WINTER-2017 EXAMINATION

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub	Answer	Marking
	Q.N.		Scheme
1.	(A)	Attempt any <u>THREE</u>	12
	(a)	List any four analytical Instruments based on Beer & Lambert's law.	
		Ans:	
		1) Colorimeter	04
		2) Spectrophotometer.	
		3) Flame photometer	
		4) Filter Photometer	
		5)Single beam Spectrophotometer	
		6) Dual beam Spectrophotometer	
		OR Any other relevant instrument	
	(b)	Which sterilizing equipments are used for following application? Justify.	
	(0)	(i) For removing microdust, clots, and blood stains on the instrument.	
		(ii) Various powder in medical use.	
		(iii) For sterilizing medical waste.	
		Ans:-	
	(i) For removing micro dust, clots, and blood stains on the instrument.		
		The Ultrasonic Cleaner gives 100% cleaning of the surgical instruments and removes	
		miocrodust, bold stains, and clots deposited in the joints and crevices of the instruments. It	
		is the scientific, qualitative and hygienic method cleaning all the surgical instruments and	
		scopes	
		OR	
		Autoclaves provide a physical method for disinfection and sterilization. They work with a	
		combination of steam, pressure and time. Autoclaves operate at high temperature and	04
		pressure in order to kill microorganisms and spores. Dry material can be treated in a fast	
		exhaust cycle	
		(i) Various powders in medical use.	
		Powders cannot be sterilized by steam because steam will not penetrate the substance;	
		steam condensates on the outside. The correct method for such materials is dry heat means	
	1		1

17544

Subject Code:

	Hot air oven.			
	(ii) For sterilizing medical waste			
	Autoclaving is often used to sterilize medical waste prior to disposal in the			
	standard municipal solid waste stream. This application has become more common as an			
	alternative to incineration due to environmental and health concerns raised because of the			
	combustion by-products emitted by incinerators.			
	Incinerators: Incinerators are used for disposal of biomedical waste			
(c	List any four technical specification of Blood Gas Analyzer.			
	Ans:			
	1. Power supply:-200-240Vac 50Hz.			
	2.Measured parameters:- pH, pCO2, pO2, tHb, Barometric Pressure, Na+, K+, Ca++, Cl 0			
	All these parameters measured simultaneously			
	3. Sample volume:-less than 100ul.			
	4. Analysis time: – less than 60 sec.			
	5. Display: LCD color touch screen display.			
(d				
	Ans: (Types -2 marks + Parts- 2 marks)			
	Types of Electronic microscope:	04		
	1) SEM: Scanning Electron Microscope.	04		
	2) TEM: Transmission Electron microscope			
	Different parts:			
	1) Light source			
	2) Mirror lenses.			
	3) Condenser system			
	4) Diaphragm5) Eye piece.6) Photomiographic system			
(E				
(a	Draw a neat labelled diagram of TEM. Also state the function of each part.			
	Ans :			
	100,000-V supply 6			
	1 Stack Electron gun			
	Hot tungsten-wire filament	03		
	Cathode shield A			
	First condenser			
	Second condenser lens			
	Connections from stack to vaccum pumps			
	Objective aperture			
	Objective lons (13)			
	Land II projector image (15)			
	Primary Focussing			
	binoculars			
	Final image			
	Photographic Fluorescent screen			
	Figure 3.32 Ontical system and any Camera			
I	· · ·	o 7 of 11		

	Electron gum :- The function of the electron gun is to generate electrons to form the electron beam and direct it down the microscope column through the condenser lens. The electron gun consists of cathode and anode. These electrodes are maintained at 50 kilowatts potential difference with the anode at ground potential. Condenser lens :-	
	In microscope the condenser lens controls the concentration or intensity of the electron beam on the specimen. It consists of an ironclad coil with a gap at about the middle of the central opening. Diameter of these lenses is 0.025inch. Objective lens :-	03
	The objective lens is very much similar in appearance and construction to the condenser lens.	03
	The objective lens forms an intermediate image, which can be viewed on the intermediate viewing screen, at a magnification of about eighty diameters. The image is focused by adjusted the objective current.	
	Diffraction/intermediate lens : Switching between imaging and diffraction mode. Projective lenses : Further magnification of second intermediate image (image or	
	diffraction pattern, respectively). Image observation : Images and diffraction pattern can directly be observed on the viewing screen in the projection chamber or via a TV camera mounted below the microscope column. Images can be recorded on negative films, on slow-scan CCD cameras or on imaging plates.	
(b)	What is sterilization? Write stepwise procedure to sterilize medical instruments using autoclave. Also list any two clinical application of autoclave	
	Ans:	02
	Sterilization is a process in which all the living microorganisms, including bacterial spores are killed.	02
	Procedure:	
	 Keep waste in the autoclave. Power on the supply. 	02
	3) Set timing for sterilization.	02
	4) Keep the desired pressure for sterilization until the point of condensation at which it draws more steam to the area.Application:	
	 Autoclaves are widely used to cure composites and in the vulcanization of rubber. Autoclaves are used for pre-disposal treatment and sterilization of waste materials. Autoclaves are used to sterilize the equipment's in the hospitals. Autoclaves are also used for sterilization of materials like gowns, dressing, gloves, etc 	02

