

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

17419 **Subject Name: Advanced Surveying Model Answer** Subject Code:

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer						
Q.1	a)	Attempt any <u>SIX</u> of the following		12Marks				
	(i)	Differentiate between contour interval and horizontal equivalent.						
	Ans.	Difference between contour interval and hor Contour Interval 1. The vertical distance between two successive contours is called "Contour Interval". 2. The difference between R.L's of two contours is a contour interval. 3. Contour interval is same throughout the survey.	Horizontal Equivalent 1.The horizontal distance between any two successive contours is called "Horizontal Equivalent". 2. Horizontal distance is measured on the map and then converted with the help of scale used in map. 3. Horizontal distance depends on steepness and slope of ground	One Mark each)				
	(ii)	"Interpolation of Contours". The contours may be interpolated by: 1. Estimation		(01 Mark) (01 Mark)				

	Following are the importance of digital planimeter over polar planimeter. 1. No calculations are required for area calculations. 2. Less time required for measurement of area. 3. Gives more accurate result.	One Mark each)
(iv) Ans.	Define telescope inverted and telescope normal for transit theodolite. Telescope Inverted: The position of telescope with the face right is known as "Telescope Inverted". Telescope Normal: The position of telescope with the face left is known as "Telescope Normal".	(01 Mark) (01 Mark)
(v) Ans.	Define the terms, swinging and transiting. Swinging: It is the process of turning the telescope in horizontal plane. Transiting: It is the process of turning the telescope through 180° in a vertical plane about its horizontal axis.	(01 Mark) (01 Mark)
(vi) Ans.	State the principle of tacheometry. Principle of tacheometry is stadia surveying which to enable horizontal and vertical distance to be computed from readings upon stadia rod and thus eliminate chaining operation.	(02 Marks)
(vii) Ans.	State any two special features of electronic theodolite. Following are the special features of electronic theodolite 1. Dual side display and keyboard with push buttons / keys 2. Rechargeable Ni-Cd battery with auto power cut off. 3. Compatability with EDM. 4. Communication port	(Any two One Mark each)
(viii) Ans.	Define compound curve and reverse curve. Compound Curve: A compound curve consists of two arc of different radius curving in the same direction. The centers of the two arc situated on the same side of the curve. Reverse Curve: A reverse curve consists of two arcs of equal or different radius curving in opposite direction with a common tangent. The two centers are on the opposite sides of a common tangent.	(01 Mark) (01 Mark)
b)	Attempt any <u>TWO</u> of the following	08 Marks
(i) Ans.	Draw neat sketches of contour for following: 1. Hill 2. Gentle Slope	(01 Mark each)
	(vi) Ans. (vii) Ans. (viii) Ans.	(iv) Ans. Inverted: The position of telescope with the face right is known as "Telescope Inverted". Telescope Normal: The position of telescope with the face left is known as "Telescope Inverted". Telescope Normal: The position of telescope with the face left is known as "Telescope Normal". (v) Define the terms, swinging and transiting. Swinging: It is the process of turning the telescope in horizontal plane. Transiting: It is the process of turning the telescope through 180° in a vertical plane about its horizontal axis. (vi) State the principle of tacheometry. Principle of tacheometry is stadia surveying which to enable horizontal and vertical distance to be computed from readings upon stadia rod and thus eliminate chaining operation. (vii) State any two special features of electronic theodolite. Following are the special features of electronic theodolite. 1. Dual side display and keyboard with push buttons / keys 2. Rechargeable Ni-Cd battery with auto power cut off. 3. Compatability with EDM. 4. Communication port (viii) Define compound curve and reverse curve. Compound Curve: A compound curve consists of two arc of different radius curving in the same direction. The centers of the two arc situated on the same side of the curve. Reverse Curve: A reverse curve consists of two arcs of equal or different radius curving in opposite direction with a common tangent. The two centers are on the opposite sides of a common tangent. b) Attempt any TWO of the following (i) Ans. 1. Hill 2. Gentle Slope

