

WINTER-16 EXAMINATION Model Answer

Subject code :

17206

Page 1 of 24

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-16 EXAMINATION

Model Answer

				Г
Sub	ject	code	:	

17206

Page **2** of **24**

Q No.	Answer	marks
1	Any ten	20
1-a	Normality:	1
	N = gmequivalent of solute/ volume of solution in liter	
	Molarity:	1
	M = gmmole of solute/ volume of solution in liter	
1-b	Dalton's law:	
	Daltons law states that total pressure of a gas mixture is equal to the sum of	1
	partial pressures	
	$P = P_1 + P_2 + P_3$	1
	where P is total pressure of gas mixture and P_1, P_2, P_3 are partial pressures.	
1-c	Unit operations in chemical engineering :	¹∕₂ mark
	1. Size reduction	each for
	2. Size separation or screening	any 4
	3. Mixing	
	4. Filtration	
	5. Sedimentation	
	6. Extraction	
	7. Distillation	
	8. Drying	
	9. Crystallization	

l-d	Personal protective equipments used in Chemical industries :	¹∕₂ mark
	1) Hard hat	each for
	2) Safety goggles	any 4
	3)Safety shoes	
	4)work clothes	
	5)Ear muff	
	6)Ear plug	
	7)Guard cuff's	
	8)Face Shield	
l-e	Different temperature scales are:	2
	1. degree Celsius (⁰ C)	
	2. degree Farenheit (⁰ F)	
	3. Kelvin (K)	
l-f	Names of chemical industries:	1/2 mark
	Rashtriya Chemicals and fertilizers ltd.	each for
	Deepak Chemicals and fertilizers ltd.	any four
	Reliance Industries ltd.	industry
	Supreme Petroleum ltd.	
	Hindustan Antibiotics ltd.	
	Mysore Paper Mills LTD.	
	Asian Paints Limited.	
l-g	Conversion is the ratio of the amount of reactant reacted to the initial amount	1
	of the reactant	
		1

		Uses of Sulfuric acid:	1-h
acidifying ager	ng agent drying ager	a) It is used as a dehy	
		neutralizing agent.	
	cture of fertilizer.	b) It is used in the ma	
eel before galva	or pickling iron and	c) Sulphuric acid is us	
	metals.	d) It is used in process	
eries.	cture of lead acid bat	e) It is used in the ma	
is added to org	ess of adding hydroge	Hydrogenation: It is a unit p	1-i
		compound.	
	nation:	Chemical Reaction for hydr	
		$CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$	
		$C_6H_6 + 3H_2 \rightarrow C_6H_{12}$	
noval of hydrog	dition of oxygen or r	Oxidation: It is defined as th	
		from organic compounds.	
ygen in the mol	the introduction of o	- Oxidation reaction may invo	
		a compound.	
		Oxidation of acetaldehyde:	
Ι	\rightarrow CH ₃ COO	$CH_3CHO + \frac{1}{2}O_2$	
	acetic acid	Acetaldehyde	
en from the mo	the removal of hydro	- Oxidation reaction may invo	
		a compound.	
		Centrifugal pump:	1-j
		5 I I	5
	steel before galv teries. en is added to org emoval of hydro xygen in the mo PH ogen from the mo	nufacture of fertilizer. sed for pickling iron and steel before galve sing metals. nufacture of lead acid batteries. rocess of adding hydrogen is added to orgen rogenation: a ddition of oxygen or removal of hydro olve the introduction of oxygen in the mol 	 b) It is used in the manufacture of fertilizer. c) Sulphuric acid is used for pickling iron and steel before galv d) It is used in processing metals. e) It is used in the manufacture of lead acid batteries. Hydrogenation: It is a unit process of adding hydrogen is added to orgompound. Chemical Reaction for hydrogenation: CH ₂ = CH ₂ + H ₂ → CH ₃ -CH ₃ C ₆ H ₆ + 3H ₂ → C ₆ H ₁₂ Oxidation: It is defined as the addition of oxygen or removal of hydrofrom organic compounds. Oxidation reaction may involve the introduction of oxygen in the motion a compound. Oxidation reaction may involve the removal of hydrogen from the motion a compound. Charles a compound of a cetaldehyde: CH₃CHO + ½ O₂→ CH₃COOH Acetaldehyde acetic acid Oxidation reaction may involve the removal of hydrogen from the motion a compound.

