11718 3 Hours / 100 Marks

Seat No.

Instructions: (1)

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Assume suitable data, if necessary.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following:

20

- (a) Define form factor and peak factor.
- (b) Write any two difference points between a.c. and d.c. supply.
- (c) Draw the voltage waveform of three phase a.c. supply for 0 to 2π .
- (d) State the concept of phase sequence.
- (e) State the Faraday's law of electromagnetic induction.
- (f) State Lenz's law.
- (g) Define transformation ratio and voltage ratio of transformer.
- (h) What is the main purpose of using isolation transformer in electronic circuits?
- (i) Mention any two methods to control speed of 3ϕ I.M.
- (j) Define synchronous speed and slip of 3φ I.M.
- (k) Write down any two applications of servo motor.
- (1) State specialty of universal motor.
- (m) State the importance of ELCB in circuit.
- (n) List any four tools used for safety in workshop.

[1 of 4] P.T.O.

2. Attempt any FOUR:

- (a) $V = 200 \sin \left(314 t + \frac{\pi}{3}\right)$. Determine:
 - (i) Frequency (ii) V_{rms}

(iii) V_{avg}

- (iv) Phase angle
- Draw the waveform and phasor diagram for current and voltage when a.c. (b) flows through a purely capacitive circuit. Also write equation for voltage and current.
- A coil of resistance 10 Ω and inductance 0.01 H are connected in series with (c) 100 μF capacitor across 230 V, 50 Hz a.c. supply. Find:
 - (i) X_{L}

(ii) X_C

(iii) Z

- (iv) I
- Draw the phasor diagram of R-L-C series circuit when (d)
 - (i) $X_I > X_C$
- (ii) $X_L = X_C$ (iii) $X_L < X_C$

16

- A series R-L circuit takes a current of 2 A when connected to 200 V, 50 Hz a.c. (e) supply and consumes 300 watts. Calculate resistance, inductance, impedance and power factor.
- (f) For below shown phasor diagram of R-L-C series circuit find (i) Impedance (ii) Power factor (iii) Power consumed (iv) Nature of circuit

17318 [3 of 4]

3. Attempt any FOUR:

16

- (a) Draw the power triangle and define active power, reactive power and apparent power.
- (b) Give the significance of power factor. Write down the power factor for purely inductive, capacitive and resistive circuit.
- (c) State the condition for resonance. Write about the value of current during series resonance. Show the graphical representation of current in series resonance circuit.
- (d) Define resonant frequency and Q-factor. Give relation of each.
- (e) List the advantages of 3ϕ supply over single phase (any four).
- (f) Give relation between line and phase current, line and phase voltage for 3φ balanced (i) Star connected and (ii) Delta connected load.

4. Attempt any FOUR:

16

- (a) Three impedances of (4 + 3j) ohms each are connected in star to a 3φ, 440 V, 50 Hz balance a.c. supply. Calculate line voltage, phase voltages, line current phase current, power factor and power.
- (b) Draw delta connected 3φ load and show line and phase voltages and current on it.
- (c) Explain self induced emf, mutually induced emf and dynamically induced emf.
- (d) State Fleming's right hand rule and write down formula for energy stored in magnetic field.
- (e) Define regulation and efficiency of transformer. Which transformer will be said to be a quality transformer one with regulation 2% or the other with regulation 4%?
- (f) Write down one application of each transformer:
 - (i) Audio freq.
- (ii) Radio freq.
- (iii) Intermediate freq.
- (iv) Pulse transformer

17318 [4 of 4]

5. Attempt any FOUR:

16

- (a) A 1.5 kVA, 230/110 V, 50 Hz single phase transformer has 80 turns on secondary winding. Calculate number of primary turns full load primary and secondary currents.
- (b) State the emf equation of a single phase transformer. Write meaning of each term.
- (c) Can auto transformer be used as step up and step down transformer? If yes, show the circuits.
- (d) Explain the working principle of 3\psi I.M.
- (e) Draw the torque-speed characteristics of 3φ I.M. Explain about the nature.
- (f) Define synchronous speed. Write down the formulas for slip, slip speed, rotor frequency.

6. Attempt any FOUR:

16

- (a) Explain the speed control method of 3 ϕ I.M. using variable frequency drive using thyristor.
- (b) Write down the constructional difference between squirrel cage and slip ring 3φ I.M.
- (c) Explain the working principle of stepper motor. Mention its types. Write any two applications.
- (d) State the working principle of a.c. servo motor and draw its torque speed characteristics.
- (e) Give the necessity of earthing. State the range of voltage between earth and neutral of healthy wiring.
- (f) Write advantages of MCCB over fuse (any four).