

Subject Code: 17417

Model Answer

Page 1 of 32

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any TEN of the following:20 Marks						
i)	State necessity of transmission of electricity. (any two points)						
Ans:	Because of following points there is necessity of transmission of power:						
	(Any Two point expected : 1 Mark each)						
	a) Electrical load on power system is not concentrated at one place but it is widely spread.						
	b) Load points are located away from generating station.						
	c) Due to limitation of site selection criteria of major generating Station (HPP, TPP & NPP) and	re					
	located far away from load centers and hence the electricity need to transmit from generating	ıg					
	stations to the point of actual utilization of it (consumers) for this purpose transmission						
	electricity is necessary.						
b)	State any four transmission line components.						
Ans:	Following are the some components of transmission Line:-						
	(Any Four are expected : 1/2 Mark each)						
	1. Supporting structure (pole)						
	2. Line insulator						
	3. Overhead conductor						
	4. 'V' Cross arm						
	5. Top pin support						

S	WINTER- 2017 ExaminationsSubject Code: 17417Model Answer	Page 2 of 32
	6. Two Pin Cross arm	
	7. Four pin cross arm	
	8. Stay set (Stay wire of 7/8 or 7/10 SWG)	
	9. Lighting arrestors	
	10. Guarding wires	
	11. Continuous earth wire	
	12. Cables	
	13. Fuses and Isolating switches	
	14. Different types of Clamp (A-type, B-Type)	
	15. Bird guards	
	16. Vibration damper	
	17. Jumpers	
c)	Define stranded conductor. State its two advantages.	
Ans:	Meaning of stranded conductor :	(1 Mark)
	Stranded conductor is made of several thin wires called	as strand brought together to
	become single conductor.	
	Advantages of Stranded Conductors:- (Ar	y Two expected : 1/2 Mark each)
	1. Conductor becomes flexible.	
	2. Its weight reduces.	
	3. Easy for handling.	
	4. Easy to store & transport.	
	5. Skin effect reduces.	
d)	Classify cables according to voltage level.	
Ans:	Classification of cables with their voltage levels:	
	(AnyFour Classification of cable with voltage for	eltere 1 1 KV
	2. High voltage (tension) cable/LT cable, for operating v	voltage 1.1 KV.
	2. Figh voltage (tension) cable/ HT cable: for operating voltage 22	$\frac{1}{1} \mathbf{K} \mathbf{V}$
	4 Extra Super tension cables for operating voltage 22	V to 66 KV
	5 Extra-high tancion cable (EHT): for operating voltage	v 10 00 Kv.
	6 Extra-super voltage power apples: for operating voltage	$\frac{1}{122} \text{ KV}$
	0. Exita-super voltage power capies: for operating voltage	

WINTER-2017 Examinations								
S	Subject C	ode: 17417	Model Answ	<u>er</u>		Page 3 of 32		
e)	e) Define : (i) VCV (ii) DCV referred to corona.							
Ans:	(i) Visu	(1 Mark)						
		It is the minimum phas	se to neutral vol	tage at which co	rona just beco	omes visible. i.e.		
		voltage glow occurs around t	he conductor.	-	-			
	(ii) Dis	ruptive Critical voltage (DCV	7):			(1 Mark)		
			·					
		It is the minimum phase	se to neutral vol	tage at which pro	ocedure of fo	rmation of		
		corona just starts.						
f)	Classif	y transmission lines as per vo	ltage levels.					
Ans:	Classif	y transmission lines as per vo	ltage levels:			(2 Marks)		
		a) High voltage Transmiss	ion Line (HV) ι	up to 33 KV				
		b) Extra High Voltage Tra	nsmission Line	(EHV) above 33	KV up to 40	00 KV		
		c) Ultra High voltage Trar	smission Line (UHV) above 400) KV			
-)	State to			I' M- h				
<u> </u>	State t	wo transmission routes of H v	DC transmission (An	on line in Mana v Two Routes a	rasntra. re expected	: 1 Mark each)		
1 11151			(j =				
	S.N.	From	То	Distance	Power	Voltage		
	1	Rihand (U.P) (from 1990)	Dadri	814 Km	15000	$\pm 500 \text{ KV}$		
	2	Talcher- is the higgest	Kolar	1376 Km	MW 2000 MW	(bipolar) + 500 KV		
	2	HVDC transmission passes	Kolai	1570 Km.	2000 101 00	\pm 500 K v (bipolar)		
		through Orissa (A.P)						
		Tamilnadu & Karnataka						
	3	Chandrapur- Padghe	Padghe	752 Km	1500 MW	±500 KV		
		(Maharashtra) in Western	(Maharashtra			(bipolar)		
	4	Region Barsoor (M.P.)) Lower Sileru	Mono Polar	100MW	100KV		
	4	Dersoor (M.F.)	(Arunachal	WOID FOIA	100101 00	100KV		
			Pradesh)					
	5	Connecting Northern region	Eastern	0 Km (back	500MW	140KV		
		(Sasaram- Pusawali)	Region	to Back link)				
	6	Connecting Northern region	Western	0 Km (back	2×250M	70KV		

7

8

h)

Ans:

WINTER-2017 Examinations **Model Answer** Subject Code: 17417 Page 4 of 32 (Vindhyachal) Region to Back link) W Connecting Southern region Western 0 Km (back 2×500M 140KV Region to Back link) (Chandrapur) W **Connecting Southern** 0 Km (back 500MW 140KV Eastern region(Vizag- Gajuwaka) Region to Back link) Draw single line diagram of 11 kV/440V distribution system. Single line diagram of 11 kV/440V distribution system: (2 Marks) 400 V 400 V Three-phase Three-phase and neutral load load phase 400 V phase 11 k\

