## 11718

# 3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) Assume suitable data, if necessary.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

1. A) Attempt any three of the following:

12

- a) Draw a single line diagram of power system.
- b) Prove that in power flow equation  $S = VI^*$ .
- c) Compare between AC and DC resistance in power system.
- d) Write advantages of generalized circuit representation.
- B) Attempt any one of the following:

6

- a) Derive an expression for generalized circuit constants for two networks connected in series.
- b) Explain the skin effect and proximity effect in transmission lines.
- **2.** Attempt **any two** of the following:

16

- a) i) Define generalized circuit and generalized circuit constants.
  - ii) Write the advantages of circle diagram.
- b) Determine the inductance per km of a transposed double circuit  $3 \phi$  line shown in Fig. 1. Each circuit of the line remains on its own side. The diameter of the conductor is 2.532 cm.



Fig. - 1



Marks

- c) A 3  $\phi$  132 KV overhead line delivers 50 MVA at 132KV and power factor 0.8 lagging at its receiving end. The constants of the line are A = 0.98  $\angle$ 3° and B = 110  $\angle$ 75°  $\Omega$ /phase. Find
  - i) Sending end voltage and power angle.
  - ii) Sending end active and reactive power.
  - iii) Capacity of static compensation equipment at the receiving end to reduce the sending end voltage to 140 KV for the same load.

#### 3. Attempt any four of the following:

16

- a) Write the role of power system engineer in PS.
- b) Write the steps for drawing a sending end circle diagram with neat diagram.
- c) A 400 KV 3-phase bundled conductor line with two sub-conductors per phase has a horizontal configuration as shown in Fig. 2. The radius of each subconductor is 1.6 cm. Find the inductance per phase per km of the line.



- d) A 3  $\varphi$  132 KV line delivers 40 MVA at 0.8 P.f. lagging. The line constants are A = D = 0.98  $\angle$  3°, B = 110  $\angle$ 75°, C = 5×10<sup>-4</sup>  $\angle$ 88°. Find the capacity of phase modifier at full load.  $V_s$  = 140 KV,  $V_r$  = 132 KV.
- e) Explain the effect of earth field on transmission line capacitance.

#### **4.** A) Attempt **any three** of the following:

12

- a) Derive an expression for capacitance of two wire line.
- b) A 275 KV,  $3\phi$  line has the following line parameters,  $A = 0.93 \angle 1.5^{\circ}$ ,  $B = 115 \angle 77^{\circ}$ . If the receiving-end voltage is 275 KV, determine the sending end voltage if the load of 250 MW at 0.85 lagging PF is being delivered at the receiving end.
- c) Draw the equivalent circuit diagram of
  - i) Alternator
- ii) Transformer.
- d) State the expression for complex power at receiving end of transmission line. Derive the condition for max. power at receiving end.



Marks

B) Attempt any one of the following.

6

- a) Explain how generalised circuit constants are measured.
- b) Explain the concept self G.M.D. and mutual G.M.D. in inductance for transmission line.

#### 5. Attempt any two of the following:

16

- a) A 132 KV, 50 Hz, 3  $\phi$  transmission line delivers a load of 50 Mw at 0.8 P.F. lagging at the receiving end. The generalized constants of the transmission line are A = 0.85  $\angle$ 1.6°, B=100  $\angle$ 80°, C=0.0018  $\angle$ 95°. Find sending end voltage, sending end current and % voltage regulation. Use nominal  $\pi$  method.
- b) Explain why reactive power compensation is necessary. Explain working of synchronous condenser in this.
- c) Find the susceptance to neutral/km of a double-circuit three phase line with transposition as shown in Fig. 3. Given D = 7 m and radius of each = 1.38 cm.



### **6.** Attempt **any four** of the following:

16

- a) A 50 Hz,  $3\phi$ , 275KV, 400 km× mission line has the following parameters:  $R = 0.035 \Omega$  /km/ph, L = 1.1 mH/km/ph,  $C = 0.012 \mu$  F/km/ph. If the line is supplied at 275 KV, determine the MVA rating of a shunt reactor having negligible losses. The receiving end volt. is 275 KV when line is delivering no load. Use nominal  $\pi$  method.
- b) Draw the pu impedance diagram for the P.S. shown in Fig. 4, Neglect resistance and use a base of 100 MVA, 220 KV in 50  $\Omega$  line. The ratings of the generator, motor and transformer are, generator -40MVA, 25 KV, X = 20%, Motor = 50 MVA, 11 KV, X = 30%, Y Y transformer = 40MVA, 30/220 KV, X = 15%,  $Y \Delta$  transformer, 30 MVA, 11/220 KV, X = 15%. Fig. 4.



- c) Derive the expression for inductance of single phase line composed of solid conductors and bundled conductors.
- d) Write power flow equation in the terms of sending end and receiving end voltage.
- e) A medium transmission line has series impedance is  $(20+j52) \Omega$  and shunt admittance is  $316\times10^{-6}$  S/ph. Calculate A, B, C, D constants of the line assuming nominal 'T' circuit.