
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 1 of 33

 WINTER– 17 EXAMINATION

 Subject Name: System Programming Model Answer Subject Code:

Important Instructions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent
figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may
vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based
on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.

No.

Sub

Q. N.

Answer Marking

Scheme

1. a) Attempt any three : Marks 12

 1) 1. Define the following terms :

i) Overlays

ii) Subroutine linkages.

4M

 Ans: i) Overlays:

1. Many modern computers use virtual memories that make it possible to run programs

larger than physical memory either one program or several programs can be executed

even if total size is greater than entire memory available.

2. When a computer does not use virtual memory, running a larger program becomes a

problem. One solution is overlays(or chaining).

3. Overlays are based on the facts that many programs can be broken into logical parts

such that only one part is needed in memory at any time.

4. The program is divided by the programmer, in to main part (overlay root), that resides

in memory during the entire execution and several overlays, (links or segments) that

can be called, one at a time, by the root, loaded and executed.

5. The subroutines of a program are needed at different times

ii) Subroutine linkage:

It is a mechanism for calling another subroutine in an assembly language. The scenario

for subroutine linkage.

(Overlays

:2marks,

Subroutin

e linkages:

2marks)

17517

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 2 of 33

1. A main program a wishes to transfer to subprogram B.

2. The programmer in program A, could write a transfer instruction. Eg (BA L, 14,B) to

subprogram B.

3. But assembler does not know the value of this transfer reference and will declare it is

an error.

4. To handle this situation a special mechanism is needed.

5. To handle it mechanism is typically implemented with a relocation or direct linking

loader.

Subroutine linkage uses following special pseudo ops:

ENTRY

EXTRN

It is used to direct or to suggest loader that subroutine followed by ENTRY are defined

in this program but they are used in another program.

For example: the following sequence of instruction may be a simple calling sequence

to another program.

MAIN START

EXTRN SUBROUT

……………..

……………..

…………….

L 15=A(SUBROUT)…..CALL SUBROUT

BALR 14,15

..

..

..

..

END

The above sequence of instructions first declares SUBROUT as an external

variable, that is a variable referenced but not defined in this program. The load(L)

instruction loads the address of that variable in to register 15.

 2) What is operating system? Enlist the features of operating system as a system

software.

4M

 Ans: An Operating System (OS) is an interface between a computer user and computer

hardware. An operating system is a software which performs all the basic tasks like file

management, memory management, process management, handling input and output, and

controlling peripheral devices such as disk drives and printers

(Definatio

n:2marks,

any four

features:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 3 of 33

 Features of operating system:

1. Assemblers

2. Computers, such as FORTRAN, COBOL, and PL/I

3. Subroutine libraries, such as SINE, COSINE, SQUARE ROOT.

4. Linkage editors and program loaders that bind subroutines together and prepare

programs for execution

5. Utility routines, such as SRT/MERGE AND TAPE COPY

6. Application packages, such as circuit analysis or simulation

7. Debugging facilities, such as program tracing and “core dumps”

8. Data management and file processing

9. Management of system hardware.

 3) State and explain Binary search method with example. 4M

 Ans: Binary Search Algorithm: A more systematic way of searching an ordered table. This

technique uses following steps for searching a keywords from the table.

1. Find the middle entry (N/2 or (N+1)/2)

2. Start at the middle of the table and compare the middle entry with the keyword to

be searched.

3. The keyword may be equal to, greater than or smaller than the item checked.

4. The next action taken for each of these outcomes is as follows

If equal, the symbol is found

If greater, use the top half of the given table as a new table search

If smaller, use the bottom half of the table.

Example:

The given nos are: 1,3,7,11,15

To search number 11 Indexing the numbers from list [0] up to list[5]

Pass 1

Low=0

High = 5

Mid= (0+5)/2 = 2

So list[2] = 3 is less than 11

Pass 2

Low= (Mid+1)/2 i.e (2+1)/2 = 1

High = 5

Mid= (1+5)/2 = 6/2 = 3

So list [3] = 11 and the number if found.