phase

Receiving End Voltage

WINTER- 2017 Examinations <u>Model Answer</u>

Page 5 of 32

j)	Define : (i) Feeder (ii) Distributor					
Ans:	1. Feeders: (1 Marks)					
	It is a link between Receiving substation (or Secondary transformer substation) and					
	distribution transformer substation (or Service transformer). It is 3-Ph Three-Wire System and					
	voltage level is 11/22/33 KV depending upon load, normally no tapping are taken from feeders.					
	While designing the feeder its current carrying capacities are important.					
	2. Distributors: (1 Marks)					
	It is a link between distribution substation and Consumers. It is 3-Ph Four-Wire System					
	(R-Y-B-N) and Voltage level 3-Ph 400 Volt, for single phase supply voltage is 230 volt, while					
	designing the distributor voltage drop is important.					
k)	Define : (i) Primary (ii) Secondary distribution system					
Ans:	i) Primary distribution: (1 Marks)					
	It is 3-Ph Three-Wire System and voltage level is 11/22/33 KV depending upon load. It is					
	link between receiving substation & distribution transformer					
	ii) Secondary distribution System: (1 Marks)					
	It is 3-Ph Four-Wire System (R-Y-B-N) and Voltage level 3-Ph 400 Volt, for single phase					
	supply voltage is 230 volt. It is link between distribution transformer substation & consumer					
l)	State the function of equipments used in sub-station (a) CT and PT (b) Isolator.					
Ans:	a) Instrumental Transformer (CT & PT):- (1 Mark)					
	C.T & P.T are used for measurement of electrical quantities (Current, voltage, power					
	& energy) also C.T. is used for protection purpose as a part of tripping circuit of C.B.					
	b) Isolator (No load Switch): - (1 Mark)					
	Its function is to connect or disconnect the circuit only when there is no load.					
m)	State the primary & secondary distribution standard voltages in our country.					
Ans:	Primary distribution standard voltages is :- (1 Mark)					
	\rightarrow 11KV/22KV/33KV					
	Secondary distribution standard voltages is:- (1 Mark)					
	Distributor voltage is for 3-ph consumer- 400V and 1-Ph consumer- 230V					

Subject Code: 17417

Model Answer

Page 6 of 32

n)	State any four advantages of H V transmission					
Ans:	Advantages of high voltage transmission: (Any four advantages expected 1/2 Mark)					
1 11151	1) Cost of transmission line per kilometer reduces.					
	2) Performance of transmission line gets improved (i.e. efficiency & regulation gets					
	improved)					
	2) Dully amount of notion can be transmitted over land distances					
	3) Bulk amount of power can be transmitted over long distances.					
	4) For long distance it is necessary of HV transmission.					
0.2	Attempt any FOUR of the following : 16 Marks					
	Draw a neat sketch of Bipolar HVDC transmission system. State its advantages and					
a)	disadvantages.					
Ans:	Sketch of Bipolar HVDC transmission system:(2 Marks)					
	Layout of Bipolar DC transmission					
	+500/+500/+200 kV					
	w.r.t ground					
	Sending end substation High voltage DC Receiving end substation transmission line substation					
	AC feeder					
	G Rectifier and Filter unit Inverter and Filter unit					
	3ph step-up					
	transformer					
	Bectifier and					
	G Filter unit					
	High voltage DC					
	transmission line					
	-500/-600/-800 kV w.r.t ground					
	OR Equivalent Fig.					
	Advantages:(Any One advantage expected)(1 Mark)					
	1. Power transmitting capacity is doubled as compared to monopolar link.					
	2. Reliability is high.					
	3. In the event of fault in any one pole the bipolar link is quickly switch over to monopolar link.					
	Disadvantages:- (1 Mark)					
	1 High initial cost					
	1. Ingn mitiai cost					

WINTER- 2017 Examinations <u>Model Answer</u>

Page 7 of 32

b)	State any four causes of failure of line insulators.					
Ans:	The Reasons for the Failure of Insulators: - (Any four causes expected: 1 Mark each					
	Total 4 Marks)					
	1. Manufacturing Defect:-					
	Insulator may fail due to manufacturing defect. So, it must be tested before use.					
	2. Uneven Expansion and Contraction:-					
	Insulator is manufactured by using combination of material. For.eg: porcelain, glass,					
	cements and also attachment steel is used.					
	Co-efficient of expansion and contraction of each material is different. So, there is					
	possibility of cracking of insulator, so it may fail.					
	3. Mechanical Stress:-					
	Due to mechanical stress of wind insulator may fail.					
	4. Porous:-					
	Porcelain is porous material. So, if insulator is not glazed properly then direct dust will					
	accumulate on insulator and It will absorb moisture from air, so reduces resistance of					
	insulation.					
	Hence leakage current increase which increases temperature of insulator. It may cause					
	failure of insulator.					
	5. Flashover due to lightning stroke:-					
	If lightning stroke directly attacks on insulator than there is flash over and causes failure					
	of insulator.					
	 6. Flash over due to large birds or similar objects:- Large birds or similar objects causes short circuit resulting in flash over and causes of failure insulator. 7. Flash over caused due to dust deposition:- 					
	Transmission line running over/near dusty area for eg: coal mine, large stone					
	crusher, cement factory etc.					
	Dust will deposit on insulator which reduces clearance between two conductors. So,					
	there is possibility of flash over and causes failure of insulator.					

	WINZ	FER–2017 Examinations	D 0 (00
2	Subject Code: 17417	<u>Model Answer</u>	Page 8 of 32
	8. Wrong Selection:-		
	If 11 KV insulators are use	d for 22 KV, then it causes failure of insula	ator.
	9. Rough Handing:-		
	Due to rough handling of	insulator during transportation, construction	on of line work etc
	causes failure of insulator.		
	10. Ageing Effect:-		
	Due to continuous use	of insulator for a long period, its dielectric	e strength reduces.
	So, it may fail insulator.		
c)	State factors on which proximity eff	ect depends ? How it can be reduced ?	
Ans:	Proximity effect depends on follow	ring points:-	(2 Marks)
	1. Magnitude of frequen	icy.	
	2. Distance between to c	conductor	
	3. Size of conductor.		
	4. Resistivity conductor	material.	
	5. Permeability of condu	actor material.	
	Proximity effect can be reduced:-		(2 Marks)
	1. By increasing the distance b	etween two conductors i.e. by using longer	cross arm
	2. By using overhead transmiss	sion system instead of underground.	
	3. Effects are negligible for sm	all size, small current carrying conductor	
	4. Use DC transmission syste	em instead of AC transmission system to	o avoid proximity
	effect, Since frequency of I	DC supply is Zero	
d)	State advantages and disadvantages	of corona. (any two each)	
Ans:	Advantages of Corona:-	(Any Two Advantages expected	d: 1 Mark each)
	1. Due to formation of corona air	around the conductor gets ionized. Hence	effective diameter
	of conductor increases. So its re	esistance decreases. (Since $R = \rho \frac{l}{A}$)	
	2. It reduces electrostatic stresses	as cross section of conductor's increases.	
	3. It provides safety valve against	over voltage due to lighting stroke.	
	4. It reduces effect of transient pr	roduced by surge.	

