

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject title: Physical Chemistry & Material of Construction

Subject code

17423

Page **1** of **32**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION

Model Answer

Subject title: Physical Chemistry & Material of Construction

Subject code

e 17423

Page **2** of **32**

Q No.	Answer	Marking
		scheme
1	Attempt any six	12
1.a-i	Isobaric process:	1
	An isobaric process is a thermodynamic process in which the pressure stays	
	constant: $\Delta \mathbf{P} = 0$.	
	Isothermal process: An isothermal process is a change of a system, in which the	1
	temperature remains constant: $\Delta T = 0$.	
	This typically occurs when a system is in contact with an outside thermal reservoir	
	(heat bath), and the change occurs slowly enough to allow the system to continually	
	adjust to the temperature of the reservoir through heat exchange.	
1.a-ii	Adsorbate-The substance that gets adsorbed is called the Adsorbate. It can be a gas	1
	or vapor or a solute in a solution. For e.g. ammonia, hydrogen.	
	Adsorbent-The substance on whose surface adsorption takes place is called the	1
	adsorbent. For e.g. charcoal	
1.a-iii	Corrosion is defined as the gradual deterioration or destruction of a metal by	2
	chemical or electrochemical reactions with its environment.	
1.a-iv	Phase Rule	2
	It states that the number of degrees of freedom of in a physical system at	
	equilibrium is equal to the number of components in the system minus the number	
	of phases plus the constants 2. Mathematically, it is stated as follows:	
	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 2$	
	Where -	
	C is the number of components,	

	P is the number of phases in thermodynamic equilibrium with each other and F	
	is the number of degrees of freedom or variance of the system.	
1.a-v	Extensive property	1
	An extensive property is a property that changes when the size of the sample	
l	changes. Examples are mass, volume, length, and total charge	
	Intensive property	
l	An intensive property doesn't change when you take away some of the sample.	1
l	Examples are temperature, color, hardness, melting point, boiling point, pressure,	
	molecular weight, and density. Because intensive properties are sometimes	
	characteristic of a particular material, they can be helpful as clues in identifying	
l	unknown substances.	
1.a-vi	Classification of engineering materials:	2
	Engineering materials Non-metallic materials Non-metallic Metals Non-ferrous metals Synthetic materials Natural materials	
1a-vii	Passivity of metals: In physical chemistry and engineering, refers to a material	2
l	becoming "passive," that is, less affected or corroded by the environment of future	
l	use. Passivation involves creation of an outer layer of shield material that is applied	
	as a microcoating, created by chemical reaction with the base material, or allowed	
ļ	to build from spontaneous oxidation in the air. As a technique, passivation is the	
I	use of a light coat of a protective material, such as <u>metal oxide</u> , to create a shell	

	against <u>corrosion</u> .	
1.b	Answer any two	8
1.b-i	Dispersion method:	4 marks
	i) Mechanical dispersion	for any
	ii) Electrical dispersion	one
	iii) Peptization	
	Electrical dispersion (Bredig's arc method)	
	This methods is used to prepare hydrosols of metals such as silver, gold &	
	platinum. This method uses two electrodes that are made of the metal of which sol	
	is to be prepared. These electrodes are immersed in deionized water containing a	
	trace of alkali contained in a container. Water is cooled by immersing the container	
	in an ice or water bath.	
	An arc is struck between the two electrodes held close together. The large amount	
	of heat generated by the spark across the electrodes vaporizes some of the metal &	
	the vapors condense immediately in water to yield colloidal solution. The small	
	amount of alkali added to the water helps to stabilize the sol. This method is used	
	for preparing silver & gold sols.	

t title: F	Physical Chemistry & Material of Construction Subject code 17423	Page 6 of
	Initially a thin layer of oxide film is formed and it gradually grows with time. The	
	nature of metal oxide film/layer formed decides the prevention or continuation of	
	corrosion. The oxide film produced based on its nature can be classified as:	
	(i)stable oxide film : it acts as a barrier between metal and oxygen and thus	
	prevents further corrosion. it may be porous or non-porous in nature	
	(ii) unstable oxide film : when the oxide film is umstable , it decomposes back to	
	the metal and oxygen. Hence oxidation corrosion is not possible in case of nobel	
	metals such as Ag, Au as they are protected by this manner.	
	(ii)volatile oxide film : when oxide film formed is volatile, it volatalises as soon as	
	it is formed and metal surface is exposed to further corrosion. Hence it leads to	
	continuous and excessive corrosion.	
	OR	
	Corrosion by other gases	
1.b-iii	i)Rubber Lining:	
	Rubber Lining is an application method used to protect multiple types of systems	
	by lining corrosion and abrasion-resistant rubber upon the surface or inside of pipes	
	and tanks.	
	Lining is done by hand by our experienced staff for a durable finished product, so	1
	having application accuracy by qualified liners and crews are a must.	
	The equipments to be lined, working conditions and environment are different for	
	each customer. Therefore, selecting the most suitable material is a crucial	
	procedure that we provide to cater to their specification	
	Applicatiion:	
	Steeland non ferrous industry	
	Organic chemical industry	
	Fertilizer industry	
	Pollution control equipment	
		1