(Descriptio

n:2marks,

Example:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 4 of 33

 4) Draw the output of syntax analysis phase for the string ‘d = a + b * c’ in the form of

syntax tree.

4M

 Ans:

(Correct

Tree:4

marks)

 b) Attempt any one : Marks 6

 1) Describe the foundation of system programming. 6M

 Ans: Foundation of System Programming:

System programs e.g. Compilers, loaders, macro processor, operating systems were

developed to make computer better adapted to the needs of their users. Compiler is system

program that accept people life languages and translate them into machine language.

Loaders are system programs that prepare machine language programs for execution.

(Diagram:

3 marks,

Descriptio

n: 3

marks)

=

d *

+

a b

c

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 5 of 33

Macro processors allow programmers to use abbreviations. Operating system and file

system allows flexible to bring and retrieval of information. The productivity of each

computer is heavily dependent upon the effectiveness, efficiency and sophistication of the

system programs.

 2) Draw flowchart of pass-I of two pass macroprocessor. 6M

 Ans:

(Correct

Flowchart:

6 marks)

2. Attempt any two: Marks 16

 1) Explain Address calculation sort with suitable example. 8M

 Ans: This can be one of the fastest types of sorts if enough storage space is available.

The sorting is done by transforming the key into an address in the table that “represents”

the key.

For example if the key were four characters long, one method of calculating the appropriate

table address would be to divide the key by the table length in items, multiply by the length

is a power of 2, then the division reduces to a shift. This sort would take only N* (time to

calculate address) if it were known that no two keys would be assigned the same address.

(Descriptio

n:4 marks,

Example:4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 6 of 33

However, in general. This is not the case and several keys will be reduced to the same

address.

Therefore, before putting an item at the calculated address it is necessary to first check

whether that location is already occupied. If so, the item is compared with the one that is

already there, and a linear search in the correct direction is performed to find the correct

place for the new item.

If we are lucky, there will be n empty space in which to put the item in order. Otherwise,

it will be necessary to move some previous entries to make room.

Figure: Example of address calculation sort

The table is of size 12; since it is known that maximum key is less than 36, the address

transformation is to divide the key by 3 and take the integer part. A “*” indicates a conflict

between keys, and the arrow indicates when a move is necessary and in which direction.

The associated addresses calculated are given in the second row.

 2) Explain format of databases in Assembler. 8M

 Ans: Pass 1 data bases

 Input source program

 A LC to keep track of each instruction location

 A MOT (Machine Operation Table)

(Any 8

Datab

ases :

1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 7 of 33

 A POT (Pseudo operation Table)

 A ST (Symbol Table)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 8 of 33

 A LT (Literal Table)

 A copy of the input to be used by pass 2

Pass 2 databases

 Copy of source program input to pass 1

 LC: Same as Pass I

 MOT: Same as Pass I

 POT: Same as Pass I

 ST: Same as Pass I

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 9 of 33

 BT (Base table)

 Output in machine code to be needed by the loader

 3) Explain with flowchart overview of passes of compiler. 8M

 Ans: Description:

Passes is a logical execution of the compilation process.

i. Pass 1 this pass is corresponds to lexical analysis phase. This pass scans the source

code and creates an identifier, literal and uniform symbol table.

ii. Pass 2 corresponds to syntactic and interpretation phase. It scans the uniform symbol

table, produces the matrix and place information about identifier into the identifier

table.

iii. Passes 3 to N-3 corresponds to the optimization phase. Each separate type of

optimization may require several passes over the matrix.

iv. Pass N-2 corresponds to the storage assignment phase. This is a pass over the

identifier and literal tables rather than program itself.

v. Pass N-1 corresponds to the code generation phase. It scans the matrix and creates

the first version of the object deck.

vi. Pass N corresponds to the assembly phase. It resolves the symbolic addresses and

creates information for the loader.

(Descriptio

n: 4

marks,

Flowchart

/ Diagram:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 10 of 33

3. Attempt any four: Marks 16

 1) List and explain four component of system software. 4M

 Ans: Components of system software are:

1. Assembler

2. Macros

3. Loader

4. Linker

5. Compiler.

1. Assembler :It is a language translator that takes as input assembly language program

(ALP) and generates its machine language equivalent along with information required by

the loader.