			WINTER-2017 Ex	aminations		
8	Subject Co	de: 17417	Model Ans	wer	Page 9 of 32	
	Disadva	ntages of Corona:-	(An	y Two Advantages expected:	1 Mark each)	
	1. There is power loss due to corona which reduces transmission efficiency.					
	2. Ozone gas produced, due to chemical action there is possibility of corrosion (rusting) of					
	h	ardware & conductor.				
	3. H	armonics are produced	which will cause ra	dio interference due to corona.		
	4. T	here is electromagnetic	& electrostatic inte	rference due to corona.		
e)	State as nominal	sumption made and `T' network.	draw phasor diag	ram for transmission line r	epresented as a	
Ans:	Assum	ptions:			(2 Marks)	
	Phasor	diagram for nominal	Sph Ecph IRRph/2	I _S Xpb/2 I _S Rpb/2 or equivalent Vec	(2 Marks)	
f)	Compar points)	e between nominal '	'T'' and nominal	" π " transmission line net	work. (any four	
Ans:	Ans: (Any Four Point Expected : 1)					
	Sr.No	Nominal T	Method	Nominal π Meth	od	
	1	It is assume that 1	ine capacitance is	It is assumed that capacitance	of transmission	
		connected at centre of t	ransmission line	line is divided into half of the l	line capacitance	
				is connected at receiving en	nd & half of	
				capacitance is connected at send	ling end.	

S	Subject Co	WINTER– 2017 Ex de: 17417 <u>Model Ans</u>	xaminations swer Page 10 of 32				
	2	It is assume that half of the resistance & reactance per phase are divided in either	It is assumed that transmission line resistance & reactance per phase is connected in between two helf transmission line connected on				
			between two nan transmission line capacitance				
	3	Shape of equivalent circuit is like letter 'T' hence its name is nominal 'T' method	Shape of equivalent circuit is like letter ' π ' hence its name is nominal ' π ' method				
	4	Is R/2 X _L /2 Is R/2 X _L /2 I _R Vs V ₁ C V _R Neutral	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	5 Values of ABCD constants T- equivalent circuits of are as bellows: $\therefore A = D = 1 + \frac{YZ}{2}$ $\therefore B = Z \left[1 + \frac{YZ}{2} \right]$		Values of ABCD constants π equivalent circuits of are as bellows: $\therefore A = D = 1 + \frac{YZ}{2}$ $\therefore B = Z$ ohm				
		$\therefore C = Y$ mho	$\therefore C = Y \left[1 + \frac{12}{4} \right] \text{ mho}$				
0.2	A 44 amon 4	tony Four of the following .	16 Marka				
<u>Q.3</u>	Attempt	any Four of the following : kin effect. State methods to reduce it	16 Marks				
Ans:	Define	skin effect:-	(2 Marks)				
		When alternating current flows throug	th conductor it has tendency to flow away from				
	cen	iter of conductor					
		i a maximum current density is near sl	in of conductor and goes on reducing towards				
		1.e. maximum current density is near sk	. I the sector of (X) of the center of the				
	cen	ter core is known as skin effect. (Since the	inductive reactance (X_L) at the center of the				
	con	ductor is more than surface of conductor)					
	OR						

WINTER-2017 Examinations Subject Code: 17417 **Model Answer** Page 11 of 32 The tendency of alternating current to concentrate near the surface of a conductor is known as skin effect. (2 Marks) Skin effect can be reduced by: 1. Use stranded conductors instead of solid conductors. 2. Use hollow conductors instead of solid conductor. 3. Use ACSR /AAAC conductors for transmission purpose 4. Use D.C. supply whenever possible as Skin effect is absent (Since frequency 0) instead of A.C. supply. State Ferranti effect. When these effects occur ? b) Ferranti effect :-(2 Marks) Ans: When receiving end voltage (V_R) is found to be greater than sending end voltage (V_S) . This phenomenon is known as Ferranti effect When these effects occur:-(2 Marks) Suppose transmission line is subjected to following Conditions: 1. When there is no load on transmission line $(I_L = 0)$ **Or** 2. When There is no load at receiving sub-station or Lightly loaded Or 3. When there is sudden load thrown OFF. Or 4. When there is sudden load shading. Or 5. When Transmission line is open circuited due to load failure. Draw block diagram for HVDC transmission starting from generator. c) Ans: block diagram for HVDC transmission line: ----- (4 Marks) LAYOUT OF HNDC D. C transmission G Rectigier Filte lin above 800 km AIT Power 1000 MIN S above substation Receiving sending end end substatio

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER– 2017 Examinations <u>Model Answer</u>

Page 12 of 32

WINTER- 2017 Examinations <u>Model Answer</u>

Page 13 of 32

10	Proximity effect	Present	Absent
11	Ferranti effect	Present	Absent
12	Corona losses	More	Less
13	Radio interference	Present	Absent
14	Effect of L &C	Present	Absent
15	Value of resistance	More 1.6 times than DC	Less
16	Copper loss	More	Less
10		Less	More
17		Less	More
18	Voltage drop in	More	Less
	transmission line		
19	% Regulation	Good	Better
20	Limitation on length of	Due to charging current	Charging current is absent
	cable	there is limitation on	so no limitation on length
		length of cable	of cable
21	String efficiency	Less than 100 %	100 %
22	Losses in S/s	Less	More
23	Maintenance cost of S/S	Less	More
24	Asynchronous tie	Not possible	Possible
25	Reliability & availability	AC Double circuit are	One bipolar line is
		necessary	sufficient
26	Control system	Simpler cheaper	Difficult, costly
27	Power handling capacity	There is limit due to	No limit
28	Voltage control for long	Difficult for long distance	Easier as L&C are not
	distance lines	lines due to presence of L	effective
	distance mes		
29	Stability limit	EHVAC limits due to	No limit due to absent of
		inductance & power angle	inductance & power angle
30	Power flow control	Power flow cannot be easily controlled, (slow)	Power can be quickly(fast) controlled,