		102 102 Ridge line	
	(ii) Ans.	State any two advantages and limitations of remote sensing. Following are the advantages of remote sensing Provides data for large areas. Provide data for very remote and inaccessible area. Easy and rapid collection of data. Rapid production of maps for interpretation. Following are the limitations of remote sensing The interpretation of imagery requires certain skill level. Needs cross verification with field survey data. Objects can be misclassified or confused. Expensive.	(Any two One Mark each) (Any two One Mark each)
	(iii) Ans.	1. Set up the theodolite at Q and level it accurately. 2. With both plate clamped, the vernier A reading 360° take back sight on P (i.e bisect ranging rod at exactly) 3. Transit the telescope to direct the line of sight produced by PQ. 4. Loose the upper plate and turn to telescope clockwise to take fore sight on R (i.e. bisect ranging rod at R exactly using upper clamp and its tangent screw). The mean of two vernier readings give the approximate value of deflection angle at Q. 5. Loose the lower clamp and turn the telescope horizontally to back sight on P. The verniers will read the same reading as in above step and the telescope inverted. 6. Transit the telescope. Unclamp the plate and again bisect R read both verniers. 7. Find the mean of final vernier reading. Thus the deflection angle is doubled and hence, one half of this average value gives the accurate value of deflection angle at Q.	(01 Mark) (03 Marks)
Q.2.		Attempt any <u>FOUR</u> of the following	16 Marks

		(150/1EC - 27001 - 2015 Certified)					
	a)	State methods of locating contours and explain any one.					
	Ans.	Following are the methods of locating contours					
		1. Direct Method.					
		2. Indirect method.					
		a) By Square / Block Contouring	(02				
		b) By Cross Section	Marks)				
		c) Tacheometric Contouring					
		By Square / Block Contouring					
		This method is suitable when the area is small and the ground is almost uniform. The whole					
		area is divided into a series of squares and their corners are marked with pegs. The size of	(02				
		square varies from 5m to 20 m, depending upon the surface of ground.	Marks)				
		Now with the help of level, elevations of the corners of the square are determined.					
		Theses squares are plotted and reduced levels are written at their corners and the contours					
		lines are then interpolated.					
		(Students may explain any one method of locating contour)					
Q.2	b)	State any four applications of contour map					
	Ans.	Following are the applications of Contour map.					
		1. With the help of contour lines on contour map one can know the nature of ground.	(01 Mark				
		2. For determination of most economical site for dams and reservoirs, maximum flood line, submerged area.	each)An				
		3. For estimating volume of water to be impounded in a reservoir.	y Four				
		· ·	y roui				
		4. For location of highways, railways, canals, pipelines etc.					
		5. For determination of volume of cutting and embankment in given gradient.6. For determining the indivisibility of two given points					
		are accernming the manuscript of the given points					
Q.2	c)	Describe the procedure to locate grade contour in field					
	Ans:	Line joining the point along the same gradient is called contour gradient or grade contour.					
		All the points on a contour have the same elevation. But all the points on a contour gradient					
		do not have the same elevation but all of them lie on the same gradient.					
		Contour gradient can be used to locate the direction of road having a particular gradient. As					
		shown in fig. a contour map on which the contour lines are at 2 m intervals.					
		- C					
		F 74 m					
		72 m					
		70 m	/01				
		68 m	(01				
		66 m	Mark)				
		B 64 m					
		62 m					
		A					
		Suppose it is required to trace the center line of road with a ruling gradient of 1 in 30 m					
		from the starting point A on the 62 m contour line. Since the contour interval is 2 m and the					