ALP Assembler→ Machine language equivalent + Information required by the loader

2. Macros: The assembly language programmer often finds that certain set of instructions

get repeated often in the code. Instead of repeating the set of instructions the programmer

can take the advantage of macro facility where macro is defined to be as “Single line

abbreviation for a group of instructions”.

The template for designing a macro is as follows

MACRO Start of definition

Macro Name

MEND End of def.

(Any four

component

: 1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 11 of 33

3.Loader: Loader is a system program which is responsible for preparing the object

programs for execution and start the execution.

Functions of loader

a. Allocation

b. Linking

c. Relocation

d. Loading

Allocation: Allocate the space in the memory where the object programs can be loaded for

execution.

Linking: Resolving external symbol reference

Relocation: Adjust the address sensitive instructions to the allocated space.

Loading: Placing the object program in the memory into the allocated space.

4. Linker: A linker which is also called binder or link editor, is a program that combines

object modules together to form a program that can be executed. Modules are parts of a

program.

5. Compiler: Compiler is a language translator that takes as input the source

program(Higher level program) and generates the target program (Assembly language

program or machine language program)

Source Program → Compiler → Target program

 2) Compare shell sort and Radix Exchange sort on the basis of space and time

complexity.

4M

 Ans:

Sort Time Complexity Space Complexity

Shell Sort

 O (n2) to O(n* logn)

O(n)

Radix Exchange Sort

O(nd)

O(k)

(Correct

time

complexity

:2marks,

Correct

space

complexity

:2marks)

 3) Explain in detail machine dependent optimization. 4M

 Ans: Two types of optimization is performed by compiler, machine dependent and machine

independent.

(Machine

dependent

optimizati

on :4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 12 of 33

Machine dependent optimization is so intimately related to instruction that the generated.

It was incorporated into the code generation phase. Whereas Machine independent

optimization was done in a separate optimization phase.

Machine- independent optimization:

o When a subexpression occurs in a same statement more than once, we can delete all

duplicate matrix entries and modify all references to the deleted entry so that they refer to

the remaining copy of that subexpression as shown in following figure.

Machine dependent optimization:

 If we optimize register usage in the matrix, it becomes machine – dependent

optimization.

 Following figure depicts the matrix that we previously optimized by eliminating a

common subexpression (M4).

 Next to each matrix entry is a code generated using the operators.

 The third column is even better code in that it uses less storage and is faster due to

a more appropriate mix of instructions.

 This example of machine-dependent optimization has reduced both the memory

space needed for the program and the execution time of the object program by a

factor of 2.

 Machine dependent optimization is typically done while generating code.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 13 of 33

 4) Explain four function performed by loader.

4M

 Ans: Loader Function : The loader performs the following functions :

1) Allocation - The loader determines and allocates the required memory space for the

program to execute properly.

2) Linking -- The loader analyses and resolve the symbolic references made in the object

modules.

3) Relocation - The loader maps and relocates the address references to correspond to the

newly allocated memory space during execution.

4) Loading - The loader actually loads the machine code corresponding to the object

modules into the allocated memory space and makes the program ready to execute.

(Four

functions

:1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 14 of 33

 5) Draw the parse tree for the string ’acddf’ using top down parsing approach.

4M

 Ans: String is “acddf”

Assume:

S→ xyz | aBC

B → c | cd

C → eg | df

Steps

Assertion 1 : acddf matches S

Assertion 2: acddf matches xyz:

Assertion is false. Try another.

Assertion 2 : acddf matches aBCi.ecddf matches BC:

Assertion 3 : cddf matches cCi.eddf matches C:

Assertion 4 : ddf matches eg:

False.

Assertion 4 : ddf matches df:

False.

Assertion 3 is false. Try another.

Assertion 3 : cddf matches cdCi.edf matches C:

Assertion 4 : df matches eg:

False.

Assertion 4 : df matches df:

Assertion 4 is true.

Assertion 3 is true.

Assertion 2 is true.

Assertion 1 is true.