WINTER- 2017 Examinations <u>Model Answer</u>

Page 14 of 32

	31	Power transfer ability		Lower	High
	32	Transient performance		Poor	Excellent
	33	Back to Back conversion	on	Not Possible	Possible
		stations			
	34	Short-circuit current le	vel	More	Less
	35	Reliable circuit breake	r	Available	Not available
	36	Fault levels		Get added after	Remains unchanged
				interconnection	
	37	Frequency conversion		Not possible	Possible
	38	Cascade tripping of cir	cuit	Likely	Avoided
	39	Spinning reserve		Not much reduced	Reduced
	40	Frequency of fault		More	Less
e)	Compa	re indoor and outdoor s	uh-sta	tion (any eight noints)	
Ans:	Compu	(Ar	iy Eig	th points are expected: 1/2	2 Mark each, Total 4 Marks)
	Sr.	Points	Indo	oor substation	Outdoor substation
	Sr. No.	Points	Indo	oor substation	Outdoor substation
	Sr. No. 1	Points Capital cost	Indo	n, as construction work	Outdoor substation Less, as construction work
	Sr. No. 1	Points Capital cost	Indo High cost	oor substation h, as construction work is more.	Outdoor substation Less, as construction work cost is less.
	Sr. No. 1	Points Capital cost Time required for	Indo High cost More	oor substation h, as construction work is more. e, as construction work is	Outdoor substation Less, as construction work cost is less. Less, as construction work is
	Sr. No. 1 2	Points Capital cost Time required for completion	Indo High cost More more	bor substation <u>a</u> , as construction work is more. <u>e</u> , as construction work is e.	Outdoor substation Less, as construction work cost is less. Less, as construction work is less.
	Sr. No. 1 2 3	Points Capital cost Time required for completion Distance between two	Indo High cost More more Less	bor substation a, as construction work is more. <u>e</u> , as construction work is e. , this will increase	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce
	Sr. No. 1 2 3	Points Capital cost Time required for completion Distance between two equipment	Indo High cost More possi	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . this will increase ibility of fault & safety	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety
	Sr. No. 1 2 3	Points Capital cost Time required for completion Distance between two equipment	Indo High cost More Less possi reduc	bor substation a, as construction work is more. <u>e</u> , as construction work is e. , this will increase ibility of fault & safety ces.	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases
	Sr. No. 1 2 3 4	Points Capital cost Time required for completion Distance between two equipment Access for incoming	High cost More Less possi reduc	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & cost of the provide the provident the provide the
	Sr. No. 1 2 3 4	PointsCapital costTime required for completionDistance between two equipmentAccess for incoming & outgoing line	High cost More more Less possi redu Diffi & ou	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . this will increase ibility of fault & safety ces. <u>icult</u> access for incoming atgoing lines because of or installation	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation
	Sr. No. 1 2 3 4	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement	Indo High cost More more Less possi reduc Diffi & ou indo	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming itgoing lines because of or installation. ural cooling is pot	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available
	Sr. No. 1 2 3 4 5	PointsCapital costTime required for completionDistance between two equipmentAccess for incoming & outgoing lineCooling arrangement	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming itgoing lines because of or installation. ural cooling is not lable so artificial cooling	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation
	Sr. No. 1 2 3 4 5	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail arrar	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . <u>b</u> , this will increase ibility of fault & safety <u>ces.</u> <u>icult</u> access for incoming <u>traction</u> lines because of or installation. <u>tral cooling is not</u> lable so artificial cooling <u>tragement is required This</u>	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation. This reduces energy
	Sr. No. 1 2 3 4 5	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail arran incre	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> , as construction work is <u>e</u> , as construction work is <u>e</u> , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming itgoing lines because of or installation. Irral cooling is not lable so artificial cooling ngement is required This eases energy consumption	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation. This reduces energy consumption charges due to
	Sr. No. 1 2 3 4 5	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail arrar incre chars	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . <u>c</u> , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming atgoing lines because of or installation. ural cooling is not lable so artificial cooling mgement is required This <u>cases energy consumption</u> ges due to indoor	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation. This reduces energy consumption charges due to outdoor installation.
	Sr. No. 1 2 3 4 5	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement	High cost More more Less possi reduc Diffi & ou indoo Natu avail arrar incre charg insta	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . <u>c</u> , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming togoing lines because of or installation. Iral cooling is not lable so artificial cooling ngement is required This <u>cases energy consumption</u> ges due to indoor llation.	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation. This reduces energy consumption charges due to outdoor installation.
	Sr. No. 1 2 3 4 5 5	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement Availability of	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail arrar incre charg insta Natu	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> , as construction work is <u>e</u> , as construction work is <u>e</u> , this will increase ibility of fault & safety ces. <u>icult</u> access for incoming ntgoing lines because of or installation. tral cooling is not lable so artificial cooling ngement is required This <u>cases energy consumption</u> ges due to indoor <u>llation</u> . tral light is not available	Outdoor substationLess, as construction work cost is less.Less, as construction work is less.More, this will reduce possibility of fault & safety increasesEasy access for incoming & outgoing lines because of outdoor installation.Natural cooling is available due to outdoor installation.This reduces energy consumption charges due to outdoor installation.Natural light is available in
	Sr. No. 1 2 3 4 5 6	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement Availability of natural light	Indo High cost More more Less possi reduc Diffi & ou indo Natu avail arrar incre charg insta Natu even	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . <u>this</u> will increase ibility of fault & safety ces. <u>icult</u> access for incoming atgoing lines because of <u>or installation</u> . <u>tral cooling is not</u> lable so artificial cooling <u>mgement is required This</u> <u>cases energy consumption</u> ges due to indoor <u>llation</u> . <u>tral light is not available</u> <u>in day time, so there is</u>	Outdoor substationLess, as construction work cost is less.Less, as construction work is less.More, this will reduce possibility of fault & safety increasesEasy access for incoming & outgoing lines because of outdoor installation.Natural cooling is available due to outdoor installation.This reduces energy consumption charges due to outdoor installation.Natural light is available in day time, so there is no need
	Sr. No. 1 2 3 4 5 6	Points Capital cost Time required for completion Distance between two equipment Access for incoming & outgoing line Cooling arrangement Availability of natural light	High cost More more Less possi reduc Diffi & ou indo Natu avail arran incre charg insta Natu even need	bor substation a, as construction work is more. <u>e</u> , as construction work is <u>e</u> . this will increase ibility of fault & safety ces. <u>icult</u> access for incoming atgoing lines because of or installation. ural cooling is not lable so artificial cooling ngement is required This <u>cases energy consumption</u> ges due to indoor <u>llation.</u> ural light is not available in day time, so there is of illumination even	Outdoor substation Less, as construction work cost is less. Less, as construction work is less. More, this will reduce possibility of fault & safety increases Easy access for incoming & outgoing lines because of outdoor installation. Natural cooling is available due to outdoor installation. This reduces energy consumption charges due to outdoor installation. Natural light is available in day time, so there is no need of illumination during day