		gradient 1 in 30 m, the horizontal distance between A and the point on the next 64 m contour line is 2 × 30 = 60 m. With center A and radius equal to 60 m draw an arc cutting the 64 m contour line arc B on map. With center B and the same radius draw an arc intersecting the next contour lines obtained. A, B, C, D, E, are the points on required grade. Now mark the contour on ground and established a point B at a distance of 60 m from A on contour of RL 64. Similarly others points are established to obtain the grade contour on field.	(03 Marks)
Q.2	d)	State the procedure for measuring a horizontal angle by method of repetition.	
	Ans.	Procedure:	
		Q	(01 Mark)
ı		R	
		 Set up the instrument over Q and level it accurately with the telescope in the normal position. 	
		 Set the vernier A to 360°. Loosen the lower clamp direct the telescope to left hand ranging road at P, and bisect it exactly by using lower clamp and lower tangent. The vernier reading should be the same. Loose the upper clamp and truth the telescope in clockwise direction and bisect the 	(03 Marks)
		right hand ranging road at R exactly by using the upper clamp and upper slow motion screw. 5. Read both vernier. Let the mean reading be 30° 2′.	
		6. Leaving the vernier unchanged, unclamp the lower plate and turn the telescope in clockwise direction bisect the ranging rod at P exactly with lower clamp and lower tangent screw. The reading on vernier should be same as before.	
		 7. Loose the upper clamp and turn the telescope in clockwise direction and bisect ranging rod at R exactly by using upper clamp and upper tangent screw. 8. The verniers will now read twice the value of angle i.e 2 × 30° 2′. 	
		 9. By leaving the verniers clamped at 60° 40′ measure the angle third time. 10. Read both the verniers. Read the final angle. 	
		11. The average angle with face left will be equal to the final reading divided by three. 12. Change the face and make three more repetition as described above.	
		13. Find the average angle with face right by dividing the final reading by three.	
		14. By taking average of both the face, horizontal angle PQR is obtained.	
Q.2	e)	Explain the temporary adjustment of transit theodolite	
	Ans.	Tomporary adjustment of transit theodolite consists of following stons	
		Temporary adjustment of transit theodolite consists of following steps. 1. Setting up theodolite over a station	
		2. Levelling up	
		3. Focusing of eyepiece.	
		4. Focusing of object glass.	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Setting up the theodolite includes following process:

a) Centering the instrument over station point.

Centering of theodolite is carried out by suspending a plumb bob form hook exactly over a

b) Levelling the instrument approximately by tripod leg.

2. Levelling up

station point.

Accurate leveling with the help of foot screw includes following steps:

a) Turn the theodolite about its vertical axis until the plate level is parallel to any pair of leveling screw.

- b) Move the foot screw either both in outward or inward directions by same amount until the bubble comes in the center of their run.
- c) Rotate the telescope by 90° and the bring it over the third foot screw and bubble is brought in center by operating third foot screw.
- d) Again bring the telescope back to its original position and repeat the steps 'b' and 'c' until the bubble remains at center in both the positions.
- e) Now turn the telescope in any third position through 360 °and observe the bubble, if it is remain in center, then the theodolite in accurate leveling.

3. Focusing of eyepiece.

Focusing of eyepiece enables to make the cross hair clear and distinct. This is achived by holding the white paper in front of object glass and the eyepiece is rotated in clockwise or anticlockwise direction till the cross hair are clear and sharp.

4. Focusing of object glass.

Object of focusing of object glass is to bring the image of object formed by the object glass in the plane of the cross hair.

To eliminate parallax, direct the telescope towards object and turn the focusing screw until the appears clear and sharp.

Q.2 f)

State different relationship between fundamental lines of theodolite.

When the instrument is in perfect adjustment, the following relations should exists:

- 1) The axis of the plate level must be perpendicular to the vertical axis.
- 2) The line of collimation must be at right angle to the vertical axis.
- 3) The horizontal axis must be perpendicular to the vertical axis.
- 4) The bubble line or the axis of the axis of the telescope level must be parallel to the

(01 Mark)

(01

(01 Mark each)An y Four

Page No.6/16

(01

(01

Mark)

Mark)

	T	n 6 m	I I
		line of collimation.	
		5) The vernier of vertical circle must read zero when the telescope is perfectly	
		horizontal.	
Q.3.		Attempt any <u>FOUR</u> of the following	16
			Marks
	a)	Explain construction and use of 'one second micro optic theodolite'.	
	Ans.	Construction:	
		 Micro optical theodolite have optical system build during manufacturing. 	(02Mark
		 This optical system faceplates reading of both horizontal and vertical angle precisely. 	for any
		The least count of this theodolite is 1"	four
		It has a automatic compensation of vertical circle index.	points)
		It has 30 X bright and sharp telescope.	
		 It provides clear and bright display with backlight illumination and also provides the 	
		display for both the sides.	
		Hann	
		Uses:	
		This instrument is most suitable for harsh environment and extreme weather and divines (i.e., but or cold temperatures)	
		conditions (i.e. hot or cold temperatures)For precise measurement of horizontal angle.	(02Mark
			s for any
		 For precise measurement of deflection angle. For precise measurement of vertical angle. 	two
		 Alignment of transmission towers carrying electric cable can be precisely done. 	uses)
		 Alignment of transmission towers carrying electric cable can be precisely done. For locating alignment of tunnel. 	
		Tor locating angument of turner.	
Q.3	b)	Explain the procedure for measuring of vertical angle by using electronic theodolite	
	Ans.		
		Suppose it is required to measure the vertical angle of an object 'P'	
		✓ P	
		The state of the s	(01Mark
)
		$O \longrightarrow R$,
		Procedure:	
		Set up the instrument over station 'O' and carry out all temporary adjustments.	
		Loosen the vertical clamping screw and direct the telescope in vertical plane and	(03Mark
		bisect 'P' exactly.	s)
		Now read the reading on displayed window.	
Q.3	c)	Describe the procedure for setup of total station.	
۷.5	Ans.	Describe the procedure for setup of total station.	
		Following steps are followed for the set up of total station	
		1. Set up the tripod approximately over the station point.	
		2. Remove the plastic cap from tripod and make tripod nearly level by stretching tripod legs.	(04
		3. Now fix the total station on tripod and roughly leveled and centered the instrument and	Marks)