(Correct

parse tree:

4marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 15 of 33

4. a) Attempt any three : Marks 12

 1) Explain “compile and Go” loader scheme. 4M

 Ans: “Compile and go” loader:

The instruction is read line by line, its machine code is obtained and it is directly put in the

main memory at some known address.

That means the assembler runs in one part of memory and the assembled machine

instructions and data is directly put into their assigned memory locations.

After completion of assembly process, assign starting address of the program to the

location counter. The typical example is WATFOR-77, it’s a FORTRAN compiler which

uses such “load and go” scheme. This loading scheme is also called as “assemble and go”.

Advantages:-

1. It is very easy to design and implementation.

2. Relocation can be perform by translator itself.

3. No object files are required.

4. It is suitable for experimental program language like Basic.

Disadvantages:-

1. For execute program it is necessary to compile a program every time.

2. It is very difficult to handle the multiple modules (Linking problem)

Figure: Compile & Go Loader

(Explanati

on:3marks

, Diagram:

1mark)

 2) Explain any four optimization technique uses by compiler. 4M

 Ans: The possible algorithm for four optimization techniques are as follows:-

1) Elimination of common sub expression

2) Compile time compute.

3) Boolean expression optimization.

4) Move invariant computations outside of loops.

1) Elimination of common sub expression: -The elimination of duplicate matrix entries

can result in a more can use and efficient object program. The common subexpression

must be identical and must be in the same statement.

(Each

technique:

1 mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 16 of 33

i. The elimination algorithm is as follows:-

ii. Place the matrix in a form so that common subexpression can be recognized.

iii. Recognize two subexpressions as being equivalent.

Iv. Eliminate one of them.

v. After the rest of the matrix to reflect the elimination of this entry.

For example:-

2. Compile time compute:- Doing computation involving constants at compile time save

both space and execution time for the object program.

The algorithm for this optimization is as follows:-

i. Scan the matrix.

ii. Look for operators, both of whose operands were literals.

iii. When it found such an operation it would evaluate it, create new literal, delete old line

iv. Replace all references to it with the uniform symbol for the new literal.

v. Continue scanning the matrix for more possible computation.

For e.g.-

For e.g.- A = 2 * 276 / 92 * B

The compile time computation would be

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 17 of 33

3)Boolean expression optimization:- We may use the properties of boolean expression to

shorten their computation.

e.g. In a statement

If a OR b Or c, Then when a, b & c are expression rather than generate code that will

always test each expression a, b, c. We generate code so that if a computed as true, then b

OR c is not computed, and similarly for b.

3) Move invariant computation outside of loops:- If computation within a loop depends on

a variable that does not change within that loop, then computation may be moved outside

the loop.

This requires a reordering of a part of the matrix. There are 3 general problems that need

to be solved in an algorithm.

1. Recognition of invariant computation.

2. Discovering where to move the invariant computation.

3. Moving the invariant computation.

Original Code is:-

For y=0 to height-1

For x=0 to width-1

i=y*width+x

Process I

Next x

Next y

here y*width is loop invariant not change in inner loop

Modified code is:-

For y=0 to height-1

temp= y*width

For x=0 to width-1

i=temp+x

Process i

Next x

Next y

 3) Discuss memory allocation scheme used in compiler. 4M

 Ans: Storage Assignment: The purpose of this phase is as follows:-

1. Assign storage to all variables referenced in the source program

2. Assign storage to all temporary locations that are necessary for intermediate result,

e.g. the result of matrix lines. These storage references were reserved by the

interpretation phase and does not appear in the source code.

3. Assign storage to literals.

4. Ensure that the storage is allocated and appropriate locations are initialized

(literals and any variables with the initial attribute).

Storage allocation phase does the following four steps:

1.Update the location counter with any necessary boundary alignment.

2. Assign the current value of the location counter to the address field of the variable.

3. Calculate the length of the storage needed by the variable.

4. Update the location counter by adding this length to it.

(Explanati

on: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 18 of 33

 4) Explain predictive parsing with example.