WINTER- 2017 Examinations <u>Model Answer</u>

Page 15 of 32

			increases energy consumption	energy & its cost		
			<u>charges</u> due to indoor			
	7	Detection of fault	<u>Difficult</u> , as all equipments are not easily viewed.	Easy, as all equipments are easily viewed.		
	8	Replacement of	<u>Difficult</u> , due to indoor	Easy, due to outdoor		
	9	Future expansion	Expansion of substation is not	Expansion of substation is		
			easily possible whenever needed because of	<u>easily possible</u> whenever needed & can be completed in		
			construction work. Also it require more time & cost.	less time & cost.		
	10	In case of accident	In case of accident there is <u>more risk</u> & damage to other equipments than outdoor	In case of accident there is <u>less</u> <u>risk</u> & damage to other equipments than indoor		
	11	Space Pequire	substation.	substation.		
	11	Effect of	Switching operation is not	Switching operation is difficult		
		Atmospheric	difficult in rainy season & it is	in rainy season & it is less safe		
		condition	more safe due to indoor installation			
	13	Chances of leakage current	Less due to indoor installation	More due to outdoor installation		
	14	Maintenance cost	Less due to indoor installation	More due to outdoor installation.		
	15.	Applications	In places where heavy rainfall, snow fall occurs or there is humidity in atmosphere also where availability of space is less then under such situations sub stations are installed indoor.	Where atmospheric conditions are clean and dry also where space available is more then subs stations are installed outdoor.		
f)	Classif	y sub-station on the basis	s of (i) service requirements (ii)	constructional features		
Ans:	1. Cla	ssification According to	service requirements :-			
	(Any Two point expected :1 Mark each)					
	1. Transformer Sub-station:- Those sub-station which change the voltage level of electric					
		supply is called transformer sub-station.				
	2.	Switching sub-station:-]	This sub-station does not change	the voltage level.		
	3. Power Factor correction sub-station:- These sub-station which improve the power factor					

ubject Cod	e: 17417 WINTER– 2017 Examinations	Page 16 of 32
of	the system. It is located at receiving substation.	
4. Fr	requency changer sub-station:- These sub-station which	change the supply frequency.
5.Con	werting sub-station:- These sub-station which change A	C power into DC power or DC
po	wer into AC power	
6. A	t receiving end, this DC supply is again converted into A	C supply with the help of
7. In	dustrial Sub-station (Bulk Supply Industrial Consum	er Substation):- These sub-
sta	tion which supply power to individual industrial consum	er. It is located in premises of
ine	dustry	
8. Tı	raction substation: These sub-station which supply power	er to electric railway only.
of 10. M ter po tyj	electric supply obile Substation: The mobile sub stations are also very s nporarily required for big construction purpose this subst wer requirement during construction work, exhibition, Report of activity etc.	special purpose substation ration fulfils the temporary emote place need supply for any
2. Classif	ication According to Construction features:-	
1.	(Any Two po Indoor Substation: In this substation all equipments in	bint expected :1 Mark each) cluding transformer are installed
	under closed construction building is called indoor subs	station.
2.	Outdoor Substation: In this substation all equipments	including transformer are
	installed in air (Open to sky) only control room is const	ructed is called outdoor
	substation	
3.	Gas insulated Substation: Where Space available is ve	ery less then GIS substation are
	used (e.g. substation is preferred in thickly populated an	ea, Space available for building
	& equipments is limited and where cost of land is very	high.).
4.	Underground Substation: In underground substation a	all equipments including
	transformer are installed under closed construction in un	nderground.
5.	Pole mounted substation: Generally distribution trans	former substation are pole

			WINTER-2017 Examination	ns	
S	ubject Cod	e: 17417	Model Answer	Page 17 of 32	
		mounted.			
	6.	Plinth Substation	n: Generally large capacity trans	formers are plinth mounted because	
		its weight is high.	Transformer 315 KVA & above	e are generally plinth mounted.	
	7.	Compact/prefab	ricated substation: Nowadays	compact or prefabricated distribution	
		substations are mo	ore popular. Its appearance is be	tter than pole mounted and plinth	
		mounted distribut	ion substation.		
Q.4	Attempt a	nny FOUR of the f	following :	16 Marks	
a)	Write any	four advantages	of Disc insulators.		
Ans:	Advantag	es Of Disc Insulat	tors: (Any Four point expe	ected :1 Mark each Total 4 Marks)	
	1.	Protection agains	st lighting stroke: As conductor	r is below the suspension insulator the	
		conductor is prote	ected against lighting stroke		
	2.	Possibility of flas	sh over: As insulators are susper	nded & distance between two	
		conductors is mor	e than pin type insulator so there	e is no possibility of flash over due to	
		large birds or simi	ilar object.		
	3.	Flexibility: It is p	provides flexibility as string of in	sulator is free to swing & take	
		position where me	echanical stresses are less. So eff	fect of wind pressure is less	
	4.	Reaction on cros	s arm: It is less as contact area l	between cross arm & insulator is less	
		as compared to pi	n type insulator.		
	5.	Maintenance /rej	placement cost: If any insulator	in the string of suspension insulator	
		break down/fails t	then only that insulator/disc in th	ne string require to be replace by new	
		one instead of rep	lacement of whole string unit.		
	6.	Improvement of	voltage level in existing line: If	f operating voltage of existing line has	
		to be increased the	an we can add required number	of disc insulators in existing string	
		instead of replacir	ng whole unit hence it is econom	nical	
	7.	Design/Limitatio	n: No limitation Can be used Fo	or Any higher Voltages by adding	
		number of disc in	a string of suspension insulator		
	8.	Life: Life is more	e as it is flexible & suspended		
	9.	Suspension type is	nsulators are cheaper than pin ty	ppe insulators for voltages beyond 33	
		kV.			

