

WINTER – 17 EXAMINATIONS

Subject Code: 17554

<u>Model Answer</u>

Page No: ____/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. NO.	MODEL ANSWER	MARKS	TOTAL MARKS
1 A	Attempt any six	6 x 2m	12m
a)	 Application based on solar energy 1) Energy generation 2) Water heater 3) Solar distillation 	2m (any 2)	2m
b)	Renewable energy sources:- The resources that can be renewed by reproduction are called renewable resources. For example: air and water.	1m	2m
	The resources that are present in fixed quantities are called non- renewable resources. For example- fossil fuels and minerals.	1m	
c)	Zeroth law of thermodynamics this law states"When two system are each in thermal equilibrium separelty with a third system,then the two system are also in thermal equilibrium in each other" A B C C	2m	2m
d)i ii	Internal energy It is is a energy posse by a body or system due to its molecular arrangement and motion of molecules.it is represented by u The totatal energy of system $E=mgh + \frac{1}{2}(mv^2) + u$ Entrropy	1m 1m	2m
	It is a function of a quantity of heat which shows the possibility of conversion of that heat into work.		
e)	Boiler Draught •It is defined as 'the force required to draw'. •It is also referred as, "the pressure difference necessary to draw the required quantity of air for combustion and to remove the flue gases from the boiler, exhausting to atmosphere	2m	2m
f)i	Dryness fraction or quality of wet steam. It is the ratio of the mass of actual dry steam, to the mass of same quantity of wet steam, and is generally denoted by 'x'. Mathematically, x = mg/(mg+mf) Where mg = Mass of actual dry steam,	1m	2m

·			
	mf = Mass of water in suspension, and		
	m = Mass of wet steam = mg + mf		
	The dryness fraction of dry saturated streams, X=1		
ii	Degree of superheat:	1m	
	Ti is difference between temperature of superheated steam and saturated		
	steam.		
	It is given by (T _{sup} -T _{sat})		
g)	Importance of Steam Table	2m	2m
	•Steam table is available on pressure basis as well as temperature basis.		
	•The various properties of steam like specific volume, specific enthalpy and		
	entropy are tabulated in the steam table. These properties have been		
	experimentally found and are used for calculation.		
h)	Dalton'S Law of Partial Pressures	1	2m
	It states "The pressure of the mixture of air and steam is equal to the	lm	
	sum of the pressures which each constituent would exert, if it		
	occupied the same space by itself." Mathematically, pressure in the		
	condenser containing mixture of air and steam,	1	
	Pc=Pa+Ps	Im	
	Pa=, pressure in the condenser containing mixture of air and steam		
	Pa = Partial pressure of air, and		
	Ps = Partial pressure of steam.		
1)		2	2m
	eventifies and antiabatic+[g+1] are the reversible adjabatic expansion is	2m	
	P1		
	Ise exp. a		
	P2?		
	inter all inter		
	\vec{a} 41 / \vec{b} $\vec{\mu}$ $T_3 = T_4$		
	p3		
	V, V, V, V, V3 S1 S2		
	Volume Entropy		
	(a) $p - v$ diagram. (b) $T - S$ diagram.		

В	Attempt any two	4m x 2	8m
a)	Hydro-ELECTRIC POWER PLANT fig.shows a general lay-out of a hydro-electric power plant which consists of: (i)A dam constructed across a river to store water. (ii)Pipes of large diameters called penstocks, which carry water under pressure from the storage reservoir to the turbines. These pipes are made of steel or reinforced concrete. (iii)Turbines having different types of vanes fitted to the wheels. (iv)Tail race, which is a channel which carries water away from the turbines after the water has worked on the turbines. The surface of water in the tail race is also known as tail race.	2m(dia.) 2m(expl.)	4m
b)	Point Function They depend on the state only, and not on how a system reaches that state. All properties are point functions. Those properties, which cannot be located on graph by a point but are given by area or show	2m	4m
	on the graph Path Function Their magnitudes depend on the path followed during a process as well as the end states Work (W), heat (Q), Pressure, volume, enthalpy, internal energy are path functions When the two properties locate a point on graph (coordinates axes) then those properties are known as point function	2m	