4M

 Ans: Predictive Parser: Predictive parser is a recursive descent parser, which has the capability

to predict which production is to be used to replace the input string. The predictive parser

does not suffer from backtracking. To accomplish its tasks; the predictive parser uses a

look ahead pointer, which points to the next input symbols. To make the parser back-

tracking free, the predictive parser puts some constraints on the grammar and accepts only

a class of grammar known as LL(k) grammar. Predictive parsing uses a stack and a parsing

table to parse the input and generate a parse tree. Both the stack and the input contains an

end symbol $to denote that the stack is empty and the input is consumed. The parser refers

to the parsing table to take any decision on the input and stack element combination.

Exapmle:-

Grammer:

S→ aBc

B→ bc|b

Input String : abc

Fails, backtrack correct

(Descriptio

n:2marks,

Example:2

marks)

 b) Attempt any one : Marks 6

 1) Explain four basic task of macroprocessor. 6M

 The 4 basic task of Macro processor is as follows:-

1) Recognize the macro definitions.

2) Save the Macro definition.

3) Recognize the Macro calls.

4) Perform Macro Expansion.

1) Recognize the Macro definitions:- A microprocessor must recognize macro

definitions identified by the MACRO and MEND pseudo-ops. When MACROS

and MENDS are nested, the macro processor must recognize the nesting and

correctly match the last or outer MEND with the first MACRO.

(List:2

marks,

Each task

descriptio

n:1 mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 19 of 33

2) Save the Macro definition:- The pre-processor must save the macro instructions

definitions that can be later required for expanding macro calls.

3) Recognize the Macro calls:- The processor must recognize macro call that appear as

operation mnemonics. The macro calls appear as operation mnemonics in a program.

4) Perform Macro Expansion:- The processor must substitute for macro definition

arguments the corresponding arguments from a macro call, the resulting symbolic text is

then substituted for the macro call.

 2) Explain following parsing technique in detail.

i) Top-down parsing

ii) Bottom up parsing.

6M

 Ans: Top-down Parser: When the parser starts constructing the parse tree from the start symbol

and then tries to transform the start symbol to the input, it is called top-down parsing.

The types of top-down parsing are depicted Below:

(Top-down

parsing:

3marks,

Bottom up

parsing:

3marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 20 of 33

Recursive Descent Parsing: Recursive descent is a top-down parsing technique that

constructs the parse tree from the top and the input is read from left to right. It uses

procedures for every terminal and non-terminal entity. This parsing technique recursively

parses the input to make a parse tree, which may or may not require back-tracking. But the

grammar associated with it (if not left factored) cannot avoid back-tracking. A form of

recursive-descent parsing that does not require any back-tracking is known as predictive

parsing. This parsing technique is regarded recursive as it uses context-free grammar

which is recursive in nature.

Backtracking: It means, if one derivation of a production fails, the syntax analyzer

restarts the process using different rules of same production. This technique may process

the input string more than once to determine the right production. Top-down parsing

technique parses the input, and starts constructing a parse tree from the root node gradually

moving down to the leaf nodes.

Top- down parsers start from the root node (start symbol) and match the input string

against the production rules to replace them (if matched).

The following example of CFG:

S →rXd|rZd

X →oa|ea

Z →ai

For an input string: read, a top-down parser, will behave like this: It will start with S from

the production rules and will match its yield to the left-most letter of the input, i.e. ‘r’. The

very production of S (S → rXd) matches with it. So the top-down parser advances to the

next input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and checks its

production from the left (X → oa). It does not match with the next input symbol. So the

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 21 of 33

top-down parser backtracks to obtain the next production rule of X, (X → ea). Now the

parser matches all the input letters in an ordered manner. The string is accepted.

Predictive Parser: Predictive parser is a recursive descent parser, which has the capability

to predict which production is to be used to replace the input string. The predictive parser

does not suffer from backtracking. To accomplish its tasks; the predictive parser uses a

look-ahead pointer, which points to the next input symbols. To make the parser back-

tracking free, the predictive parser puts some constraints on the grammar and accepts only

a class of grammar known as LL(k) grammar. Predictive parsing uses a stack and a parsing

table to parse the input and generate a parse tree. Both the stack and the input contains an

end symbol $to denote that the stack is empty and the input is consumed. The parser refers

to the parsing table to take any decision on the input and stack element combination.