bubject title:	Physical Chemistry & Material of Construction Subject code 17423	Page 7 of 3 2
	ii)Glass Lining:	
	Glass resistance is excellent resistance to all acids .it is subjected to alkali attack.	
	Glass is also damage by thermal shock. Methods foe glass lining are:	
	Wet spray process: The metal surface of a vessel on which glass lining is to be	1
	done is cleaned. A suspension called slip consisting of enamel powder and	
	emulsifying agent I sprayed like a paint on metal surface, then the coat is drayed	
	and then the vessel is transfer to a furnace and fired at temp that result in fusion of	
	partials.	
	Hot dust method:	
	It is generally applicable to cast iron components' he process is similar to wet	
	spray only after coating dry powder cover coat enamels is dusted.	
	Application:	
	Reactor	
	Acid storage tank	
	Pipeline	
	Column	
	iii)Lead Lining:	
	Lead lining is the process of applying lead to sheet metal, plastics or castings.	
	Vulcan GMS uses a variety of contact cements and epoxies based on the	
	application.	1
	Lead can be saw cut, router cut or die cut to produce the lead blank needed for the	
	application. We can use other processes like spinning or forming to generate the	
	needed profiles.	
	Vulcan can apply the sheets or shapes with pressure if needed to ensure a solid	
	bond or expansion. We can also use a variety of techniques to ensure that there are	
	no joints (overlap joints, stop joints, lead burned joints or corner extrusions) which	
	could cause radiation leaks.	

	We also can lead line nearly any application for products such as X-Ray tube	
	housing, X-Ray tunnels, X-Ray tanks and collimators, which are all typically used	
	in the medical X-ray and security markets.	
	iv)Plastic Lining	
	Lined tanks are widely used in the finishing industry—especially for corrosives.	
	The lining protects the tank from corrosion and the tank contents from	
	contamination, and the substrate provides structural integrity. In electroplating, the	1
	lining also provides electrical insulation.	
2	Attempt any four	16
2-a	Expression for Work done in Reversible Isothermal Expansion of gas	4
	Consider a gas enclosed in a cylinder fitted with a weightless & frictionless piston,	
	undergoing a reversible expansion process. The cylinder is in thermal equilibrium	
	with the surroundings so that the temperature of the gas remains constants while its	
	expansion.	
	The total work done by the gas in the expansion process as the piston moves from	
	position 1to position 2 during which volume is changing from V_1 to V_2 (and its	
	pressure is reduced from P_1 to P_2) is given by	
	2 v2	
	$W = W_{1-2} = \int P dV = \int P dV$	
	1 v1	
	The work done in reversible isotherm expansion of a gas is given by	
	v2	
	$W = P dV \int P dV $ (1)	
	v1	
	The ideal gas equation is	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

l	Diff. Between physical and chemical ads	sorption:	1 mark
			each for
	physical adsorption	chemical adsorption	any 4
	The forces operating in these are	The forces operating in these cases are	1
	weak vander Waal's forces.	similar to those of a chemical bond.	
	The heat of adsorption are low i.e.	The heat of adsorption are high i.e.	-
	about 20 – 40 kJ mol-1	about 40 – 400 kJmol-1	
	No compound formation takes place in	Surface compounds are formed.	-
	these cases.		
	The process is reversible i.e. desorption	The process is irreversible. Efforts to	-
	of the gas occurs by increasing the	free the adsorbed	
	temperature or decreasing the pressure.	gas give some definite compound.	
	It does not require any activation	It requires any activation energy.	-
	energy.		
	This type of adsorption decreases with	This type of adsorption first increases	-
	increase of temperature.	with increase of temperature. The	
		effect is called activated adsorption.	
	It is not specific in nature i.e. all gases	It is specific in nature and occurs only	-
	are adsorbed on all solids to some	when there is some possibility of	
	extent.	compound formation between the gas	