WINTER-16 EXAMINATION

Model Answer

	Subject code : 17206	Page 6 of 2 4
	4. Tumbler	
	5. Kneading machine	
2	Any four	16
2-a	N = gmequivalent of solute/ volume of solution in liter	1
	1= gmequivalent of solute/ 2 lit	
	Gram equivalent of NaOH = 2	1
	weight of NaOH = $2*40 = 80$ gram	1
	To prepare 1N,2 lit NaOH solution, dissolve 80 grams NaOH in water to get 2	1
	lit solution.	
2-b	Large scale petroleum industries:	1 mark
	1.HPCL	each for
	2. Reliance Refinery	any 2
	3. Bharat Petroleum	
	4. Indian oil	
	Small scale chemical industries:	
	1. Royal Chemicals	1 mark
	2. Shiva Pharmaceuticals	each for
	3. Alpha chemicals	any 2
	4. Mayur chemicals	
2-c	U tube manometer:	
	Difference in height of mercury columns	4

	Subject code : 17206	Page 7 of 2 4
2-d	Size reduction: It is an operation wherein large solid particles are subdivided	1
	to smaller ones.	
	Size separation(Screening): It is a method of separating solid particles	1
	according to size alone by means of screens of known aperture	
	Sedimentation: The separation of solids from a suspension in a liquid by	
	gravity settling is called sedimentation.	1
	Filtration:	
	The separation of solid from a suspension in a liquid with the help of a porous	
	medium which retains the solid and allows the liquid to pass through it is	1
	termed as filtration	
2-е	Gas Absorption:	
20	-This operation is used to separate the components of gas mixture .	
	-It is carried out for the recovery or the removal of a soluble components of a	1
	gas mixture depending upon the situation.	
	-Absorption is an operation in which a gas mixture is contacted with a liquid	
	solvent for the purpose of dissolving a definite component of the gas mixture in	
	the liquid.	
	Example:	
	1) Absorption of ammonia from an air- ammonia mixture by water	1
	2) Removal of hydrogen sulfide from naturally occurring hydrocarbon gases.	
	Drying: Drying is an operation in which the moisture of a substance is removed	
	by means of thermal energy. In this operation, moisture is removed by	1
	circulating hot air or gas over the material in order to carry away the water	
	vapour. In this operation, heat and mass transfer occur simultaneously. Heat is	
	transferred from the gas phase to the solid phase and mass is transferred from	

	Subject code :	17206]	Page 8 of 24
the so	lid phase to the gas phase. Usually a solid or	r nearly solid	materials are	
proce	ssed in dryer.			
Eg: D	rying of pharmaceuticals, dyes, paper, cloth			1
2-f P :	icked column			1 mark
				each
Ja	w crusher			
Pl	ate column:			
Se	reen			

	Subject code : 17206	Page 9 of 24
3	Any 4	16
3-a	(i)Molecular weight :	1
	It is the sum of atomic weights of all elements present in a compound.	
	(ii)Equivalent weight :	1
	Equivalent weight = molecular weight/ valency.	
	(iii)Gram mole	1
	Gram mole = weight in grams /molecular weight.	
	(iv)Gram equivalent:	1
	Gram equivalent = weight in gram/ equivalent weight	
3-b	Amagat's law:	
	Amagats law states that total volume of a gas mixture is equal to the sum of	1
	pure component volumes	
	$V = V_1 + V_2 + V_3$	1
	where V is total volume of gas mixture and V_1, V_2, V_3 are pure component	
	volumes.	
	Vapor pressure :	
	It is the pressure exerted by vapor on the surface of liquid at equilibrium	2
	conditions.	
	OR	
		1 1