LL Parser: An LL Parser accepts LL grammar. LL grammar is a subset of context-free

grammar but with some restrictions to get the simplified version, in order to achieve easy

implementation. LL grammar can be implemented by means of both algorithms namely,

recursive-descent or table-driven. LL parser is denoted as LL(k). The first L in LL(k) is

parsing the input from left to right, the second L in LL(k) stands for left-most derivation

and k itself represents the number of look ahead. Generally k = 1, so LL(k) may also be

written as LL(1).

Bottom-up Parser:

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it

reaches the root node. Here, we start from a sentence and then apply production rules in

reverse manner in order to reach the start symbol. The image given below depicts the

bottom-up parsers available.

Shift-Reduce Parsing

Shift-reduce parsing uses two unique steps for bottom-up parsing. These steps are known

as shift-step and reduce-step. Shift step: The shift step refers to the advancement of the

input pointer to the next input symbol, which is called the shifted symbol. This symbol is

pushed onto the stack. The shifted symbol is treated as a single node of the parse tree.

Reduce step : When the parser finds a complete grammar rule RHS and replaces it to LHS,

it is known as reduce-step. This occurs when the top of the stack contains a handle. To

reduce, a POP function is performed on the stack which pops off the handle and replaces

it with LHS non-terminal symbol.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 22 of 33

LR Parser

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of

context- free grammar which makes it the most efficient syntax analysis technique. LR

parsers are also known as LR parsers, where L stands for left-to-right scanning of the input

stream; R stands for the construction of right-most derivation in reverse, and k denotes the

number of lookahead symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

SLR1 – Simple LR Parser:

o Works on smallest class of grammar

o Few number of states, hence very small table

o Simple and fast construction

LR1 – LR Parser:

o Works on complete set of LR1 Grammar

o Generates large table and large number of states

o Slow construction

LALR1 – Look-Ahead LR Parser:

o Works on intermediate size of grammar

o Number of states are same as in SLR1

5. Attempt any two : Marks 16

 1) Explain design of direct linking loader. 8M

 Ans: {**Note: Flow charts are optional**}

Direct Linking Loader generates relocatable loader and is most popular load scheme

presently used.

Direct Linking loaderIt allow programmer to used multiple procedure and multiple data

segments. This is possible due to assembler provides following information....

A.The length of segment.

B.List of symbol, define in one segment and call in other segment.

C.List of symbol, not define in segment but call in segment.

D.Information about address located in segment.

E.Machine code of program and relative address assigned.

 Step 1. Specification of problems

Step 2. Specification of data structure

Step 3. Format of data structure

Step 4: Algorithm

1. Specification of problems :

There will be 4 different card format in a object desk.

1. ESD:This card contain the information necessary for the building symbol table.

2. TXT:This card contain instruction and data card called “text ” of programe.

3. RLD:Relocation and linking directory cards

4. END:End card

(Each step:

2marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 23 of 33

2. Specification of data structure :

Pass-1

1. Input object deck

2. IPLA-Initial Program Load Address supplied by program’s or OS.

3. PLA-Program load address counter, to keep track of each segment

4. GEST-Global External Symbol Table, to store each external symbol & its

corresponding core add.

5. A copy of program to be used by Pass-2.

6. LOAD MAP-Printed listing, that specifies each external symbol & it’s assigned

value.

Pass-2

1. Copy of object program inputted by Pass-1.

2. IPLA-Initial Program Load Address supplied by program’s or OS.

3. PLA-Program load address counter, to keep track of each segment

4. GEST-Global External Symbol Table, to store each external symbol & its

corresponding core add.

5. LESA-Local External Symbol Array, which is used establish correspondences

between ESD Id and

Absolute address value.

3. Format of Data bases :

Format of databases is to specify the format and content of following data bases.