c)	Heat exchangers	1m	4m
	transfer of heat energy from one fluid to another fluid.		
	Heat exchangers can be classified as follows:		
	1 According to nature of heat exchange process:		
	(i) Direct contact type	3m(class	
	(ii) Indirect contact type:)	
	It is further classified as:	,	
	(a) Recuperators		
	(b) Regenerators		
	2. According to relative direction of fluid motion		
	(i) Parallel flow		
	(ii) Counter flow		
	(iii) Cross-flow		
	3. According to design and constructional features		
	(i) Concentric tubes		
	(ii) Shell and tube		
	(iii) Multiple shell and Tube passes		
2	Attempt any four	4m x 4	16m
a)			4m
,	elettinona and tholes and bein		
	Bevel acor gear		
	N Sector Jaco	2m(dia.)	
	LEGE & The combined of BH		
	P VIIX		
	THAN		
	Blades J generator.		
	* Wind mill. *		
	Wind energy is kinetic energy associated with movement of large mass of	2m(expl.)	
	air over the earth surface due to non uniform heating of the earth surface.		
	1. Wind energy is converted to mechanical energy by the wind mill		
	2. The wind approaching the blad move the wind mill shaft thereby rotating		
	rotor of gerrtor which irduce electricity		
	3.It can also be used for water pumping, drinking and irrigation in rural area		
b)	Themodynamic system :-	2m (def.)	4m
	It is defined as a quantity of matter or region in space upon which		
	attention is concentrated. In the analysis of a problem		
	e.g boller, turbine which is being analyse		

	There are three type of system 1.Closed system e.g.Piston and cycline 2.Open system e.g. turbine 3.Isolated system e.g.Gas enclosed in	der without valve a issulated vessel,universe etc	2m(class. any two)	
c)	Heat1. Heat is defined as "the energy transferred, without transfer of massacross the boundaries, due totemperature difference between the system and surroundings".2. It is low qrade energy 3. In a stable system, there is no restriction for the transfer of heat 4. It is denoted by letter 'Q'.5. If heat is received by system, it is taken as positive and if heat is lost/rejected by system, it is taken as positive	Work1. In thermodynamics, work is defined as, "the energy transferred (without the transfer of mass) across the boundary of a system due to pressure difference that exists between system and surroundings"2. It is high grade energy 3. In a stable system, there cannot be work transfer4. It is denoted by letter 'W'.5. If work is produced or developed, it is taken as positive. If work is consumed, it is taken a monthered	1m for each point (any four)	4m
d)	P P P B B B B B B B B B B B B B	the second secon	2m(each dia.)	4m
e)	1.According to the contents in the tub a)Fire tube or smoke tube boiler, and 2.According to the position of the furr a) Internally fired boilers, and (b) Exte 3.According to the axis of the shell (a) Vertical boilers, and (b) Horizontal 3. According to the number of tubes (a) Single tube boilers, and (b) Multitu 5. According to the method of circulat (a) Natural circulation boilers, and (b)	e (b) Water tube boiler hace rnally fired boilers boiler bular boilers tion of water and steam Forced circulation boilers.	4 (any 4)	4m

3	Attempt any four	4m x 4	16m
a)i	Thermodynamic state		4m
	It can be defined as a exact condition of the system. The state can be	1m	
	defined by thermodynmicthen it is known as a cycle or cyclic process.		
ii	Thermodynamic process	1m	
	"When a system changes its state from one equilibrium state to		
	another equilibrium state, then the path of successivestates. through which		
	the system has passes is known as Thermodynamic process		
iii	Thermodynamic cycle	1m	
	When number of processes are performed on a system, in such a way		
	that, final state is identical with initial state, it is known as thermodynamic		
	cycle or cyclic process		
iv	Thermodynamic Property	1m	
	It can be defined as "an observable charctristic of system ".It may be		
	temperturemvolume and pressure etc		
b)	Nozzle: A Steam nozzle is a passage of varying cross-section, which	1m	4m
	converts heat energy of steam into kinetic energy. The main use of		
	steam nozzle in steam turbine is to produce a jet of steam with high		
	velocity. The smallest section of nozzle is known as throat.		
	Types of steam nozzle:		
	1. Convergent		
		1m	
	· · · · · · · · · · · ·		
	2 Divergent		
	2. Divigon		
		1m	

4	Attempt any four	4m x 4	16m
a)	Kelvin - Planck Statement . According to Kelvin-Planck 'It is impossible to construct an engine working on a cyclic process, whose sole purpose is to convert heat energy from a single thermal reservoir into an equivalent amount of work.	2m	4m
	Clausius Statement . According to Clausius statement "It is impossible for a self acting machine working In a cycLic process, to transfer heat from a body at a lower temperature to a body at a higher temperature without the aid of an external agency.	2m	
b)	SFEE:		4m
	$h_1+V_1^2/2+gZ_1+q_{12}=h_2+V_2^2/2+gZ_2+W_{12}$	1m	
	i)For boiler		
	Peplication of SEEE 2- 16 Boiler :- Boiler I Boiler I Boile I B	3m	
	It is a device which supplies heat to water and generates steam. 1) No change in kinetic energy 2) No change in potential energy 3) No work done. SFEE q ₁₂ =h ₂ -h ₁		