Q.3 f) Ans	Explain the principal of EDM with a neat sketch.	
	Point of intersection Point of curve Point of curve Point of curve Apex distance Change broad Apex distance Point of tangency Mid-ordinate To Forward langency B Central angel (A) Age Central angel (A) Age Contral angel (A) Age Contral angel (A) Contral angel (A) Contral angel (B) Contral angel (Contral angel (A) (A) (A) (B) (Contral angel (A) (Contral angel (A) (A) (Contral angel (A) (A) (Contral angel (A) (A) (Contral angel (A)	(02 Marks) For Fig. (02 Marks) For Notation s
Q.3 d) Ans	push each leg firmly into the ground. 4. Check the level and center it again . Adjust level by changing leg length. 5. Adjust the three screws of the tribrach to center the bubble of spirit level by using three foot screw. 6. Focusing of eyepiece. 7. Focusing of object glass. 8. Check the plate level from time to time during measurement . State any four special feature of total station. • High accuracy and long measuring range. 1) High accuracy and long measuring range. 2) Long measuring range with mini prism is 0.9 km. Long measuring range with single prism is 2 km. Long measuring range with 3 prism is 2.7 km. • Versatile application programs. a. On board data collection, stakeout/ survey road calculation and many more function. b. Integrated alphanumeric key realizes the quicker operation. c. Large internal memory up to 24000 points. • Enhanced absolute encoder. Adopted absolute encoder, which need not require zero set and it can also realize stable measurement with less reading error. • Superior water-resistant and dust proof. • No worry about sudden bad weather. Draw neat sketch of simple circular curve and show notation there on.	(01 Mark each)An y Four

				(ISO/IEC - 27001 - 2013				
	Transmitter Tansmitted wave Reflector with prism Reflected wave							
	 Let the distance between P and Q be 'D' which is to be measured. A wave transmitted from the transmitter at station 'P' with certain phase angle There is a reflector at the other end 'Q' reflector consist of prism. The wave strikes on reflector at Q and then gets reflected from Q. It is received back at the transmitter end at 'P' with different phase angle. For finding the distance, the phase difference between transmitted wave is measured and converted into distance. 							
4.		Attempt	any <u>FOUF</u>	of the following		16 Marl	ks	
	a)		_	=	hen the area was measured by planimeter, the value of one revolution of the roller. Remark			
	Ans.	7.225	3.125	Outside the figure	The zero of the disc passed the fixed mark twice in clockwise direction	(02N s)	Mark	
		1.252	4.38	Inside the figure	The zero of the disc passed the index mark once in reverse direction.			
		Find the	area of ze	ro circle (Statement m	issing in question paper)			
	Case I Area of the figure in the first case = M (F.R. – I.R. + 10 N) = 100 (3.125 – 7.225 + 10*2) = 1590 Sq.Cm							
	Area of Zero Circle = M x C = 100 x 22.77 = 2277 Sq.Cm							