1. ESD

2. TXT

3. RLD

4. END

5. GEST

6. LESA

4. Algorithm :

Following are the steps of an Algorithm for direct linking loader

Pass1 :

a. Allocate Segments

i. Initial Program Load Address (IPLA)
ii. Assign each segment the next table location after the preceding

segment.
b. Define Symbols

i. SD
ii. LD

iii. ER

 Pass2 :

a. ESD record types is processed differently.

b. TXT is copied from the record to the relocated core location (PLA +

ADDR).

c. RLD value to be used for relocation and linking is extracted from the GEST.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 24 of 33

d. The relocated address of the address constant is the sum of the PLA and the

ADDR field specified on the RLD record.

e. END execution start address is relocated by the PLA

f. The loader transfers control to the loaded program at the address specified by

current contents of the execution

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 25 of 33

 2) Draw and explain phases of compiler in detail. 8M

 Ans:

(Diagram

:3marks,

Discriptio

n:5marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 26 of 33

1) Lexical Phase:-

 Its main task is to read the source program and if the elements of the program

are correct it generates as output a sequence of tokens that the parser uses for

syntax analysis.

 The reading or parsing of source program is called as scanning of the source

program.

 It recognizes keywords, operators and identifiers, integers, floating point

numbers, character strings and other similar items that form the source program.

 The lexical analyzer collects information about tokens in to their associated

attributes.

2) Syntax Phase:-

 In this phase the compiler must recognize the phases (syntactic construction);
each phrase is a semantic entry and is a string of tokens that has meaning, and 2nd

Interpret the meaning of the constructions.

 Syntactic analysis also notes syntax errors and assure some sort of recovery. Once

the syntax of statement is correct, the second step is to interpret the meaning

(semantic). There are many ways of recognizing the basic constructs and interpreting
the meaning.

 Syntax analysis uses a rule (reductions) which specifies the syntax form of source

language.

 This reduction defines the basic syntax construction and appropriate compiler

routine (action routine)to be executed when a construction is recognized.

 The action routine interprets the meaning and generates either code or

intermediate form of construction.

3) Interpretation Phase:-

 This phase is typically a routine that are called when a construct is recognized. The

purpose of these routines is to on intermediate form of source program and adds

information to identifier table.

4) Code optimization Phase:-

 Two types of optimization is performed by compiler, machine dependent and

machine independent.Machine dependent optimization is so intimately related to

instruction that the generated. It was incorporated into the code generation phase.

Where Machine independent optimization is was done in a separate optimization

phase.

5) Storage Assignment:-

The purpose of this phase is as follows: -

 Assign storage to all variables referenced in the source program.

 Assign storage to all temporary locations that are necessary for intermediate

results.

 Assign storage to literals.

 Ensure that storage is allocated and appropriate locations are initialized.

6) Code generation:-

 This phase produce a program which can be in Assembly or

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 27 of 33

machine language.

 This phase has matrix as input.

 It uses the code production in the matrix to produce code.



It also references the identifier table in order to generate address & code conversion.

7) Assembly phase:-

 The compiler has to generate the machine language code for computer to understand.

 The task to be done is as follows:-

o Generating code Resolving all references.

o Defining all labels.

o Resolving literals and symbolic table.

 3) Explain general design procedure of Assembler.

8M

 Ans: Following are six steps for the General Design procedure of an Assembler.

1. Specify the problem

2. Specify data structures

3. Define format of data structures

4. Specify algorithm

5. Look for modularity

6. Repeat 1 to 5 on modules

1. Specify the problem.

This includes translating assembly language program into machine

language program using two passes of assembler. Purpose of two passes of

assembler are to determine length of instruction, keep track of location

counter, remember values of symbol, process some pseudo ops, lookup

values of symbols, generate instructions and data, etc.

2. Specify data structures.

This includes establishing required databases such as Location counter(LC),

machine operation table (MOT), pseudo operation table (POT), symbol

table(ST), Literal Table(LT), Base Table (BT), etc.

3. Define format of data structures.

This includes specifying the format and content of each of the databases – a

task that must be undertaken before describing the specific algorithm

underlying the assembler design.

4. Specify algorithm.

Specify algorithms to define symbols and generate code.

(List:2

marks,

Explainati

on:

6marks for

all steps)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 28 of 33

5. Look for modularity.

This includes review design, looking for functions that can be isolated. Such

functions fall into two categories: 1) multi-use 2) unique.