		WINTER-2017 Examinations	
S	Subject Code: 1'	Model Answer	Page 18 of 32
	10. Pr	otection against lighting stroke: As conductor is below the s	uspension insulator the
	co	nductor is protected against lighting stroke	
	11. Po	ssibility of flash over: As insulators are suspended & distance	e between two
	co	nductors is more than pin type insulator so there is no possibili	ity of flash over due to
	lar	ge birds or similar object.	
	12. Fl	exibility: It is provides flexibility as string of insulator is free	to swing & take
	ро	sition where mechanical stresses are less. So effect of wind pro-	essure is less
	13. Re	action on cross arm: It is less (As contact area) between cros	ss arm & insulator is
	les	s as compared to pin type insulator.	
	14. M a	aintenance /replacement cost: If any insulator in the string of	f suspension insulator
	bre	eak down/fails then only that insulator/disc in the string require	e to be replace by new
	on	e instead of replacement of whole string unit.	
b)	Write any for	ar properties of conductor material used for transmission	line.
Ans:		(Any FourTwo point expected :1 Mark	each Total 4 Marks)
	Following ar	e requirements of conductor:-	
	1. Higl	ı conductivity :-	
	N	aterial should have high conductivity	
	2. Hig	h mechanical strength:-	
	3. Fle	aterial should have sufficiently high mechanical strength xibility:-	
		Material should be flexible	
	4. We	ight:-	
	5 Hig	Material should be light in weight.	
	J. 111g	Material should have high resistance to corrosion	
	6. Bri	ttleness:-	
		Material should not be brittle.	
	7. Ter	nperature coefficient of resistance:-	
		Material should have low temperature coefficient of resistance	ce.
	8. Ava	ailability & cost:-	
		Material should be easily available & less costly.	
	9. Scr	ap Value:-	
		Material should have high scrap value.	

S	WINTER- 2017 Examinationsubject Code: 17417Model AnswerPage 19 of 32
c)	An overhead three phase transmission line delivers 5000 kW at 22 kV at 0.8 lagging P.F. The resistance and reactance of each conductor is 4 ohm and 6 ohm respectively. Determine sending end voltage and regulation.
Ans:	Given Data:- $P_R = 5000 \text{KW}$ $V_R = 22 \text{KV}$ $P.F. = 0.8 \text{ lag}$ $R_{ph} = 4 \text{ ohm}$ $X_{ph} = 6 \text{ ohm}$
	Step 1: To calculate current:
	Power P = $\sqrt{3} V_L I_L \cos \phi$ for 3 - ph (1/2 Mark) $I = \frac{P}{\sqrt{3} V_{LR} \times \cos \phi}, I = \frac{5000}{\sqrt{3} \times 22 \times 0.8}$
	$I \equiv 164.01996 amp$ (1/2 Mark)
	Step 2: To calculate value of sin :
	$\therefore Cos\phi_R = 0.8; \sin\phi_R = 0.6$
	$egin{aligned} V_{Rph} &\equiv rac{V_{RL}}{\sqrt{3}} \ V_{Rph} &\equiv rac{22}{\sqrt{3}} \end{aligned}$
	$V_{Rph} \equiv 12.7017 \text{ KV or } V_{Rph} = 12.7017 \times 10^3 \text{ V}$ (1/2 Mark)
	Step 3: To calculate Sending end voltage:
	Sending end phase voltage (V_{Sph}) =
	$= V_{Rph} + I (R_{Ph} \cos \emptyset_R + X_{Ph} \sin \emptyset_R) (1/2 \text{ Mark})$
	$=12.7017 \times 10^{3} + 164.01996 (4 \times 0.8 + 6 \times 0.6)$
	= 13817.03573V
	=13.81703 KV(1/2 Mark)
	Sending End Line Voltage = $\therefore V_{sL} = \sqrt{3} \times V_{sph}$
	$V_{SL} = \sqrt{3} \times 13.81703$
	= 23.9317 KV (1/2 Mark)
	Step 4:To calculate voltage regulation:
	% Voltage Regulation = $\frac{V_{SPh} - V_{RPh}}{V_{RPh}} \times 100 - $ (1/2 Mark) = $\frac{13.81703 - 12.7017}{12.7017} \times 100$
	= 8.7809 % (1/2 Mark)

		WINTER-2017 Examinations			
S	Subject Code: 17417	Model Answer	Page 20 of 32		
d)	Define transposition of conduct	tor with the help of diagram.			
Ans:	(Definition transposition 2	Marks and Figure of transposition	n 2 Marks, Total 4 Marks)		
	Meaning of Transposition of co	onductor :			
	interval.	means exchanging the position of	3 phases (R-Y-B) at regular		
	Each phase occupies 3 d in fig.	lifferent positions consequently on l	ine support (Tower) as shown		
		OR			
	Transposition of line c	conductors means changing the pos	itions of 3 phases on the line		
	supports <u>twice over the total le</u>	ength of the line			
	Figure of transposition of cond	uctor:	(2 Mark)		
	Part 1	Part 2	Part 3		
	A	C	В		
	В	$X \land X$	C		
		X X	*		
			A		
		OR Equivalent Figure			
e)	Define sub-station. State factor	s to be considered for its site select	tion.		
Ans:	Define sub-station :-		(1 Mark)		
	Sub-station is a link betwee	en generating station and consumers	5.		
		OR			
	The assembly of ap	pparatus used to change some charac	cteristic of electric supply is		
	called substation. & it is important	nt part of power system.			
		OR			
	A substation is	a part of an electrical generation, tra	ansmission and distribution		
	system. The assembly of apparatu	us used to change some characteristic	cs (e.g. voltage, A.C to D.C		
	etc) of an electrical supply is call	ed a substation.			
	Following factors should be considered while deciding location of site for sub-station:-				
		(Any si	ix point expected : 1/2 each)		
	1. Near load centre :				
	Sub-station should be lo	ocated near load centre to reduce cost	t of Transmission and		

WINTER- 2017 Examinations Model Answer

Page 21 of 32

distribution lines and to reduce losses in it.

2. Easy access for transmission Line :

There should be easy access for incoming and outgoing line.

3. Easy access towards sub-station :-

There should be easy access towards sub-station for transportation of equipments and manpower etc.

4. Space(Land) available :

The land proposed for a substation should be normally level and open from all sides & sufficient land should be available for installation of sub-station and future expansion. e.g.

For 400KV substation area required @ 50 acres

For 220KV substation area required @ 25 acres

For 132KV substation area required @ 10 acres

5. Atmospheric conditions :

Atmospheric condition in the area of sub-station should be clean and dry also There should be less atmospheric pollution.

6. Cost of land :

Cost of land should be less to reduce capital cost of sub-station.

7. Municipal restriction :

Where municipal restriction will not take any objection for required type building of substation.

8. Staff amenities :

The site should be such that essential amenities must be available to staff like residential quarters, drinking water, school, hospital, public transportation, communication.