		haina adaarka dari da		
		being adsorbed and the	e solid adsorbent.	
	The amount of the gas adsorbed is	There is no such correl	ation exists.	
	related to the ease of liquefaction of the			
	gas.			
	It forms multimolecular layer.	It forms unimolecular	layer.	
2-е	Ductility : ductility is a solid material's abili	ty to deform under tens	ile stress;	1
	this is often characterized by the material's	ability to be stretched in	to a wire.	
	Plasticity : plasticity is the propensity of a n	material to undergo perr	nanent	1
	deformation under load.			
	Hardness: Hardness is a measure of how re	esistant solid matter is to	o various	
	kinds of permanent shape change when a co	ompressive force is appl	ied. Some	
	materials (e.g. metals) are harder than other	s (e.g. plastics). Macros	copic	1
	hardness is generally characterized by stron	g intermolecular bonds,	but the	
	behavior of solid materials under force is co	omplex; therefore, there	are	
	different measurements of hardness: scratch	h hardness, indentation	hardness,	
	and rebound hardness.			
	Strength: In materials science, the strength	of a material is its abili	ty to	
	withstand an applied load without failure or	plastic deformation. Th	ne field of	1
	strength of materials deals with forces and c	leformations that result	from their	
	acting on a material. A load applied to a me	chanical member will in	nduce	
	internal forces within the member called str	esses.		
2-f	Pitting corrosion:			
	It is supposed by some that gravitation caus	es downward-oriented o	concentration	
	gradient of the dissolved ions in the hole ca	used by the corrosion, a	s the	

	Attempt any four	16
	aluminium, iron, cobalt, chromium and others	
	brass. The elements most typically undergoing selective removal are zinc,	
	with high distance between each other in the galvanic series, e.g. copper and zinc in	
	corrosion mechanism. The most susceptible alloys are the ones containing metals	
	The less noble metal is removed from the alloy by microscopic-scale galvanic	
	conditions a component of the alloys is preferentially leached from the material.	-
	corrosion, is a corrosion type in some solid solutionalloys, when in suitable	2
	Selective leaching, also called dealloying, demetalification, parting and selective	
	Galvanic corrosion:	
	coating. Polished surfaces display higher resistance to pitting.	
	defect, being a scratch or a local change in composition, or a damage to protective	
	are often obscured by corrosion products.Pitting can be initiated by a small surface	
	surface, while it damages the deep structures of the metal. The pits on the surface	
	extremely insidious, as it causes little loss of material with small effect on its	
	electromigration of aggressive anions into the pit. This kind of corrosion is	
	of the cathodic and anodic half-reactions, which creates a potential gradient and	
	explanation is that the acidity inside the pit is maintained by the spatial separation	2
	concentrated solution is denser. This however is unlikely. The more conventional	

itle: Physical Chemistry & Material of Construction Subject code 17423	Pag
representing the isothermal variation of Adsorption of a quantity of gas adsorbed	
by unit mass of solid adsorbent with pressure. This equation is known as	
Freundlich Adsorption Isotherm or Freundlich Adsorption equation.	
$\frac{x}{m} = kP^{\frac{1}{n}}$	
Where x is the mass of the gas adsorbed on mass m of the adsorbent at pressure p	3
and k, n are constants whose values depend upon adsorbent and gas at particular	
temperature.	
Explanation of Freundlich Adsorption equation	
At low pressure, extent of adsorption is directly proportional to pressure (raised to	
power one).	
$\frac{x}{2} \propto P^1$	
m	
At high pressure, extent of adsorption is independent of pressure (raised to power	
zero).	
$\frac{x}{m} \propto P^0$	
Therefore at intermediate value of pressure, adsorption is directly proportional to	
pressure raised to power 1/n .Here n is a variable whose value is greater than one.	
$\therefore \frac{x}{m} \propto P^{\frac{1}{n}}$	
Using constant of proportionality, k, also known as adsorption constant we get	
$\frac{x}{m} = k I^{\frac{1}{m}}$	
The above equation is known as Freundlich adsorption equation.	
Plotting of Freundlich Adsorption Isotherm	
As per Freundlich adsorption equation	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