Heat Engine	Heat Pump 1. It is a work absorbing or		4m
	consuming device	1m each	
2 It obeys Kelvin-Plank's statement	2 It obeys Clausius statement of	point(any	
of second law of thermodynamics	second law of thermodynamics	four)	
3 In heat engine heat is supplied	3 In heat nump heat is numped	,	
from heat source or a hot body and	from heat sink or a cold body and is		
work is produced with rejection of	supplied to hot body, on consuming		
some quantity of heat to the heat	external work supplied.		
sink or cold body.			
4.Its performance is measured in	4. Its performance is measured in		
terms of "efficiency".	terms of "coefficient of		
	performance".		
5. $\eta_{\rm E} = \frac{Q_2 - Q_1}{Q_2}$	5. $(COP)_{P} = \frac{Q_{2}}{Q_{2} - Q_{1}}$		
6. $n_{\rm f} = \frac{T_2 - T_1}{T_2}$ for carnot engine	6. (COP) _P = $\frac{T_2}{T_2 - T_1}$ for carnot heat		
	pump.		
7.Efficiency is always less than	7.COP of heat pump is always		
100%.	greater		
	than 1.		
Separating Calorimeter Steam main Sampling pipe Water gauge Water tap	Pressure gauge Perforated cup Steam dutlet	2m dia.	4m
	Heat Engine1. It is a work developing device2. It obeys Kelvin-Plank's statement of second law of thermodynamics.3. In heat engine, heat is supplied from heat source or a hot body and work is produced with rejection of some quantity of heat to the heat sink or cold body.4. Its performance is measured in terms of "efficiency".5. $\eta_E = \frac{Q_2 - Q_1}{Q_2}$ 6. $\eta_E = \frac{T_2 - T_1}{T_2}$ for carnot engine7. Efficiency is always less than 100%.Separating CalorimeterWater gaugeWater tap Water tap	Heat EngineHeat Pump1. It is a work developing device1. It is a work absorbing or consuming device.2. It obeys Kelvin-Plank's statement of second law of thermodynamics.1. It is a work absorbing or consuming device.3. In heat engine, heat is supplied from heat source or a hot body and work is produced with rejection of some quantity of heat to the heat 	Heat EngineHeat Pump1. It is a work developing device1. It is a work absorbing or consuming device.1. It is a work absorbing or consuming device.2. It obeys Kelvin-Plank's statement2. It obeys Clausius statement of second law of thermodynamics.1. In heat pump, heat is pumped from heat source or a hot body and is supplied to hot body, on consuming external work supplied.1. In heat pump, heat is pumped from heat source or a hot body and is supplied to hot body, on consuming external work supplied.1. In heat pump, heat is pumped from heat source or a hot body and is supplied to hot body, on consuming external work supplied.4. Its performance is measured in terms of "efficiency".4. Its performance is measured in terms of "coefficient of performance".5. $\eta_E = \frac{Q_2 - Q_1}{Q_2}$ 5. (COP)_P = $\frac{Q_2}{Q_2 - Q_1}$ 6. $\eta_E = \frac{T_2 - T_1}{T_2}$ for carnot engine pump.7. COP of heat pump is always greater than 1.7. Efficiency is always less than 100%.7. COP of heat pump is always greater than 1.Separating CalorimeterWater gaugeWater tapWater tapWater tapSteam dutlet

f)			
1)	Applications of heat avalances		4m
	Applications of near exchanger:-		4111
	a) Dairy industry.	A (
	(b) Food industries.	4m(any	
	(c) Refrigeration and air-conditioning.	four)	
	(d) Steam and gas turbine power plants.		
	(e) Internal combustion engines.		
	(f) Milk chiller of pasteurizing plant		
5	Attempt any two	8m x 2	16m
a)	FORMATION OF STEAM AT CONSTANT PRESSURE		8m
	Temperature		
		4m(dia.)	
	T _{sup} IV		
	Sup		
	N ²⁰		
	and the second se		
	38		
	Latent II		
	$T_{sat} = 100^{\circ}C_{$		
	Liquid i i i i i i i i i i i i i i i i i i		
	Vapour		
	Vapour (Superheated)		
	(water) (steam)		
	$0^{\circ}C$ h_{c} $h_{$		
	$ \downarrow $		
	h _g		
	h _{sup}		
	Let 1 kg of water at o ^o C and at atmospheric pressure is to be converted into		
	steam. The heat is added to the water in followin stages.		
	1. I-II:	2	
	• The water at o0 C is heated to 100 ⁰ C i.e. boiling point of water at	2m	
	atmospheric pressure. The temperature rise can be sensed by		
	thermometer, therefore the heat added is called as sensible heat of water		
	(fluid) and denoted by hf.		
	 Also, no phase change occurs, i.e. water (liquid phase) will exist. 		
	2. - :		
	• Now the water in liquid phase at 100 [°] c is further heated, but as the water		
	is in saturated state, its temperature does not increase, but liquid is		
	transformed or vapourized to vapour form i.e. phase changes from liquid to	2m	
	gas.		
	• The heat added during this cannot be sensed by thermometer and		
	therefore called as latent heat of vapourization of water, denoted by high		
	3. III-IV:		
	5. m rv.		