6. Repeat 1 to 5 on modules.

6. Attempt any four : Marks 16

 1) Explain implementation of Macro call within Macro.

4M

 Ans: Macro calls are “abbreviations” of instruction sequences, it seems reasonable

that such“ abbreviations” should be available within other macro definitions.

For example,

MACRO

ADD1

&ARG

L 1,

&ARG

A 1,

=F‟1‟

ST

1, &ARG

MEND

MACRO

ADDS &ARG1, &ARG2, &ARG3

ADD1 &ARG1

ADD1 &ARG2

ADD1 &ARG3

MEND

Macro Within the definition of the macro “ADDS” are three separate calls to a

previously defined macro “ADD1”. The use of the macro “ADD1‟ has shortened the

length of the definition of „ADDS‟ and thus had made it more easily understood. Such

use of macros result in macro expansions on multiple “levels”.

(Explanati

on: 3

marks ,

Example:

1 mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 29 of 33

 2) Sort the following element in descending order using Bucker sort.

45, 21, 12, 36, 97

4M

 Ans:
Original

table

First

Distribution

Merge Second

Distribution

Final Merge

 9) 9) 97

45 8) 97 8) 97

 7) 97 7)

21 6) 36 36 6) 45

 5) 45 5)

12 4) 45 4) 45 36

 3) 3) 36

36 2) 12 12 2) 21 21

 1) 31 1) 12

(Each

distributio

n :2marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 30 of 33

97 0) 21 0) 12

 Separate Based on last Digit Separate Based on First Digit

OR

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 31 of 33

 3) Explain in detail absolute loader.

4M

 Ans: An absolute loader is the simplest type of loader scheme that fits the general

model of loaders. The assembler produces the output in the same way as in the

"compile and go loader". The assembler outputs the machine language translation

of the source program.

Disadvantage:

1. The programmer has to specify the address to the assembler that where the

program is to be loaded.

2. It is very difficult to relocate in case of multiple subroutine.

3. Programmer has to remember the address of each subroutine and use that

absolute address explicitly in other subroutines to perform subroutine linkage

In short:

1. Allocation and linking is by programmer

2. Relocation is by assembler

3. Loading is done by loader.

(Diagram :

1 mark,

Explanatio

n: 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 32 of 33

 The figure illustrates the operation of an absolute loader.

 4) List and give syntax of database table use in lexical analysis phase of compiler.

4M

 Ans: Lexical Phase:-

1) Source program: original form of program; appears to the

compiler as a sting of character

2) Terminal table: a permanent data base that has an entry for each terminal

symbol.

Each entry consists of the terminal symbol, an indication of its

classification, and its precedence.

3) Literal table: created by lexical analysis to describe all literals used in the

source program. There is one entry for each literal, consisting of a value, a

number of attributes, an address denoting the location of the literal at

execution time, and other information.

(List:

1mark,

Syntax:

3marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 33 of 33

4) Identifier Table: created by lexical analysis to describe all identifiers

used in the source program. There is one entry for each identifier.

Lexical analysis creates the entry and places the name of identifier into

that entry. The pointer points to the name in the table of names. Later

phases will fill in the data attributes and address of each identifier

5) Uniform Symbol table: created by lexical analysis to represent the

program as a string of tokens rather than of individual characters. Each

uniform symbol contains the identification of the table of which a token is

a member

 5) Explain the format of databases of loader.

4M

 Ans: Following are some formats of databases of Loaders…

• External Symbol Dictionary (ESD) record: Entries and Externals

• (TXT) records control the actual object code translated version of the source

program.

• The Relocation and Linkage Directory (RLD) records relocation information

• The END record specifies the starting address for execution

• IPLA-Initial Program Load Address supplied by program’s or OS.

• PLA-Program load address counter, to keep track of each segment

• GEST-Global External Symbol Table, to store each external symbol & its

corresponding core add.

• LESA-Local External Symbol Array, which is used establish correspondences

between

TXT record

(Listing of

databases

:2 marks,

Any two

formats: 2

marks)