	Subject code : 17206	Page 10 of 24
	It is the absolute pressure at which the liquid and its vapour are in equilibrium	
	at a given temperature	
3-c	0.6 gm/cm^3	
	1 kg=1000gm	1
	$1m^3 = 100^3 cm^3$	1
	$0.6 \text{ gm/cm}^3 = 0.6*100^3 / 1000$	1
	$= 600 \text{ Kg/m}^3$	1
3-d	Modes of heat transfer are:	
	Conduction	2
	Convection	
	Radiation	
	1. Conduction: It is the transfer of heat without the movement of particles.	
	Eg: heating of a metal rod	
	2. Convection: It is the transfer of heat within a fluid by the actual	2 marks
	migration of particles of hot fluid with cold fluid because of change of	for
	density of molecules of fluid by application of heat.	explanati
	Eg. Boiling of liquid	on of any
	3. Radiation: It is the transfer of heat through space by electromagnetic	one
	waves. When radiation passes through matter, it is transmitted, reflected	
	or absorbed.	
	Eg. Transport of energy from the sun to earth.	
3-е	Sulfonation reactions :	
	It is the reaction with sulfuric acid to introduce sulfonic (SO ₃ H) group into a	1
	compound.	
	$C_6H_6 + H_2SO_4 \rightarrow C_6H_5SO_3H + H_2O$	1

	Subject code : 17206	Page 12 of 2 4
4-a	Filtration:	
	The separation of solid from a suspension in a liquid with the help of a porous	1
	medium which retains the solid and allows the liquid to pass through it is	
	termed as filtration. Filtration involves the separation of solids from a liquid	
	and is effected by passing the slurry through a porous medium. The pressure	
	difference set up across the filter medium causes the fluid to flow through the	
	small holes of a filter cloth or screen which blocks the passage of the larger	
	solid particles.	
	Application: Separation of suspended impurities from water, separation of	1
	organic or inorganic materials from their slurry.	
	Sedimentation: The separation of solids from a suspension in a liquid by	1
	gravity settling is called sedimentation. The force responsible for sedimentation	
	is gravitational force.	
	Application: Removal of solids from liquid sewage waste, removal of	1
	suspended impurities from water.	
4-b	Basis: 100 gm solution.	
	Density of solution=1.1gm/cc	
	Volume of solution = $100/1.1 = 90.90 \text{ cc} = 0.0909 \text{ lit}$	1
	Weight of solute $= 15 \text{ gm}$	
	Molecular weight of $H_2SO_4 = 98$	1
	Gram moles of solute = $15/98 = 0.153$	
	Molarity = Gram moles/ Volume of solution in lit	1
	0.153/0.0909 = 1.68 M	
	Normality = gram equivalent of solute/ volume of solution in lit	1
	= 0.306/0.0909 = 3.36N	
4-c	Basis: 20 kg C ₂ H ₅ OH and 120 kg H ₂ O	

Subject code : 17206	Page 13 of 2 4
Total weight of mixture = 140 kg	
Weight fraction of $C_2H_5OH = (wt of NaCl/ Total wt)$	1
= (20/140)	
= 0. 143	
gmoles of C_2H_5OH = Weight/ mol.wt	
= 20/46 = 0.435	1
gmoles of $H_2O = Weight/mol.wt$	
= 140/18 = 7.78	
Total moles = $0.435 + 7.78 = 8.213$	1
Mol fraction of $C_2H_5OH =$ (Moles of C_2H_5OH /Total mole)	
=(0.435/80213)	1
= 0.053	
-d Mixing : Mixing is a process in which at least two separate materials such a	as 1
two different fluids, fluid and a powdered solid or two different or same soli	ids
are taken and forced them to be randomly distributed through one another by	y
some mechanical means	
Necessity of Mixing in process industry	1
Mixing is carried for producing simple mixtures, accomplishing dispersions,	,
and promoting chemical reactions	
Fluid transportation:	
In industry, pumps, fans , blowers and compressors , pipelines, ducts, va	lves
and fittings are the essential components of a system used for transportatio	n of 2
fluids from one location to another. Pumps are used for handling liqu	uids,
solutions and slurries, while fans, blowers and compressors are used	for
handling gases. In these machines, mechanical work is transformed into f	fluid
energy and the energy input to a fluid by means of any these machines car	uses