Q.4	b) Ans.	State any two application of each of GIS in land information and land environmental field. Applications of GIS in Land information Following are the applications of GIS in land information. • Easy creation and maintenance of data for land records. • Land planning and land use. • Managing land registry for recording titles to land holding. Applications of GIS in Environmental field Following are the applications of GIS in Environmental field. • Forest modeling, air/water quality modeling and monitoring. • Environmentally sensitive zone mapping. • Forest cover, soil quality and hydrology coverage.	(02Mark s for any two) (02Mark s for any two)
Q.4	c) Ans:	 Explain application of remote sensing in civil engineering. Revision of (existing) topo sheets: The rapid revision and updating of existing topo (graphical) sheets can be carried out speedily with the help of aerial photography (which is also a branch of remote sensing) and satellite imagery. Alignment of (new) highways and rail-lines: the location of most economical alternative sites for such works can very well be carried out speedily by making use of aerial photographs and satellite imagery. Location of (gravity) dam sites: for a gravity dam, it is necessary to have very good foundations in the form of hard solid strata of rocks. Geological investigation of the existing rock in and around the propose dam site can be carried out by aerial photographs and or satellite imagery. Geological features such as folds, faults, dykes, fracture etc. can be determined by the remote sensing technique. Tunneling: Tunnel should not be aligned along the fractured zone or faults in the rocks. Remote sensing helps in furnishing all such information and thus ensures safety of tunnel during its construction stage. Silting of storage reservoirs, harbors etc.: Silting of storage reservoirs reduces its capacity, whereas silting of harbors leads to reduction in the navigational depth and thus renders it useless. Remote sensing technique that makes use of satellite imagery (in the infrared region) gives idea about the silting of reservoir qualitatively and to some extent quantitatively. 	(01 Mark each)An y Four
Q.4	d)	Explain the procedure of curve setting by method of offsets from long chord Procedure: 1. Divide the long chord into an even number of equal parts say 8,10,12 etc.	(02 Marks)

		2. Set out the offset as calculated from the formula $Ox = \sqrt{R^2 - X^2} - (R - O_0) \text{ and obtain the required points on the curve.}$ The curve being symmetrical along ED, the offset for the right half of the curve will be the same as those on the left half side.	(02 Marks)
Q.4	e)	Define tacheometer. State essential characteristics of tacheometer.	
		Tacheometer A tacheometer is essentially a transit theodolite having a stadia diaphragm. The diaphragm is equipped with two horizontal hairs called stadia hairs in addition to the regular cross hairs. Essential Characteristics of a Tacheometer: 1. The value of constant f/i = 100. 2. The telescope should be fitted with anallatic lens having value of (f+c) = 0 3. The telescope should be powerful, the magnification should be 20 to 30 times the diameters. The vision through the telescope should give a clear and bright image for a long distance.	(01 Mark) (03 Marks)
Q.4	f)	What is the degree of curve? Derive the relationship between radius and degree of curve.	
		Degree of curve The degree of the curve is the angle subtended at the center by a standard chord of 30 m length.	(01 Mark)
		Relationship between radius and degree of curve.	
		Referring Fig Let R = the radius of the curve in m. D = the degree of cuve. MN = the chord 30 m long. P = Mid point of chord MN In OMP, OM = R, PM = ½ MN = 15 m. Then sin D/2 = PM/OM = 15/R Or P = 15/(Fyact)	(03 Marks)
		Or R = $\frac{15(\text{Exact})}{\text{Sin D/2}}$ When D is small, sin D/2 = D/2 radians *R = $\frac{15}{(\text{D/2})\text{x}(\Pi/180^{\circ})}$ = $\frac{15\text{x}360}{\text{D}}$ = $\frac{1718.89}{\text{D}}$	

