

17315

11718									
3 Hours / 100 M	Iarks	Seat No.							
Instructions :	 All qu Answe Answe Illustr Figure Figure Assun Use oj permi Mobil device 	estions are com er each next ma rate your answer es to the right in ne suitable data, f Non-programn ssible . e Phone, Pager es are not permi	pulsory . in questic is with ne idicate fu if necess nable Elec and any c ssible in 1	on on a at sketc e ll mark ary . ctronic other El Examin	new p hes w s. Pocke ectror ation	age. hereve et Calc nic Con Hall.	e r nec sulator mmun	essary r is ication	n.
								N	/larks
1. A) Attempt any four	of the followi	ng:						(4×	2 = 8)
a) Write down D	Dalton's law ar	nd give its mather	natical sta	tement.					
b) Define pure co	omponent vol	ume.							
c) Convect 5 kg	of oxygen in	its moles.							
d) Define law of	conservation	of mass.							
e) Draw a labell	ed block diag	ram of extraction	operation	1.					
f) Define selectiv	vity.								
B) Attempt any two	of the followin	ıg:						(2×6	= 12)
a) The analysis calculate the (Atomic Wei	of a gas sam density of the ght C = 12 H	ple on mole bas gas sample at a p = 1 N = 14 O =	is CH ₄ = pressure of 16).	66% C0 f 304 KI	$D_2 = 3$ Pa and	0% an tempe	nd NH erature	k ₃ = 4% ≥ 303 K	

- b) A mixture of H_2 and O_2 contains 11.1% H_2 by weight. Calculate a)Average molecular weight of a gas mixture b) Partial pressure of O_2 and H_2 at 100 KPa and 303 K.
- c) Equal masses of CO and N₂ are mixed together in a container at 300K. The total pressure was found to be 405.3 KPa. Find partial pressure of CO gas.

- a) Explain outline of a procedure for material balance without chemical reaction calculation.
- b) A sample of coal is found to contain 63% carbon and 24% ash on a weight basis. The analysis of refuse after combustion shows 7% carbon and rest ash. Calculate the percentage of the original carbon unburnt in refuse.
- c) Define the following terms with example
 - 1) Stoichiometric Equation.
 - 2) Stoichiometric Ratio.
- d) In production of SO_3 , 100 kmol of SO_2 and 200 kmol of O_2 are fed to a reactor. The product stream is found to contain 80 kmol SO_3 . Find the % conversion of SO_2 .
- e) Differentiate conversion and Yield.
- f) Calculate the heat that must be added to 3 kmol air to heat it from 298K to 473K using the mean molal heat capacity data for air given below.

 C_{pm}° (between 473K and 298K) for air = 29.3955 KJ/(Kmol K).

- 3. Attempt **any two** of the following :
 - a) Monochloro acetic acid (CH₂ClCOOH) is manufactured in a semibatch reactor by the action of acetic acid with chlorine using catalyst at 373 K.

 $CH_3COOH + Cl_2 \rightarrow CH_2ClCOOH + HCl$

The chlorine is used 15% excess (on mole basis) of that theoretically required. The reaction is 95% complete. Calculate the amount of the raw materials required for the production of 3000 Kg of monochloroacetic acid (Atomic weight of Cl = 35.5).

- b) It is desired to make up 1000 kg of a solution containing 35% by weight of a substance 'A'. Two solutions are available, one containing 10Wt% 'A' and other containing 50Wt% A. How many kilograms of each solution will be required ?
- c) 10,000 kg/hr of solution containing 20% methanol is continuously fed to a distillation column. Distillate is found to contain 98% methanol and waste solution from the column carries 1% methanol. All percentages are by weight. Calculate – the mass flow rates of distillate and bottom product.

Marks

 $(4 \times 4 = 16)$

 $(2 \times 8 = 16)$

[3]

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

4. Attempt **any two** of the following :

a) Calculate the standard heat of reaction ($\Delta H^{\circ}R$) of the following reaction.

2FeS₂ (s) + 5.5 O₂ (g) \rightarrow Fe₂O₃(s) + 4 SO₂(g) Data : Component $\Delta H^{\circ}f$ KJ/mol at 298K

$\text{FeS}_2(s)$	-178.02
$\operatorname{Fe_2O_3}(s)$	-822.70
$SO_2(g)$	- 296.81

- b) 2000 kg of wet solids containing 70% solids by weight are fed to a tray dryer where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight. Calculate
 - a) the kg of water removed from wet solids.
 - b) the kg of product obtained.
- c) A feed containing 50% benzene and 50% toluene is fed to a distillation column at a rate of 5000 kg/hr. The top product contains 95% benzene and the bottom product contains 92% toluene by weight. Calculate :
 - a) the mass flow rates of top and bottom products.
 - b) The percent recovery of benzene.

5. Attempt **any two** of the following :

- a) An evaporator is fed with 15000 kg/hr of a solution containing 10% NaCl, 15% NaOH and rest water. In operation water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl and rest water. Calculate :
 - i) kg/hr water evaporated.
 - ii) kg/hr salt precipitated.
 - iii) kg/hr thick liquor.
- b) A sample of dry flue gas has the following composition by volume.

$$CO_2 = 13.4\% N_2 = 80.5\% O_2 = 6.1\%.$$

Find the percent excess air supplied assuming that the fuel contained no nitrogen, the nitrogen and oxygen in flue gas must have come from air.

[4]

Marks

 $(4 \times 4 = 16)$

- c) Methane gas is heated from 303 K to 523K at atmospheric pressure. Calculate the heat added per kmol methane using C_p° data given below : Data $C_p^{\circ} = a + bT + cT^2 + dT^3$, KJ/(Kmol.K) Gas a $b \times 10^3$ $c \times 10^6$ $d \times 10^9$ Methane 19.2494 52.1135 11.973 _11.3173
- 6. Attempt **any four** of the following :
 - a) Explain Hess's law of constant heat summation with example.
 - b) Define adiabatic reaction and adiabatic reaction temperature.
 - c) A coke contains 90% carbon and 10% ash by weight. If air is used 10% excess for combustion, calculate moles of air supplied per 100 kg of coke burned.
 - d) For manufacture of NH₃, 4 kmoles of N₂ and 10 kmoles of H₂ are fed. Identify excess component and calculate % excess.
 - e) A tray dryer is fed with 1000 kg of wet orthonitroaniline containing 10% water. The dried product contains 99.5% orthonitroaniline and the rest water. Find the percentage of original water that is removed in the dryer.
 - f) In manufacture of sulphur trioxide, feed to a reactor consists of 50 kmol SO_2 and 150 kmol air. Calculate the % excess air is used.