ect title:	Physical Chemistry & Material of Construction Subject code 17423	Page 16 of 32
	protection or decorative appearance	2
	Linings prevent corrosion in a wide range of difficult applications.	
	Linings are commonly used in applications such as:	
	• Cylindrical lining, bushing - A cylindrical metal lining used to reduce friction	
	• Furnace lining, refractory - Lining consisting of material with a high melting point, used to line the inside walls of a furnace	
	 Protective covering - A covering that is intended to protect from damage or injury 	2
	• Strip lining - Thin sheet strips of corrosion-resistant alloy attached by spot welding in the field to protect an unclad vessel	
	The most commonly used lining materials are polymers, refractories, cement and bricks. Which materials are used for lining depends on the materials and surroundings upon which lining is to be applied.	
3-c	Second Law of Thermodynamics:	
	The Second Law of Thermodynamics states that the state of entropy of the entire universe, as an <u>isolated system</u> , will always increase over time. The entropy change of the surroundings and the entropy change of the system itself. Given the entropy	2
	change of the universe is equivalent to the sums of the changes in entropy of the	
	system and surroundings:	
	$\Delta Suniv = \Delta Ssys + \Delta Ssurr = qsysT + qsurrT$	
	In an isothermal reversible expansion, the heat q absorbed by the system from the surroundings is	

ect title:	Physical Chemistry & Material of ConstructionSubject code17423	Page 1
	qrev=nRTlnV2V1	
	Since the heat absorbed by the system is the amount lost by the surroundings,	2
	qsys=-qsurr.Therefore, for a truly reversible process, the entropy change is	
	$\Delta Suniv = nRTlnV2V1T + -nRTlnV2V1T = 0$	
	If the process is irreversible however, the entropy change is	
	Δ Suniv=nRTlnV2V1T>0	
	If we put the two equations for Δ Sunivtogether for both types of processes, we are	
	left with the second law of thermodynamics,	
	$\Delta Suniv = \Delta Ssys + \Delta Ssurr \ge 0$	
	where Δ Suniv equals zero for a truly reversible process and is greater than zero for	
	an irreversible process. In reality, however, truly reversible processes never happen	
	(or will take an infinitely long time to happen), so it is safe to say all	
	thermodynamic processes we encounter everyday are irreversible in the direction	
	they occur.	
3-d	Homogeneous System:	
	A homogeneous thermodynamic system is defined as the one whose chemical	
	composition and physical properties are the same in all parts of the system, or	2
	change continuously from one point to another.	
	A homogeneous system can be exemplified by imagining a column of atmospheric	
	air, which is a mixture of a number of gases, mainly nitrogen and oxygen. In a	
	system of this kind, acted upon by the force of gravity, both the composition of the	
	system and its physical properties will continuously change from one point to	
	another.	
	A homogeneous system and each phase of a heterogeneous system may consist of	
	one or several pure substances.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	C:0.08	
	Si:0.75	
	Mn:2	
	Cr:18	
	Ni:8	
	P:0.045	
	S:0.030	
	Properties(any 3)	2
	• High ductility,	
	• excellent drawing,	
	• forming, and	
	• spinning <i>properties</i> .	
4	Attempt any four	16
4-a	Derivation of phase rule	4
	Lets assume that we have a heterogeneous system in equilibrium consisting of C	
	components distributed in P phases .	
	The composition of each phase containing C component is determined by	
	specifying C -1 mole fraction since the some of mole fraction of components	
	present in any phase is equal to 1.If we specify mole fractions of components ,say	
	2,3,4,then mole fraction of component 1 is obtained as	
	$X_1 = 1-(X_1+X_2+X_3+)$. Thus as regarding composition, each phase possess C-1	
	variables. Since there are P phases, it follows that the whole system possesses P(C-	
	1) composition variables.	
	State of the system will depend upon temperature and pressure, these 02 variables	
	are also to be specified .Thus our system of C components and P phases possesses	
	P(C-1) + 2 intensive variables.	
	In order to define the state of system completely, it is necessary to have as many	

	equations as there are variables .Since the number of equations is equal to the	
	number of variables ,the number of unknown variables that must be arbitrarily	
	fixed or specified to define the system completely or the number of degree of	
	freedom (F) or variance of the system will be	
	F = Number of variables – Number of Equations	
	= [P(C-1) + 2] - C(p-1)	
	= PC - P + 2 - PC + C	
	$\mathbf{F} = \mathbf{C} \cdot \mathbf{P} + 2$	
4-b	Applications of Teflon:	1 mark
	1. Cookware: The nonstick property of Teflon has been used in the	each for
	manufacture of cookware ever since the discovery of this material. Its	any 2
	extremely low frictional properties and high heat resistance have made	
	Teflon cookware very popular.	
	2. Machine parts: The extremely low friction of Teflon makes it ideal for	
	making machine parts, such as gears, bearings, pipe linings, joints, slide	
	plates, bushings, O-rings, and saw blades. There is a lot of sliding action	
	in the working of such machine parts. The low friction and self-	
	lubricating property of Teflon decreases wear and tear and increases the	
	life of machinery.	
	3. Fabric and carpet industry: The nonstick property of Teflon is also used	
	in fabrics and carpets for improving their stain-resistant qualities.	
	4. Insulator: Teflon has excellent dielectric properties, especially at high	
	radio frequencies. This property is useful for its use as an insulator in	
	cables and connector assemblies.	