	Subject code : 17206	Page 14 of 2
	the fluid to be transported through piping systems. The machines commonly	
	used in in the chemical process industries include centrifugal pumps, rotary	
	pumps and reciprocating pumps for handling liquids and fans, blowers and	
	compressors for gases.	
4-е	Distillation:-	1
	Distillation is an operation in which the components of a liquid mixture are	
	separated using thermal energy. It depends upon the difference in boiling	
	points of the individual components. The difference in vapour pressure of the	
	components of a liquid mixture at the same temperature is responsible for	
	separation by distillation.	
	Example: separation of crude into different fractions, Separation of methanol-	1
	water	
	Drying: Drying is an operation in which the moisture of a substance is removed	
	by means of thermal energy. In this operation, moisture is removed by	1
	circulating hot air or gas over the material in order to carry away the water	
	vapour. In this operation, heat and mass transfer occur simultaneously. Heat is	
	transferred from the gas phase to the solid phase and mass is transferred from	
	the solid phase to the gas phase. Usually a solid or nearly solid materials are	
	processed in dryer.	
	Example: drying of food, chemical, pharmaceutical	1
4-f	Saponification: The alkaline hydrolysis of an ester to form sodium salt and	2
	alcohol is referred to as saponification.	
	$CH_3COOC_2H_5 + NaOH> CH_3COONa + C_2H_5OH$	
	Ethyl acetate sodium acetate	
	Esterification reaction:-The reaction of an alcohol with a carboxylic acid to	2
	produce an ester is termed as esterification.	
	Esterification of an acid such as acetic acid by an alcohol such as ethyl alcohol	

	Subject code : 17206	Page 15 of 2 4			
	results in the production of ethyl acetate.Sulphuric acid and hydrochloric acids				
	are the catalysts used for esterification.				
	Chemical Reaction for esterification:				
	$CH_{3}COOH + C_{2}H_{5}OH \rightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$				
	Esterification is the reaction where ester is produced whereas saponification is				
	a reaction where sodium salt of ester is produced.				
5	Any 4	16			
5-a	(i) Cracking: When Pyrolysis applied to alkanes is known as Cracking.				
	When alkanes are heated well above their boiling points in the absence of air,	2			
	a thermal decomposition occurs. Large alkane molecules are broken down to				
	yield lower molecular weight alkanes, alkanes and hydrogen. Pyrolysis				
	generally required temperature of the order of 500-800 $^{\rm O}$ C.				
	500 ^o C				
	$CH_3CH_3 \rightarrow \qquad C_2H_4 + \qquad CH_4 + H_2$				
	Ethane ethylene methane hydrogen				
	600 ⁰ C				
	$CH_3CH_2CH_3 \longrightarrow CH_3-CH=CH_2 + CH_2=CH_2 + CH_4 +$				
	H_2				
	Propane Propylene ethylene				
	methane Hydrogen				
	(ii) Chlorination: It refers to the process in which one or more chlorine atoms				
	are introduced into an organic compound.				
	Chlorination of methane: Chlorination of methane in presences of ultraviolet				
	light or at a temperature of 300 – 400 C results in the formation of polyhalogen				
	derivatives.				