			(ISO/IEC	· 27001 - 2013 C	eruneu)				
		R = 1							
			D						
		Sometimes it is taken as R = 1720							
		D							
		If the length	of chord is 20m						
		Then	R = <u>10</u>		= 1145	.45			
			(D/2)x(Π/2	180°)	D				
			R = <u>1145.4</u> 5						
		(0. 1 .	D						
		-	ay derived for 30	m or 20 m c	hord length,	full marks	should be give	en for any	
		one relation	isanip)						
Q.5	a)	Calculate co	nsecutive co-ordin	ates of all th	ne survey line	es of follow	ing traverse.		
3.5	-,			01 an ti					
			Line	WCB	Length in I	Meters			
			AB	121 ⁰ 30'	161.2	.0			
			ВС	18 ⁰ 09'	141.3	8			
			CD	218 ⁰ 31'	201.3	9			
			DA	332 ⁰ 27'	121.2	.1			
	Ans		Dadwaa	J		1 0 1 1 1 1 1 1 1	Departure	٦	
	7	Li	ne Reduced Bearing	l lengt	h in Meters	Latitude I*cosθ	Departure I*sinθ		
		Δ	AB \$ 58 ⁰ 30' E		161.20	-84.23	+137.44	_	
		-	BC N 18 ⁰ 09' E		141.38	+134.34	+44.04	_	
		l —	CD S 38 ⁰ 31' W		201.39	-157.57	-125.42		
		-	OA N 27 ⁰ 33' V		121.21	+107.46	-56.06		
		Calculations	: Consecutive co-o		Survey lines.		1	_	
			Line AB- Lati						01 Mark
			Line BC- Latit						for each
			Line CD- Latit						correct Latitude
			Line DA- Latit	ude = I*cos6	$\theta = 121.21 \times 0$	cos 27º 33' :	= +107.46		and 01
		1: AB Basel of 18: 0 464.20 at 500.20 at 427.44					Mark for		
			Line AB- Departure = $I*\sin\theta = 161.20 \text{ x sin } 58^{0} 30' = +137.44$ Line BC- Departure = $I*\sin\theta = 141.38 \text{ x sin } 18^{0} 09' = +44.04$				each		
			Line CD- Depa						correct
			Line DA Depa						Departur
			·						е
Q.5	b)	Following ar	e length and beari						
			Line	Length in		earing			
			PQ	76.8		40 ⁰ 12'			
			QR	195.0		35 ⁰ 24' 38 ⁰ 48'			
			RS SP	37.2	:U 3	38 48			
		Find langth	and bearing of line	 SD					
		i inu iengui d	and bearing of fille	JI .					
	1								1

	Ans	Lin	Length in	n Bearing	Reduced	Latitude (L)	Departure (D)					
		LIII	Meters		Bearing	I*cosθ	l*sinθ					
		PC	76.80	140 ⁰ 12'	S39 ⁰ 48'E	-59.00	+49.16					
		QF	195.60		N35 ⁰ 34'E	+159.11	+113.77					
		RS	37.20	338 ⁰ 48'	N21 ⁰ 12'W	+34.68	-13.45					
		SP	187.97	227 ⁰ 26'	S47 ⁰ 57'W	-134.79	-149.48					
		Since PQRSP is a closed traverse, $\Sigma L = 0$ and $\Sigma D = 0$ Line PQ- Latitude = $1*\cos\theta = 76.80 \times \cos 39^0 48' = -59.00$										
		Line QR- Latitude = $I^*\cos\theta = 195.60 \times \cos 35^0 34' = +159.11$ Line RS- Latitude = $I^*\cos\theta = 37.20 \times \cos 21^0 12' = +34.68$ Line SP- Latitude = $I^*\cos\theta = I_1 \times \cos \theta_1$ $\Sigma L = 0$ $0 = -59.0 + 159.11 + 34.68 + I_1 \times \cos \theta_1$										
		$l_1 \times \cos \theta_1 = -134.79$ Line PQ- Departure = $l^* \sin \theta = 76.80 \times \sin 39^0 48' = +49.16$										
		Line PQ- Departure = 1° sin θ = 76.80 x sin 39 48 = +49.16 Line QR- Departure = 1° sin θ = 195.60 x sin 35 48 = +113.77										
		Line QR- Departure = 1° sin θ = 195.60 x sin 35 34 = +113.77 Line RS- Departure = 1° sin θ = 37.20 x sin 21 ⁰ 12' = -13.45										
				•	arture = $I*sin\theta$							
				•	$\Sigma D = 0$	1 1						
				0 = +49.16 +	113.77 - 13.45	$5 + I_1 x \sin \theta_1$		01				
				$I_1 x$	$a \sin \theta_1 = -149.4$	48						
		$tan\theta = D/L$										
				= -	149.48 / -134.7	79						
		$= 1.10$ $\theta_1 = \tan^{-1} 1.10 = 47^0 57'30''$										
		$\theta_1 = S47^0 57'W$										
		Length SP = $SQRT(L^2 + D^2)$										
			$= SQRT[(-134.79)^2 + (-149.48)^2]$									
		= 201.27 m. OB Longth SD = 140.48 / sin 47 ⁰ 57′ = 201.27 m										
		OR Length SP = $149.48 / \sin 47^0 57' = 201.27 \text{ m}$. OR Length SP = $134.79 / \cos 47^0 57' = 201.27 \text{ m}$.										
Ղ.5	c)											
۷.5	C)			cally held staff.	rus see up ut st	acion // ana ch	e ronowing redding	5				
			st. Station	Staff Station	Vertical ang	gle Stadia rea	dings in meter					
			A	BM	+8 ⁰ 00'		1.16, 1.420					
			A	В	-2 ⁰ 30'		1.235, 1.330					
		The constant of tachometer was 100. Find the horizontal distance AB and RL of B, if BM RL i 100.00 m.										
i		i .										

