including insulation res, lacquers, paint, rubber, ink, dyes, illuminating gase	28,
3) Also used in embdecomposition ofdegradation of be	alming and research laboratories. It is a product of the organic materials, liquid manure, and the atmospheric nzene.	
4) It is found in som ointments.	e commercial disinfectants, antiseptics, lotions and	
5) Phenol is active a medical and pharmear drops, scleros	gainst a wide range of microorganisms, and there are s maceutical applications including topical anaesthetic an ing agent.	ome nd
6) It is used in derma	tology for chemical face peeling	
5-f The Friedel–Crafts Friedel and James Cr. There are two main ty acylation reactions. E	reactions are a set of reactions developed by Charles afts in 1877 to attach substituents to an aromatic ring. ypes of Friedel–Crafts reactions: alkylation reactions are oth proceed by electrophilic aromatic substitution.(AN	nd IY

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

