11718

3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with **neat** sketches **wherever** necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not permissible** in Examination Hall.

Marks

12

1. a) Attempt any six of the following:

- i) List any two advantage and disadvantage of digital circuits.
- ii) Define fan in and noise margin.
- iii) Simplify using Boolean algebra (A+B)(A+C).
- iv) Draw symbol, truth table and logic equation of EX-NOR gate.
- v) Define minterm and maxterm.
- vi) Draw symbol and truth table of T-flip-flop.
- vii) What is the difference between edge Triggering and level Triggering (any 2)?
- viii) State two specification of DAC.

b) Attempt any two of the following:

i) Perform the following operation

- a) 10110 1010 using 1's complement method.
- b) 11010–11110 using 2nd complement method.
- ii) State and verify De-Morgan's first theorem using truth table.
- iii) Compare R-2R and weighted resistor DAC any four points.

2. Attempt any four of the following:

16

8

a) Reduce the following logic expression using Boolean laws and De-Morgan's theorems.

$$Y = \overline{A.(\overline{A.B})} \cdot \overline{B.(\overline{A.B})}$$

b) Convert the following:

i)
$$(6AC)_{16} = (?)_{10}$$

ii)
$$(372)_8 = (?)_2$$

- c) Design Half adder using K-map and basic gates.
- d) Draw 8:1 multiplexer using basic logic gates.
- e) Compare RAM and ROM any four point.
- f) Draw logic diagram of JK-flop-flop and write its truth table.

P.T.O.

Marks

16

3. Attempt any four of the following:

- a) Perform the following BCD arithmetic operation:
 - i) $(637)_{10} + (463)_{10}$

- ii) $(63)_{10} + (19)_{10}$
- b) What is an universal gate? Prove NAND as an universal gate.
- c) Design 1:8 De-multiplexer using 1:4 demultiplexer.
- d) Design 1 bit comparator using K-map and draw its logic diagram.
- e) With the help of block diagram explain the working of a ring counter.
- f) Give four features of a dynamic RAM.

4. Attemptany four of the following:

16

- a) Compare between TTL and CMOS logic family (any four).
- b) Simplify following equation using Boolean Algebra and draw circuit diagram

$$Y = \overline{A}(A + \overline{B}) + \overline{B}(\overline{A} + B)$$
.

- c) Design asynchronous mod-6 counter with its truth table.
- d) Minimize the following Boolean expression using K-map, $Y = \sum_{m} (1, 3, 5, 7, 10, 11, 14, 15)$. Draw the logical circuit diagram of minimized expression using basic gates.
- e) What is race around condition? How can it be avoided?
- f) Draw block diagram of ALU IC-74181 and explain function of each pin.

5. Attemptany four of the following:

16

- a) Reduce the following expression and implement logic gates Y = AB + ABC + AB(E + F)
- b) Simplify the following SOP expression with K-Map

i)
$$F(A, B, C, D) = \sum_{m} (0, 1, 3, 4, 5, 7)$$

ii)
$$F(A, B, C) = \sum_{m} (0, 1, 3, 4, 6)$$
.

- c) Draw and explain the block diagram of IC-74147 decimal to BCD encoder. Write truth table.
- d) Describe working of R-2R ladder type DAC.
- e) Differentiate between combination logic and sequential logic system.
- f) Draw circuit diagram of 3-bit SIPO shift register, right shift mode with the help of block diagram.

6. Attemptany four of the following:

16

- a) Draw neat block diagram of RampADC and explain its working.
- b) State the application of shift register (any four).
- c) Implement following logical equation using multiplexer:

$$Y(A, B, C) = \sum_{m} (0, 1, 2, 3, 6, 7).$$

d) Perform the binary arithmetic

i)
$$(11011.11)_2 + (11011.01)_2 = (?)_2$$
 ii) $(11101.1101)_2 - (101.011)_2 = (?)_2$

- e) Draw symbol for 3 input OR gate with truth table and 3 input NAND gate with truth table.
- f) Define the following specification of A-D Converter
 - i) Conversion time
- ii) Resolution.