t title:	Physical Chemistry & Material of Construction Subject code 17423	Page 21 of 3
	5. Medicine: The chemical inertness of Teflon makes it apt for making artificial body parts.	
	Applications of Polypropylene:	
	Is a <u>thermoplastic polymer</u> used in a wide variety of applications	
	including packaging and labeling, textiles (e.g., ropes, thermal underwear and	
	carpets), stationery, plastic parts and reusable containers of various types,	1
	laboratory equipment, loudspeakers, automotive components, transvaginal	
	mesh ^[1] and polymer banknotes. An addition polymer made from the	
	monomer propylene, it is rugged and unusually resistant to many chemical	
	solvents, bases and acids.	
	Applications of Polyvinyl Chloride:	
	PVC comes in two basic forms: rigid (sometimes abbreviated as RPVC) and	
	flexible. The rigid form of PVC is used in construction for pipe and in profile	1
	applications such as doors and windows. It is also used for bottles, other non-	
	food packaging, and cards (such as bank or membership cards). It can be made	
	softer and more flexible by the addition of <u>plasticizers</u> , the most widely used	
	being phthalates. In this form, it is also used in plumbing, electrical cable	
	insulation, imitation leather, signage, phonograph records, inflatable products,	
	and many applications where it replaces rubber.	
4-c	i)Enthalpy:	
	A thermodynamic quantity equivalent to the total heat content of a system. It is	1
	equal to the internal energy of the system plus the product of pressure and volume.	
	ii) Entropy:	
	In thermodynamics, entropy (usual symbol S) is a measure of the number of	1

	specific realizations or	microstates that may re	ealize a thermodynamic	system in	
	1	d by macroscopic variab	-	•	
	v i	isorder within a macrosco		un opy us u	
	iii) Internal Energy		spie system.		
		e <i>internal energy</i> of a sys	stem is the <i>energy</i> conta	ined within	1
	•	he kinetic <i>energy</i> of motion			-
		system as a whole due to	-		
	iv) Chemical potential	-			
	-	emical potential, also know	own as partial molar fre	e energy, is	1
	•	energy that can be			
	a <i>chemical</i> reaction.			C	
4 d	Definition	Lyophilic colloids	Lyophobic colloids		1 mark
		are liquid loving	are liquid hating		each
		colloids (Lyo means	colloids (Lyo means		
		solvent and philic	solvent and phobic	;	
		means loving).	means hating).		
	Nature of Sub	These sols are usually	These sols are usually	,	
		formed by the organic	formed by the	2	
		substances like starch,	inorganic materials		
		gum, proteins etc.	like metals, their		
			sulphides etc.		
	Viscosity	The lyophilic	The Lyophobic	;	
		colloids are highly	colloids have almost		
		viscous in nature and	same viscosity as that		
		have higher viscosity	of medium		
		than that of the			