2.		Attempt any FOUR	
	(a)	Draw a neat diagram of Gas chromatography & describe it.	
		Ans :	
		Sample injector Strip-chart	
		Pressure Detector	
		regulator Unjection	
		Flow regulator	02
		Temperature	
		Carrier Oven	
		Column	
		The basic parts of a gas chromatograph are shown in figure	
		It consists of the following parts.	
		- Carrier gas supply along with pressure regulator and flow monitor.	
		- Sample injection system.	
		- Chromatographic column	
		- Thermal compartment of thermostat	
		- The detection system	
		- The strip chart recorder The corrier and normally N Ar or He is usually evailable in a compressed form in a	
		The carrier gas, normally N_2 , Ar or He is usually available in a compressed form in a cylinder fitted with a suitable pressure regulator. The gas is conducted from the cylinder	02
		through a flow regulator, to a sample injection port maintained at a certain temperature T_1 ,	-
		which is such that it ensures rapid vaporization, but not thermal degradation of the solute.	
		Gas and liquid samples are almost always injected by syringe through a self sealing silicon	
		rubber diaphragm in the injection port. The solute vapor mixes almost instantaneously with	
		the flowing carrier gas and is swept into the chromatographic column, which is the heart of	
		the chromatography.	
		It is there that the different solutes in the vaporized sample are separated from each other, by virtue of their different interaction with the column packing. The	
		column is maintained at another temperature T_2 . This temperature determines the time for	
		the passage of the solutes and to some extent, the resolution and efficiency obtained with a	
		particular column. At the end of the column the solutes emerging individually enter the	
		detector which produces an electrical signal corresponding to the quantity of solute leaving	
		the column. The detector signal is supplied to a potentiometer recorder and a plot of the	
		time signal amplitude called chromatogram is obtained.	
	(b)	With neat diagram of optical method for cell counting. Also write its working	
		principle. Ans :	
		All5 .	
		Ring	
		Arcentee Apoeture	
		FT -Lens Photo	
		Lamp opical cuvette tube	
		Fig · Dark field blood cell count	

	(ISO/IEC - 27001 - 2005 Certified)	
	Construction: - Double walled, the motor fixed at the back / triple walled, ducted air flow type, the motor fixed at the top. The motorized forced air circulation to maintain uniform temperature inside the chamber. Inner chamber made of stainless steel. Outer chamber made of mild steel. Gasket Asbestos rope or Neoprene rubber (optional) gaskets for the door to avoid air leakage and temperature loss of hot air oven. Trays Two/ Three perforated removable stainless steel trays at the fixed distance. Front panel consists of mains ON/OFF rocker switch	02
(d)	 Describe construction of Auto analyzer with help of neat diagram. Ans : Ans: Image: Image: I	02

3.		Attempt any <u>FOUR :</u>		16
	(a)	1. It consists of one detector.1. It consists of two detectors.2. It is not easy determination of spectral Transmission curves.2. It allows easy determination Transmission curves.3. Wave length calibration at SPM can be check using holonium oxide filter as calibration.3. Holonium oxide filter not calibration.	Duel beam spectrophotometer1. It consists of two detectors.2. It allows easy determination of spectral Transmission curves.3. Holonium oxide filter not required for	
		wave length standard.4. Less no. of mirrors required to construct spectrophotometer.5. It can measure single sample at a time.	4. More no. of mirrors required to construct spectrophotometer.5. It can measure multiple sample at same time.	
		 6. A single beam spectrophotometer has only one beam of light. 7. As compare to dual beam less accuracy. 8. In single-beam instruments, because there is only one light path which passes through the sample, it therefore requires manually switching a reference cuvette with the sample cuvette for calibration. 	 time. 6. while a double beam spectrophotometer has two beams of light. 7. High accuracy. 8. Double beam spectrophotometers operate faster and provide more reproducible results because they perform an automatic correction for the loss of light intensity as the beam passes through the sample and reference solution. 	04
		9. Less reproducibility.10 Diagram	9. Greater reproducibility. 10 Diagram	
		Image: Sample Sample Sample Monochromator Figure 10.41 Spectrophotometer.	Photomultiplier detector Photomultiplier	
	(b)	in a biochemistry lab is the centrifuge. Centri substances from each other by using centrifu liquid sample at high speed & thus creates material to travel towards bottom of the centri	used to separate materials into some fractions rifuge is a device for separating two or more gal force. A centrifuge is a device that spins strong centripetal force causing the denser fuge tube more rapidly than they would under centrifuge is a device for separating particles	02