9. Bearing capacity of land (Hard land):

To reduce construction cost of building and for better foundation of equipments land should have high bearing capacity.

10. Area free from earthquake :

To avoid damage to sub-station area should be free earth quake.

WINTER-2017 Examinations

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER- 2017 Examinations Model Answer

Page 24 of 32

	WINTER-2017 Examinations	
Subject Code: 17417	Model Answer	Page 25 of 32
To calculate the see	ction current:	
	$I_{CD} = I_D$	
	$I_{BC} = I_C + I_D$	
	$I_{BC} = (40 - j30) + (40 - j30)$	
	$I_{BC} = 80 - j 60 A$	
$I_{BC} =$	$= 100 \angle -36.869^{\circ} A$	
I		1/2 Marks)
	$B = I_B + I_C + I_D$	
I	$A_{AB} = I_B + I_{BC}$	
$I_{\scriptscriptstyle A}$	$_{AB} = (50 - j0) + (80 - j60)$	
$I_{\scriptscriptstyle A}$	$_{AB} = 130 - j60$	
I_A	$_{AB} = 143.1782 \angle -24.7751^{\circ}$	
Calculate Valta	(D, W)	(1/2 Marks)
Calculate voltag	$\frac{1}{2} \frac{1}{2} \frac{1}$	
	$V_{CD} = I_{CD} \times Z_{CD}$	
	$= (50 \angle -36.87^{\circ}) (0.0149 \angle 63.4349^{\circ})$	
	$= 0.745 \angle 26.5649$	
	$V_{CD} = 0.66634 + j0.33317$	
Voltage drops in	section BC (V _{BC}):	
	$V_{BC} = I_{BC} \times Z_{BC}$	
	$= (100 \angle -36.869^{\circ}) (0.0149 \angle 63.4349^{\circ})$	
	$=1.49 \angle 26.5659$	
	$V_{BC} = 1.333268 + j0.66636$ volt	
		(1/2 Marks)
Calculate Voltag	ge drop Section AB: $V = I \times Z$	
	$\mathbf{v}_{AB} = \mathbf{I}_{AB} \times \mathbf{Z}_{AB}$ (1.4.2) 1792 (, 24.7751 ⁰) (0.0140) (, (, 24.2751 ⁰))	0.5
	$= (143.1/82 \angle -24.7/51^{\circ}) \times (0.0149 \angle 63.4346)$	~)
	= 2.13335 \arrow 38.6595	
	$V_{BC} = 1.66587 + j1.33268$ volt	(1/2 Marks)
Total Voltage D	rop:- =	()
$V_{BC} + V_{CD} + V_{AB}$	-	
=(0.6634 + j0.32)	(1.33268 + j0.66636) + (1.66587 + j1.33268)	
· •	= 3.6649 + j2.3322 V	
	$= 4.3432 \angle 32.4774^{\circ} V$	
		(1/2 Marks)

	WINTER-2017 Examinations
S	Subject Code: 17417Model AnswerPage 27 of 32
	$V_{S^{2}} = (V_{R} Cos\phi_{R} + IR_{T})^{2} + ((V_{R} Sin\phi_{R} + IX_{T})^{2})^{2}$
	$V_{\rm S} = \sqrt{(V_R \cos \phi_R + I R_T)^2 + ((V_R \sin \phi_R + I X_T)^2)^2}$
	After solving above equation and neglecting the higher order terms, we obtain
	$\mathbf{Vs} \cong V_R + I \big(R_T \cos \phi_R \pm X_T \sin \phi_R \big)$
	% age Voltage Regulation = $\frac{V_s - V_R}{V_R} \times 100$
e)	State the requirements of an ideal distribution system.
Ans:	(Any Four requirements are expected: 1 Mark each, Total 4 Marks)
	Ideal distribution system should possess following properties or requirements
	1. Layout should be simple in design.
	2. It should have less initial cost
	3. Make the distribution system with minimum distribution losses.
	 Voltage drop in distribution system should be less and within permissible limit (±6%). From safety point of view distribution system should maintain proper clearances.
	6. Select the rating of distribution transformer & cross section of conductor from the result of
	load densities present & future.
	7. Power should be available to consumers whenever needed.
	8. A steady, non-fluctuating, quality supply (Pure sine wave) should be available to consumers.
	9. Distribution system should not be over loaded.
	10. Distribution system should have high reliability to maintain supply.
	11. Distribution system lay out should not affect the appearance of locality.
	12. Before installation of distribution system proposed widening of the road in the near future are to be kept in mind
	13. It should have low, easy, less costly & less time consuming maintenance.
	14. Fault on nearest distribution system should not affect stability of existing distribution
	system.
	15. Time required for completion of work should be less.