				Subject code :	17206		Page 16 of 2 4
			U.V.light			<u> </u>	
		CH ₄ +Cl ₂		$> CH_3Cl + C$	CH ₂ Cl ₂ + CH	$ICl_3 + CCl_4 +$	
	HCl						
			300-400	С			
	OR						
	Manufa	cturing of	Chlorobenz	zene:			
	Benzene reac	ts with chlo	orine gas in	the presence of ca	talyst at about	ut 30-60 °C to	
	form chlorob	enzene					
			FeCl ₃				
	C ₆ H ₆	+ Cl_2	>	> C ₆ H ₅ Cl	+	HCl	
	Benzene		30-60°C	Chlorobenzene	•		
	Note : Any	other suit	able examp	le			
·b	Note : Any Compare G	other suit	able examp ion And De	le esorption			
·b	Note : Any Compare G Gas Absorpt	other suit as absorpt tion :	able examp ion And De	esorption	· .		
·b	Note : Any Compare G Gas Absorpt 1) Absorption	other suit	able examp ion And De eration in wl	esorption	gases is brou	ght in contact	2
·b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq	other suit	able examp ion And De eration in wl	esorption hich a mixture of g solute is dissolved	gases is brou	ght in contact	2
·b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapo	as absorpt tion : on is an ope uid in which our solute is	able examp ion And De eration in wl ch a vapour a absorbed ir	esorption hich a mixture of g solute is dissolved h the solvent deper	gases is brou	ght in contact he solubility	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapon of the sol	as absorpt tion : on is an opequid in which our solute is bute in the s	able examp ion And De eration in wl ch a vapour a absorbed ir olvent.	esorption hich a mixture of g solute is dissolved in the solvent deper	gases is brou nding upon th	ght in contact he solubility	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapon of the sol 3) This open 4) This open	as absorpt tion : on is an opequid in which our solute is dute in the solute is so	able examp ion And De eration in wh ch a vapour a absorbed ir olvent. netime also	esorption hich a mixture of g solute is dissolved in the solvent deper termed as Scrubbi	gases is brou nding upon thing.	ght in contact he solubility	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapon of the sol 3) This open 4) This open	as absorpt tion : on is an operation is an operation is an operation is an operation is solute is but in the structure is solute is solute in the structure is solute is solut	able examp ion And De eration in wh ch a vapour a absorbed in olvent. metime also merally carri-	esorption hich a mixture of g solute is dissolved in the solvent deper termed as Scrubbi ed out in industry	gases is brough noting upon the second secon	ght in contact he solubility very of solute	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapo of the sol 3) This oper or the rem 5) Cas Oper	as absorpt tion : on is an operation is an operation is an operation is an operation is solute is but in the structure is solute is solut	able examp ion And De eration in which a vapour a absorbed in olvent. metime also merally carried lute depending	esorption hich a mixture of g solute is dissolved in the solvent deper termed as Scrubbi ed out in industry ing upon the situat	gases is broug ding upon the ding. for the recovition.	ght in contact he solubility very of solute	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapon of the sol 3) This open of the rem 5) Gas Open 6) Example	as absorpt tion : on is an operation is an operation is an operation is an operation is solute is but in the stration is generation is generation is generation is usu	able examp ion And De eration in wh ch a vapour a absorbed in olvent. metime also merally carri- lute dependi- ally carried	esorption hich a mixture of g solute is dissolved in the solvent deper termed as Scrubbi ed out in industry ing upon the situat l out in packed col	gases is broug nding upon the ing. for the recovion. umn.	ght in contact he solubility very of solute	2
-b	Note : Any Compare G Gas Absorpt 1) Absorption with a liq 2) The vapo of the sol 3) This oper or the rem 5) Gas Oper 6) Example	as absorpt tion : on is an operation is an operation is an operation is an operation is solute is but in the stration is solute in the stration is generation is generation is usue in the stration is usue the stration of a stration of stration of stration of a stration of a stration of a stration of stra	able examp ion And De eration in which a vapour a absorbed in olvent. metime also merally carri- lute dependi- nally carried	esorption hich a mixture of g solute is dissolved in the solvent deper termed as Scrubbi ed out in industry ing upon the situat l out in packed col	gases is brough or ding upon the ding. for the recover ion. umn.	ght in contact he solubility very of solute	2