		medium.			
	Stability	Lyophilic sols are	e Lyophobic sols are		
		relatively stable as	s less stable as weak		
		strong forces of	f forces of interaction		
		interaction exis	t exist between		
		between colloida	l colloidal particles and		
		particles and liquid.	liquid		
4-е					4
	Electroplating:				
	Electroplating is the	he process of plating one me	tal onto another by hydro	lysis, most	
	commonly for dea	corative purposes or to preve	ent corrosion of a metal.	There are	
	also specific type	es of electroplating such as	copper plating, silver p	lating, and	
	chromium plating	. Electroplating allows manu	facturers to use inexpension	sive metals	
	such as steel or zin	nc for the majority of the pro	duct and then apply diffe		
		nc for the majority of the pro account for appearance, prot		rent metals	
	on the outside to		ection, and other propert	rent metals	
	on the outside to for the product. Th	account for appearance, prot	ection, and other propert ven plastic.	rent metals ies desired	
	on the outside to for the product. Th Sometimes finishe	account for appearance, prot	ection, and other propert ven plastic. as the products we use in	rent metals ies desired doors or in	
	on the outside to for the product. Th Sometimes finishe a dry environment	account for appearance, prot ne surface can be a metal or e es are solely decorative such a	ection, and other propert ven plastic. as the products we use in uffer from corrosion. The	rent metals ies desired doors or in ese types of	
	on the outside to for the product. Th Sometimes finishe a dry environment products normally	account for appearance, prot ne surface can be a metal or e es are solely decorative such a t where they are unlikely to so	ection, and other propert ven plastic. as the products we use in uffer from corrosion. The or silver applied so tha	rent metals ies desired doors or in se types of t it has an	
	on the outside to for the product. The Sometimes finished a dry environment products normally attractive appeal to	account for appearance, prot ne surface can be a metal or en- es are solely decorative such a t where they are unlikely to such a have a thin layer of gold,	ection, and other propert ven plastic. as the products we use in uffer from corrosion. The or silver applied so tha ng is widely used in indu	rent metals ies desired doors or in se types of t it has an astries such	
	on the outside to for the product. The Sometimes finished a dry environment products normally attractive appeal to as automobile, air	account for appearance, prot ne surface can be a metal or en- es are solely decorative such a t where they are unlikely to such a have a thin layer of gold, o the consumer. Electroplatin	rection, and other propert ven plastic. as the products we use in uffer from corrosion. The or silver applied so tha ng is widely used in indu , and toys. The overall	rent metals ties desired doors or in ese types of t it has an estries such process of	
	on the outside to for the product. The Sometimes finished a dry environment products normally attractive appeal to as automobile, air electroplating uses	account for appearance, prot ne surface can be a metal or en- es are solely decorative such a t where they are unlikely to sur- have a thin layer of gold, o the consumer. Electroplatin rplanes, electronics, jewelry.	ection, and other propert ven plastic. as the products we use in uffer from corrosion. The or silver applied so tha ng is widely used in indu , and toys. The overall consists of putting a nega	rent metals ties desired doors or in ese types of t it has an estries such process of tive charge	

Subject title: I	Physical Chemistry & Material of Construction Subject code	17423	Page 24 of	32
	charges, the two metals are attracted to each other.			
	The Purposes of Electroplating:			
	1. Appearance			
	2. Protection			
	3. Special surface properties			
	4. Engineering or mechanical properties			
	The cathode would be the piece to be plated and the anode we	ould be eit	her a	
	sacrificial anode or an inert anode, normally either platinum or	carbon (gra	phite	
	form). Sometimes plating occurs on racks or barrels for efficien	cy when p	ating	
	many products. Please refer to electrolysis for more information	n. In the f	ïgure	
	below, the Ag ⁺ ions are being drawn to the surface of the spoon a	and it event	ually	
	becomes plated. The process is undergone using silver as the anode	e, and a scre	ew as	
	the cathode. The electrons are transferred from the anode to the	e cathode a	nd is	
	underwent in a solution containing silver.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect title:	Physical Chemistry & Material of Construction Subject code 17423	Page 25 (
	Battery Ag Ag^+	
4-f	Purpose of lining	1 mark
	i) chemical resistance,	each
	ii) low permeability,	
	iii) physical durability and	
	iv) economical installation.	
5	Answer any 4	16
5-a	Applications of adsorption: (any 4)	1 mark
	a. in production of high vacuum:	each
	b. in gas masks	
	c. in heterogeneous catalysts	
	d. in removing colouring matter from solutions	
	e. in chromatography	
	f. in dehumidification	
	g. in water purification.	
	a) In production of high vacuum: in order to remove traces of air from a partially	