Sul	bject Code:	17417	Model Ansy	ver Page 29	9 of 32
	,	2. Light in weig	ht:-		
		It should be li	ight in weight to reduce		
	3. Ef	fect of atmosphe	eric conditions: It shoul	d be withstand even at bad atmospheri	с
	со	ndition.			
	4. Hi	gh resistance to	corrosion: It should ha	ve high resistance to corrosion to avoid	l rustin
	5. In	itial & Maintena	nce cost: It should be le	ess.	
	6. Ea	sy access: It shou	uld be easily accessible	for wireman for line work and mainten	ance
	W	ork. or They must	be easily accessible for	point and erection of line conductors	
	7. Li	fe: It should have	longer life.		
	7. Li	fe: It should have	longer life.	ce or They must be of pleasing shape	
	7. Li 8. Aj	fe: It should have	longer life. uld have good appearan	ce or They must be of pleasing shape	
	7. Li 8. Aj	fe: It should have	longer life. uld have good appearan	ce or They must be of pleasing shape	
b) S	7. Li 8. Aj State on an	fe: It should have opearance: It sho by four points con	longer life. uld have good appearan mparison between AC (Any Four	ce or They must be of pleasing shape distribution and DC distribution syspoints are expected: 1 Mark each)	stem.
b) S IS:	7. Li 8. A _l State on an	fe: It should have opearance: It sho ay four points con	longer life. uld have good appearan mparison between AC (Any Four	ce or They must be of pleasing shape distribution and DC distribution syspoints are expected: 1 Mark each)	stem.
b) S IS:	7. Li 8. A _l State on an	fe: It should have opearance: It sho by four points con A.C Distr	longer life. uld have good appearan <u>mparison between AC</u> (Any Four ibution System	ce or They must be of pleasing shape distribution and DC distribution sysp points are expected: 1 Mark each) D.C Distribution System	stem.
b) S IS:	7. Li 8. Ap State on an	fe: It should have opearance: It sho by four points con A.C Distr It require Four co	longer life. uld have good appearan <u>mparison between AC</u> (Any Four ibution System	ce or They must be of pleasing shape distribution and DC distribution system points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor	stem.
b) S s:	7. Li 8. Ap State on an 1 2	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate	longer life. uld have good appearan mparison between AC (Any Four ibution System onductor ed system	ce or They must be of pleasing shape distribution and DC distribution system points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system	stem.
b) S is:	7. Li 8. Aj State on an 1 2 3	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin	longer life. uld have good appearan mparison between AC (Any Four ibution System onductor ed system effect	ce or They must be of pleasing shape distribution and DC distribution sys points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect	stem.
b) S is:	7. Li 8. Aj State on an 1 2 3 4	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin Effective resista	longer life. uld have good appearan mparison between AC (Any Four) ibution System onductor ed system effect ance of conductor is	ce or They must be of pleasing shape distribution and DC distribution sys points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect Effective resistance of conductor is	stem.
b) S 15:	7. Li 8. Aj State on an 1 2 3 4	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin Effective resista more	longer life. uld have good appearan mparison between AC (Any Four) ibution System onductor ed system effect unce of conductor is	ce or They must be of pleasing shape distribution and DC distribution sys points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect Effective resistance of conductor is less	stem.
b) S 15:	7. Li 8. Aj State on an State on an 1 2 3 4 5	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin Effective resista more Losses are more	longer life. uld have good appearan mparison between AC (Any Four) ibution System onductor ed system effect ance of conductor is	ce or They must be of pleasing shape distribution and DC distribution sys points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect Effective resistance of conductor is less Losses are less	stem.
b) S 15:	7. Li 8. Aj State on an 1 2 3 4 5 6	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin Effective resista more Losses are more Distribution Effi	longer life. uld have good appearan mparison between AC (Any Four) ibution System onductor ed system effect ance of conductor is iciency is less	ce or They must be of pleasing shape distribution and DC distribution sys points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect Effective resistance of conductor is less Losses are less Distribution Efficiency is more	stem.
b) S 15:	7. Li 8. Ap State on an State on an 1 2 3 4 5 6 7	fe: It should have opearance: It sho by four points con A.C Distr It require Four co More complicate Presence of skin Effective resista more Losses are more Distribution Effi Effect of L & C	longer life. uld have good appearan mparison between AC (Any Four) ibution System onductor ed system effect ance of conductor is iciency is less Present	ce or They must be of pleasing shape distribution and DC distribution sysp points are expected: 1 Mark each) D.C Distribution System It require Two / Three conductor It is simple system No skin effect Effective resistance of conductor is less Losses are less Distribution Efficiency is more Effect of L & C Zero (absent)	stem.

		WINTER-2017 Examinations	
S	Subject Code: 17417	Model Answer	Page 30 of 32
c)	A three phase overhead line unit is 17.5 kV. Ass work of tower to be 1/10 efficiency	line is being supported by three disc insula sume that shunt capacitance between each 0 th of capacitance of insulator. Calculate : (tors. The potential across insulator and each metal (i) Line voltage (ii) String
Ans:	$\mathbf{V}_{n} = 17.5 \text{ KV}$	(Give stepwise M	arks as mention below)
	Answer: - Ratio of ca	apacitance 'k':-	
		$m = \frac{1}{10}$	
		m = 0.1	
		k = m = 0.1	(1/2 Mark)
		$V_3 = V_1 (1+3m + m^2)$	
		$17.5 = V_1 (1+3 \times 0.1 + 0.1^2)$	
		$V_1 = 13.35 \text{ KV}$	(1/2 Mark)
		$V_2 = V_1 (1+m)$	
		= 13.35 (1+0.1)	
		V ₂ = 14.68 KV	(1/2 Mark)
	: Voltage acros	$s \text{ string} = Vph = V_1 + V_2 + V_3$	
		= 13.35+14.68+17.5	
		= 45.53 KV	(1/2 Mark)
	i) The line voltage:	$V_{L} = \sqrt{3} V_{ph}$	
		$V_L = \sqrt{3} \times 45.53$	
		V _L = 78.86 KV	(1/2 Mark)
	ii) String efficiency:-	Vah	
	Strir	$ ng \ \eta \% \equiv \frac{v p n}{\eta \times V_n} \times 100 $	(1/2 Mark)
	String	g $\eta \% = \frac{45.53}{3 \times 17.5} \times 100$	
	String	g $\eta\%$ = 86.72%	(1 Mark)

S	Subject Co	ode: 17417	<u>Model Answer</u>	Page 31 of 32			
d)	State an	ny four factors to be	considered while designing	; the feeders.			
Ans:	Following factors are to be considered while designing the Feeder:						
				(Each Point: 1 Mark, Total 4 Marks			
	1)	Current carrying ca Conductor s consideration is relati It is because distribution transform Need:	pacity of conductor:- should have high current vely not so important e voltage drop in feeder car her manually or by using AV	carrying capacity. While voltage dr n be adjusted with the help of tapings R (Automatic Voltage Regulator)			
		Depending u	pon application design of d	istribution system should be selected i			
		whether continuity of	E supply is important or not se	o important			
		Example: 1) Use Rad	ial distribution system in rur	al area			
		2) Use Ring	g main distribution system in	urban area			
		3) Use Gi	rid distribution system wher	re continuity of supply is important. e			
		Supply to - electric	traction, TV broadcasting	center, AIR, telephone exchange, ma			
		hospitals, important g	government buildings and ma	ajor industries			
	3)	3) Availability of power: It should be available whenever needed					
	4)	Maintenance: It show	uld be low, easy, less costly of	& less time consuming.			
e) Ans:	Compa (i) Init comple	re radial distribution ial cost (ii) Reliabili tion of layout (work)	n system and ring distributi ity to maintain supply (ii	ion system on the basis of i) Application (iv) Time required f (Each Point: 1 Mark, Total 4 Marks			
	Sr.No	Parameters	Radial distribution System	Ring distribution system			
	(i)	Initial cost	Less	More			
	(ii)	Reliability to	Less	More			
	(***)	Annlication	For short distance e.g. in	For long distance e.g. in urban area			
	(m)	Application	rural area				

Subject Code: 17417

Model Answer

Page 32 of 32

-----END-----