		Subject code :	17206]	Page 17 of 2 4
	1) Desorption is an operation in which				
	removed by contacting the solution v				
	2) The process of desorption is the re-	everse of absorption	on.		2
	3) This operation is sometime also te				
	4) In desorption ,the mass transfer is				
	5) Desorption is also carried out in	packed column.			
	6)Example :				
	The removal of a liquid hydrocarbon	from heavy hydro	ocarbon oil l	by means of	
	superheated steam.				
5-c	Difference Between Conversion an	d Yield :			
	Conversion	Y	lield		1 mark
	1.Conversion is the ratio of the	1. Yield of a des	sired product	t is the	each
	amount of reactant reacted to the	ratio of the quan	ntity of the de	esired	
	initial amount of the reactant	product actually	obtained to	its	
		quantity maxima	ally obtainat	ole.	
	2. Conversion gives us idea	2. The Yield of	a desired pro	oduct	
	regarding how efficient a given	tell us how effic	ient is a give	en	
	chemical process is from the point	chemical proces	s is in terms	of the	
	of view of utilization of the	reaction product	t.		
	starting materials.				
	3. Higher values of Conversion is	3. Higher values	s of Yield is	the	
	the indication of minimum	indication of mi	nimum occu	rrence	
	amount of the limiting reactant	of side reactions	5.		
	left unreacted.				

		Subject code :	17206		Page 18 of 2 4	
	single reactions as well as to	reaction				
	Complex reaction.					
5-d	i) Oxidation: It is defined as the ad	ldition of oxygen of	removal of		2	
	hydrogenation from organic compo	ounds.				
	- Oxidation reaction may involve th	ne introduction of o	xygen in the mo	olecule of		
	a compound.					
	Oxidation of acetaldehyde:					
	CH ₃ CHO + ¹ / ₂ O ₂	→ CH ₃ COO	Н			
	Acetaldehyde acetic acid					
	- Oxidation reaction may involve the removal of hydrogen from the molecule					
	of a compound.					
	Oxidation of methane:					
	Metal oxide					
	CH ₄ + O ₂	→ HCHO	+ H	$_{2}O$		
	Methane Heat	Formaldehy	'de			
	Note : Any other suitable example					
	ii) Reduction: It is defined as the addition of hydrogen to an organic					
	compound or replacement of Oxygen of an organic compound by					
	hydrogenation.					
	Example :					
	Nitrobenzene can be reduced to aniline by using Fe+ HCl or Zn + HCl					
	$C_6H_5NO_2 + 2Fe + 6HC1 \rightarrow C_6H_5NH_2 + 2H_2O + 2FeCl_3$					
	Note : Any other suitable examp	ole				

	Subject code : 17206	Page 19 of 2 4
5-е	Yield:	2
	-Yield of desired product is the ratio of the quantity of product actually	
	obtained to its maximally obtainable quantity.	
	OR	
	Yield of desired product is defined as the ratio of amount of a limiting	
	reactant reacted to form the desired product to total reacted quantity of limiting	
	reactant by all possible reaction.	
	-The term yield is applicable to the desired product of a chemical process.	
	- This term is applicable to desired product of reaction.	
	Selectivity: Selectivity may be defined as the ratio of the moles of the desired	
	product of undesired or by product produced in a set reaction.	2
	-Selectivity are applicable to a set of chemical reaction-complex reaction.	
5-f	One Industrial example of each	
	1)Size Reduction:	1
	a) Size reduction operation is carried out in Ore processing industries, copper	
	ores, nickel ores are grounded before chemical processing.	
	b) In cement industry, raw material lime and silica are grounded before	
	calcinations.	
	2)Mixing:	
	Mixing of specialty chemicals, explosives, fertilizers, dry powdered detergents,	1
	glass or ceramics, and rubber compounds.	
	3)Size Separation:	
	screens are used for handling variety of dry powder, granular and dry foods.	1
	4)Filtration:	
	a)Separation of suspended impurities from water.	
	b)Separation of solid organic and inorganic material from their slurry.	1