ct title:	Physical Chemistry & Material of Construction Subject code 17423	Page 26 of 3
	silica gel and cooled with a liquid air. The activated charcoal adsorbs the traces of	
	air resulting in the production of very high vacuum in the container.	
	b) In gas masks: gas masks are personal protective devices containing activated	
	charcoal. The activated charcoal removes poisonous, toxic gases from air by	
	adsorption and thus purifies the air for breathing.	
	c) In heterogeneous catalysis : solid catalyzed gas phase reactions proceed through	
	the adsorption of gaseous reactants on the surface of a solid catalyst.	
	d) In removing colouring matter from solutions: animal charcoal removes colours	
5-b	The different methods to prevent corrosion:	2
	1) Use of high purity metal. 2) Use of alloy addition.	
	1) Use of high purity metal: The impurities present in a metal cause heterogeneity	
	and form tiny electrochemical cells with rest of the metal. due to this, metal surface	
	undergoes corrosion at the region where the impurities are present .the corrosion	
	resistance of any metal can be improved by increasing the purity of the metal.	
	2) Use of alloy addition: Corrosion resistance as well as strength of metals can be	
	improved by alloying .ex. stainless steel containing chromium produce a coherent	
	oxide film which protects the steel from further attack.	
	Control:	
	1.proper designing and fabrication of componenets	2
	2. use of inhibitors.	
	3.cathodic protections	
	4.use of protective surface coatings.	
	5.special heat treatment.	
5-c	Open system : In which exchange of energy or matter takes place across the	2
	boundary with its surroundings	
	Closed system: In which exchange of energy but not matter takes place across the	2
1		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	boundary with its surroundings	
	MOC for Hydrochloric acid (HCl)	
5-d	fiberglass-reinforced plastic (FRP) tank	1
	MOC for Sulphuric acid (H ₂ SO ₄)	
	Store in a metallic or coated fiberboard drum using a strong	1
	polyethylene inner package	
	MOC for Nitric acid (HNO ₃)	
	Aluminium and its alloy	1
	MOC for Caustic soda (NaOH)	
	Nickel, SS	1
5-е	Zeroth law of thermodynamics:	4
	If two systems are in thermal equilibrium respectively with a third system, they	
	must be in thermal equilibrium with each other. This law helps define the notion of	
	temperature.	
5-f	Langmuir adsorption isotherm: Langmuir Equation which depicts a relationship	4
	between the number of active sites of the surface undergoing adsorption (i.e. extent	
	of adsorption) and pressure.	
	To derive Langmuir equation and new parameter " θ " is introduced. Let θ the	
	number of sites of the surface which are covered with gaseous molecules.	
	Therefore, the fraction of surface which are unoccupied by gaseous molecules will	
	be $(1 - \theta)$.	
	Now, Rate of forward direction depends upon two factors: Number of sited	
	available on the surface of adsorbent, $(1 - \theta)$ and pressure P, Therefore rate	
	of forward reaction is directly proportional to both mentioned factors.	
	Rate of forward reaction $\alpha P (1-\theta)$	
	Rate of adsorption $\alpha P (1-\theta)$	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

title:	Physical Chemistry & Material of Construction Subject code 17423	Pa
	Or Rate of adsorption = $K_a P (1-\theta)$	
	Similarly, Rate of backward reaction or Rate of Desorption depends upon number	
	of sites occupied by the gaseous molecules on the surface of adsorbent.	
	Rate of desorption $\alpha \theta$	
	Rate of desorption = $K_d \theta$	
	At equilibrium, rate of adsorption is equal to rate of desorption.	
	$K_a P (1-\theta) = K_d \theta$	
	We can solve the above equation to write it in terms of θ	
	$K_a P- K_a P \theta = K_d \theta$	
	$\mathbf{K}_{\mathbf{a}} \mathbf{P} = \mathbf{K}_{\mathbf{a}} \mathbf{P} \mathbf{\theta} + \mathbf{K}_{\mathbf{d}} \mathbf{\theta}$	
	$K_a P = (K_d + K_a P)\theta$	
	$\theta = K_a P/(K_d + K_a P)$	
	After dividing numerator and denometer by K _d	
	$\theta = (K_a P/K_d)/((K_d/K_d) + (K_a/K_d)P)$	
	put K= K _a / K _d	
	$\theta = KP/(1+KP)$	
	Langmuir Adsorption Equation	
	This is known as Langmuir Adsorption Equation.	
6	Answer any 4	16
6-a	Caustic Embrittlement: Caustic embrittlement is a phenomenon that occurs in	4
	boilers where caustic substances accumulate in boiler materials. It also can be	
	described as the cracking of riveted mild steel boiler plates. This occurs at	
	temperatures of 200°-250°C as a result of local deposition of concentrated	
	hydroxide. Caustic embrittlement focuses on the stressed parts of the boiler,	
	including cracks, bends, rivets and joints. Residual sodium carbonate, which is used	

