11718 3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

- **Instructions**: (1) All Questions are *compulsory*.
 - Illustrate your answers with neat sketches wherever necessary. (2)
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data, if necessary.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. (A) Attempt any SIX of the following:

12

- Define node and loop in a network. (a)
- State Ohm's Law. (b)
- State the formula to find equivalent resistance of three resistances (c) connected in parallel.
- State Faraday's Laws of Electromagnetic induction. (d)
- Draw the waveform representation of three phase supply with neat labels. (e)
- (f) What is the meaning of phase sequence in a 3-phase system? Give the 3-phase sequence used in practice.
- State the importance of earthing. (g)
- (h) Classify transformer on the basis of (i) Construction (ii) Supply system.

[1 of 8] P.T.O. 17331

(B) Attempt any TWO of the following:

(a) State the function of following part of a transformer:

[2 of 8]

8

- (i) Conservator
- (ii) Transformer oil
- (iii) Laminated steel core
- (iv) Windings
- (b) Determine current through 5 ohm resistance in the circuit shown in fig.no. 1 using node voltage method.

Fig. – 1

(c) Three identical coils each of (4.2 + j 5.6) ohms are connected in star across 415 volt, 3-phase, 50 Hz AC supply.

Determine: (i) Phase voltage (ii) Phase current (iii) Power factor (iv) Power absorbed by the load.

2. Attempt any FOUR of the following:

- (a) Three resistances 50 Ω , 40 Ω and 25 Ω are connected in parallel. Determine its equivalent resistance. If the current in 25 Ω resistance is 8 Amp, find currents in the other two resistances and total power consumed in the circuit.
- (b) Using mesh loop method find the current in 6Ω and hence power consumed by 6Ω resistance for the network shown in fig. no. 2.

Fig. – 2

- (c) Define the following terms w.r. to A.C. system:
 - (i) Phase difference
 - (ii) Phase angle
 - (iii) Leading
 - (iv) Lagging
- (d) An alternating voltage is mathematically expressed as

 $V = 141.42 \sin \left(157.08 t + \frac{\pi}{12}\right)$ volt. Find its maximum value, RMS value frequency and time period.

(e) Draw phaser diagram for R-C series circuit. Write the voltage and current equations for it.

P.T.O.

16

17331

(iii) Apparent power

(iv) Reactive power

3.

1		[4 of 8]					
(f)	A co	A coil of resistance 10 Ω and an inductance 0.1 H is connected in series with					
	capacitor of 150 μF across, 200 volts, 50 Hz supply. Find						
	(i)	Inductive reactance					
	(ii)	Capacitive reactance					
	(iii)	Impedance					
	(iv)	Current					
Atte	mpt a	any FOUR of the following:					
(a)	Defi	ne fuse. Explain the construction and working of HRC fuse.					
(b)	Disti	inguish between statically induced emf and dynamically induced emf with					
	exan	nples.					
(c)	Drav	w the labelled diagram for balanced three phase delta connected system.					
	State	e the relationship between:					
	(i)	Line voltage and phase voltage					
	(ii)	Line current and phase current					
	(iii)	Power in terms of phase voltage and phase current					
(d)	Defi	ne the following terms:					
	(i)	Power factor					
	(ii)	Active nower					

17331 [5 of 8]

- (e) Write any four safety precautions to be taken while working with an electrical system.
- (f) Explain the construction and operation of shaded pole single phase induction motor.

4. Attempt any FOUR of the following:

16

- (a) Draw the waveforms for current, voltage and phasor diagram of a simple resistive circuit when an A.C. voltage is applied across it.
- (b) Explain the construction and working of dynamometer type wattmeter.
- (c) State any four advantages of three phase system over single phase system.
- (d) State any four merits of MCB over fuse.
- (e) Define efficiency and voltage regulation of single phase transformer.
- (f) Compare a two winding transformer with auto transformer (any four points).

5. Attempt any FOUR of the following:

16

- (a) State and explain Lenz's law.
- (b) Define inductive reactance of a coil. Write its unit. State the factors on which it depends.

17331 [6 of 8]

- (c) Draw a series R-L circuit. Write its expression for impedance. Draw the impedance triangle.
- (d) Explain the concept of power factor and its significance.
- (e) Draw a neat labelled diagram for
 - (i) Core type
 - (ii) Shell type single phase transformer.
- (f) Draw waveforms, write voltage, current equations and draw phasor diagram for an ac circuit containing capacitance only.

6. Attempt any FOUR of the following:

16

- (a) Define the following terms:
 - (i) RMS value
 - (ii) Peak factor
 - (iii) Form factor
 - (iv) Angular velocity
- (b) The equation of an alternating current is represented as, i = 62.35 sin 628 t. Determine (i) Frequency (ii) Time period (iii) Maximum value (iv) Angular velocity.
- (c) Draw a neat circuit diagram for the measurement of single phase power using dynamometer type wattmeter.

17331 [7 of 8]

- (d) Three identical coils, each of $R = 4 \Omega$ and C = 100 microfarad are connected in star across 415 volt, 3-phase, 50 Hz supply.
 - Find (i) V_{ph} (ii) I_{ph} (iii) Power factor (iv) Total power absorbed.
- (e) Explain why single phase induction motors are not self starting.
- (f) State the working principle of capacitor start single phase I.M. with necessary diagrams.

17331 [8 of 8]