Note : Any other suitable example 1 Any 4 1 -a Bob and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Image: Tark I and tape Method Method Method Method Method Image: Tark I and tape Method tape Method tape Method Method <t< th=""><th></th><th>Subject code : 17206</th><th>Page 20 of 24</th></t<>		Subject code : 17206	Page 20 of 24
Any 4 1 -a Bob and tape Method Image: Comparison of the provide a safety barrier a hazard and the body of a person working in a hazardous environment. 1 -a Bob and tape Method Image: Comparison of the provide a safety barrier a hazard and the body of a person working in a hazardous environment. 1 -a Bob and tape is to provide a safety barrier a hazard and the body of a person working in a hazardous environment. 1 -a Image: Comparison of the personal person working in a hazardous environment. 1 -a Image: Comparison of the personal person working in a hazardous environment. 1 -a Image: Comparison of the personal person working in a hazardous environment. 1		Note : Any other suitable example	
 Bob and tape Method Task for measure to be measured over the point reached by liquid Task for the point reached by liquid Task for the point reached by liquid Bob and tape is the most simple direct liquid level measurement devices. It is consist of a bob (Weight) suspended from a tape marked in centimeter and meter. Bob is lowered to the bottom of a tan or vessel containing liquid. The liquid in the tank wets the part of the tape that is dipped into the pool of liquid. The bob and tape assembly is then removed from the tank and a reading of liquid level is made by noting the point on the tape reached by the liquid Personal protective equipments used in Chemical industries (any 4) It mart each a person working in a hazardous environment. Hund bet a Lie in used for metations of hosed 	6	Any 4	16
 1) Bob and tape is the most simple direct liquid level measurement devices. 2) It is consist of a bob (Weight) suspended from a tape marked in centimeter and meter. 3) Bob is lowered to the bottom of a tan or vessel containing liquid. 4) The liquid in the tank wets the part of the tape that is dipped into the pool of liquid. The bob and tape assembly is then removed from the tank and a reading of liquid level is made by noting the point on the tape reached by the liquid ^{-b} Personal protective equipments used in Chemical industries (any 4) 1 marf each person working in a hazardous environment. 1) Hard bat t Is in used for protection of lagod 	6-a	Bob and tape Method	2
 -b Personal protective equipments used in Chemical industries (any 4) The purpose of PPE is to provide a safety barrier a hazard and the body of a person working in a hazardous environment. 1) Hard hat : It is used for protection of head 		 Tark Tape Trape States to be measured the trape is taken out of tark the point reached by liquid the tark of the tare is the most simple direct liquid level measurement devices. It is consist of a bob (Weight) suspended from a tape marked in centimeter and meter. Bob is lowered to the bottom of a tan or vessel containing liquid. The liquid in the tank wets the part of the tape that is dipped into the pool of liquid. The bob and tape assembly is then removed from the tank and a reading of liquid level is made by noting the point on the tape reached by the liquid 	2
The purpose of PPE is to provide a safety barrier a hazard and the body of a person working in a hazardous environment.	6-b	Personal protective equipments used in Chemical industries (any 4)	1 mark
person working in a hazardous environment.		The purpose of PPE is to provide a safety barrier a hazard and the body of a	each
1) Hand hat I t is used for protection of head		person working in a hazardous environment.	
1) maru nat : it is used for protection of nead		1) Hard hat : It is used for protection of head	

	Subject code : 17206	Page 22 of 2 4
	five minutes, the oil is allowed to flow through the jet by lifting the	
	metal ball.	
	4) The time in seconds required to fill the oil in the flask up to the	
	Mark is noted accurately with the help of a stop-watch.	
	5) The viscosity of oil is described in seconds	
6-d	(i) ${}^{0}F=1.8 {}^{0}C+32$	1 mark
	= 1.8 *200 + 32	each
	${}^{0}\mathbf{F} = 392$	
	${}^{0}\mathrm{K}={}^{0}\mathrm{C}+273$	
	= 200 + 273	
	${}^{0}\mathrm{K}=473$	
	(ii) ${}^{0}F=1.8 {}^{0}C+32$	
	= 1.8 * 150 + 32	
	${}^{0}F = 302$	
	${}^{0}\text{K} = {}^{0}\text{C} + 273$	
	= 150 + 273	
	${}^{0}K = 423$	
6-е	Mercury thermometer:	
	Construction:	
	It consists of a glass stem having fine capillary and glass bulb. The bulb is at	
	lower end of glass stem. Mercury is filled in the bulb; after filling, open end of	
	capillary is sealed under vacuum so that no air is left in capillary.	
		2