(i) Air standard efficiency:- $M = 1 - \frac{1}{Y_{c}^{c_{1}}}$ $= 1 - \frac{1}{g(14-1)}$ $= 0.5647$ $\boxed{M} = 56.47 \ 7_{e}$ (ii) <u>Work done per cycle:-</u> Heat rejected = m cr (T_{4} - T_{1}) $\therefore \frac{T_{3}}{T_{4}} = (Y_{c})^{n-1}$ $\therefore \frac{1020.65}{T_{4}} = (8)^{n-4}$	2m	
$T_{4} = 444.26 \text{ K}$ $T_{4} = 444.26 \text{ K}$ $T_{4} = mC_{y} (T_{4} - T_{1})$ $= 1 \times 0.71 (444.26 - 291)$ $\boxed{12} = 108 \cdot 81 \text{ HJ } / \text{Kg} \text{ veat vejected}$ $\boxed{12} = \frac{\text{Work dome}}{\text{heat supplied}} = \frac{\text{Work dome}}{250}$ $\boxed{(W \cdot D = 141.175 \text{ KJ/Kg})}$	2m 2m	

	 condenser, and does not permit it to move into the space. It also acts as a safeguard of runner against any accident. Working: Fig shows the working of Impulse turbine The top portion of figure shows one set of nozzles, which is followed by a ring of moving blades. As the name indicates, the power is generated by the impulsive force of high velocity steam jets. These high velocity jets are obtained due to expansion of steam in the stationary nozzles only. The steam then passes through moving blades with no further pressure drop, but a gradual decrease in velocity. After striking the high velocity steam jets over the curved blades mounted on the wheel, the direction and hence momentum of velocity jets is changed, which produces a force on wheel. This force causes the shaft to rotate. The lower part of the diagram shows the approximate changes in pressure and velocity during the flow of steam through the turbine. The velocity of steam jet is reduced in the nozzle and remains constant whilepassing through the moving blade. 	2m	9~~
c)	Spark plug Inlet valve valve valve valve (a) Suction or charging stroke. (b) Compression stroke. (c) Expansion or working stroke. (d) Exhaust stroke.	4m (dia.)	8m
	Four-stroke Cycle Petrol Engine It is also known as Otto cycle. It requires four strokes of the piston to complete one cycle of operation in the engine cylinder. The four strokes of a petrol engine sucking fuel-air nixture (petrol mixed with proportionate quantity of air in the carburettor known as charge) are described below 1. Suction or charging stroke. In this stroke, the inlet valve opens and charge is suckedinto the cylinder as the piston moves downward from top	4m(expl.)	

dead centre (T.D.C.). It continues till thepiston reaches its bottom dead	
centre (B.D.C.) as shown in Fig. (a).	
2. Compression stroke. In this stroke, both the inlet and exhaust valves are	
closed and the charge is compressed as the piston moves upwards	
fromB.D.C. to T.D.C. As a result of compression the pressure and	
temperature of the charge increases considerably (the actual values	
depend upon the compression ratio). This completes one revolution of the	
crankshaft. The compression stroke is shown in Fig. (b).	
3. Expansion or working stroke. Shortly before the piston reaches T.D. C.	
(during compresssion stroke), the charge is ignited with the help of a spark	
plug. It suddenly increases the pressure and temperature of the products of	
combustion but the volume, practically, remains constant. Due to the rise in	
pressure, the piston is pushed down with a great force. The hot burnt gases	
expand due to high speed of the piston. During this expansion, some of the	
heat energy produced is transformed into mechanical work. It may be	
noted that during this working stroke, as shown in Fig. (c), both the valves	
are closed and piston moves from T.D.C. to B.D.C.	