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Q.6	c)	Tahulate tl	ne data regu	ired for set	ting out a circul	lar curve by the det	flection angle method						
۵.5	<i>C</i> ,	Tabulate the data required for setting out a circular curve by the deflection angle method, using the following information:											
		-	Chainage of intersection point = 1580 m										
			Angle of intersection = 145°										
		(iii)	Degree of c	urve = 5°									
			(iv) Peg interval = 30 m										
	Ans	i)	Angle of	Intersection	on I = 145 ⁰								
		ii)			ction point = 15	580 m.							
		iii)											
		iv)	Peg interval = 30 m.										
		v)	Angle of deflection $\phi = 180 - 145 = 35^{\circ}$										
		Radius	of curvature R = (1718.9 / Degree)										
			= 1718.9 / 5 = 343.78 m										
		Length	Length of Tangent = R x tan(ϕ /2) = 343.78 x tan(35/2)										
		Chaina	= 108.40 m										
		Cilalila	Chainage of first tangent point (point of curve0 = T_1 = 1580 - 108.40 = 1471.60 m 0.5										
		l ength	of curve = 7			1471.00 111		0.5					
		20118011		• •		m		0.5					
		Chaina			oint (point of ta								
				471.60 + 22		3 77 =							
			= 1681.60 m (
		Length	of curve is 210 m.										
		_	erval is 30 m.										
		Total n	umber of full chords of 30 m is 06. = 30 x 6 = 180 m										
		_	of sub chord is 30 m.										
		_	of initial sub chord = 1480 – 1471.60 = 8.4 m.										
		_	h of final sub chord = 21.6 m										
			ulation of deflection angles.										
			$\delta_n = 1718.9 \text{ x l}_n / R = \text{minutes}$										
		$\delta_1 = 1718.9 \times 8.4 / 343.78 = 0^0 42' 0''$											
		δ_2 , δ_3 , δ_4 , δ_5 , δ_6 , $\delta_7 = 1718.9 \times 30 / 343.78 = 2^0 30' 0''$											
		$\delta_8 = 1718.9 \times 21.6 / 343.78 = 1^0 48' 0''$ $\Delta_1 = \delta_1, \Delta_2 = \Delta_1 + \delta_2, \Delta_3 = \Delta_2 + \delta_3, \Delta_4 = \Delta_3 + \delta_4, \Delta_n = \Delta_{n-1} + \delta_n,$											
		$\Delta_1 - \delta_1$, $\Delta_2 - \Delta_1 + \delta_2$, $\Delta_3 - \Delta_2 + \delta_3$, $\Delta_4 - \Delta_3 + \delta_4$, $\Delta_n - \Delta_{n-1} + \delta_n$, Tabulated result:											
		Point on		Length	Deflection	Total deflection]					
		curve	Chainage	of chord	angle δ_n	$= \Delta_n$	Remark						
		T ₁	1471.60				First tangent point						
		P ₁	1480.00	8.4	0 ⁰ 42′ 0″	0 ⁰ 42' 0"							
		P ₂	1510.00	30.0	2 ⁰ 30′ 0″	3 ⁰ 12' 0"							
		P ₃	1540.00	30.0	2 ⁰ 30′ 0″	5 ⁰ 42' 0"							
		P ₄	1570.00	30.0	2 ⁰ 30′ 0″	8 ⁰ 12' 0"		01					
		P ₅	1600.00	30.0	2 ⁰ 30′ 0″	10 ⁰ 42′ 0″							
		P ₆	1630.00	30.0	2 ⁰ 30′ 0″	13 ⁰ 12′ 0″							
		P ₇	1660.00	30.0	2 ⁰ 30′ 0″	15 ⁰ 42′ 0″]					
		T ₂	1681.60	21.6	1 ⁰ 48′ 0″	17 ⁰ 30′ 0″= φ/2	Second tangent point						