t title:	Physical Chemistry & Material of Construction Subject code 17423	Pa
	for the softening process, undergoes hydrolysis, forming sodium hydroxide at high	
	pressures and temperatures. Caustic embrittlement is also known as stress corrosion	
	cracking. There are many causes of caustic embrittlement, including the combined	
	action of the following three components: • A susceptible material • A given	
	chemical species • Tensile stress Sodium hydroxide (caustic soda) prevents scaling	
	when added to the boiler water. The presence of alkali in the crevices, found around	
	the rivet heads and other hot spots, combined with fabrication stress around rivet	
	holes, causes cracks in the steel boiler shells and tube plates. The alkaline water	
	enters the minute holes and cracks by capillarity action on the interior of the boiler.	
	The water then diffuses out of the cracks, leaving behind hydroxide salts that	
	accumulate when more water evaporates. The hydroxide then attacks the	
	surrounding material of the boiler and dissolves iron as sodium ferrite. This	
	corrosion at high pH levels produces hydrogen, which attacks the crystal structure	
	of iron, making it hard and brittle. This is highly dangerous because the tube can	
	then fail at the boiler's normal operating temperature. Caustic embrittlement can be	
	prevented through several methods, including: • Controlling the temperature and	
	potential • Controlling the stress levels and hardness • Use of materials that do not	
	crack when used in given environments • Avoiding alkali where necessary •	
	Replacing sodium carbonates with sodium sulphates as softening reagents • Adding	
	lignin, tannin or sodium sulphate that blocks hairline cracks as well as preventing	
	infiltration of sodium hydroxide into the areas	
6-b	Impressed current method for cathodic protection: Generally underground	4
	tanks and pipeline are protected by impressed current method. In this method a	
	rectifier is used to convert AC to DC and this current is applied through an insulted	
	wire through the anode buried in the soil and connected to the corroding	
	tank/pipeline, which is to be protected. The current then flows through the soil to	

ct title:	Physical Chemistry & Material of Construction Subject code 17423	Page 30
	the tank and returns to the rectifier through and an insulated wire attached to the	
	tank. The tank is protected because the current going to it over comes the corrosion	
	causing current normally flowing away from it.	
	anode Insulated wire	
	cathode protected	
6-c	Equilibrium state: In <u>thermodynamics</u> , equilibrium state or <i>state of equilibrium</i> is a conjunction term describing the <u>state</u> of a <u>system</u> that is in <u>equilibrium</u> , meaning that neither it nor its <u>surroundings</u> are evolving with <u>time</u> . The process of changing a system from one equilibrium state to another generally centers on the meaning or effect of the entropy change ΔS for the process. Non-Equilibrium state: A non-equilibrium state refers to the <u>state</u> of existence of a given <u>system</u> or <u>body</u> in which the variation of the <u>thermodynamic</u> <u>potential</u> quantifying the system is not equal to zero. A system or body in a non- equilibrium state means that unbalanced <u>potentials</u> (or <u>driving forces</u>) exist within the system.	2
6-d	Features of electro chemical series(any 4)	1 mark
	a) Instead of standard electrode potentials, actually measured rest potentials of	each
	metals and alloys in a given environment arranged with respect to nobility and activity.	
	b) Practically measured potentials vs reference electrode.	
	c) Effect of coupling of metals and alloys on corrosion rate can be predicted.	
	d) The galvanic series (or electro potential series) determines the nobility of metals	

title:	Physical Chemistry & Material of Construction Subject code 17423	Page
	and semi-metals.	
	e) The rate of corrosion is determined by the electrolyte and the difference in	
	nobility.	
б-е	Oxide film: It is the corrosion due to chemical attack of oxygen in a dry	4
	environment at low or high temperature. it results in the formation of metal oxide	
	layer on the metal surface.	
	The nature of oxide film formed decides the prevention or continuation of	
	corrosion. The oxide film produced based on its nature can be classified as:	
	Stable oxide film, unstable and volatile film.	
	Stable oxide film: it acts as barrier between metal and oxygen and thus prevents	
	further corrosion. Stable oxide film may be porous or non porous in nature .in	
	case of porous oxide film permits free access of of oxygen to the metal surface. in	
	the case of non porous film their are no pores or cracks in the oxide film for further	
	corrosion.	
	Unstable oxide film: the film formed decomposes back to the metal and oxygen.	
	Hence oxidation corrosion is not possible in case of noble metals.	
	Volatile oxide film: in this case the film formed vaporizes / volatiles as soon as it	
	is formed and the metal surface is exposed to further corrosion. it leads to continues	
	and excessive corrosion.	
6-f	System: The specified portion of the universe containing a definite quantity/amount	1
	of a specific substance or group of substances under thermodynamic study is called	
	a system.	
	Surrounding: The part of the universe other than the system which is separated	2
	from the system by a boundary is called the surroundings. Everything external to	
	the system is called surroundings.	
	Boundary: A boundary is a closed surface surrounding a system through which	1
	energy and mass may enter or leave the system	

WINTER-17 EXAMINATION **Model Answer**

Subject title: Physical Chemistry & Material of Construction

Subject code

17423

Page **32** of **32**