

Winter- 2017 Examinations Model Answer

Page 1 of 30

Subject Code: 17322

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A	Attempt any TEN of the following :20 Marks
a)	State the range for low and medium resistance.
Ans:	(Each point 1 Mark)
	Low resistances: less than 1 ohm.
	Medium resistances: 1 ohm to 0.1 Mega ohm.
b)	List the different methods to produce damping torque.
Ans:	(Any one method 1 Mark)
	Methods of providing damping torque in indicating type instruments:
	1) Air friction damping.
	2) Fluid friction damping.
	3) Eddy current damping.
c)	List any two applications of CRO.
Ans:	(Any one application ¹ / ₂ Mark)
	Applications of CRO:
	1) Measurement of phase and frequency.
	2) Measurement of inductance and capacitance.
	3) Tracing the waveform.
	4) Determination of amplitude of variable quantity.
	5) In radar & television.
	6) For finding B-H curves.
	7) For studying the heart beats etc.
	8) To detect standing waves in transmission lines
	9) To check faulty components in various circuit
	10) For tracing transistor curves

Winter-2017 Examinations Model Answer

Page 2 of 30

d)	What is meant by energy meter constant?				
	Energy Meter Constant (2 Mark)				
1.000	A fixed value which is used when converting meter readings to actual energy use, especially when				
Ans:	potential transformers and similar types of equipment are used in metering.				
	For example, K=rev/Kwh				
<u>e)</u>	Define: (i) Resolution, (ii) Calibration, with reference to electrical measuring systems.				
Ans:	Resolution (1 Mark)				
	The smallest increment in input (the quantity being measured) which can be detected with certainty by an instrument is called its resolution or discrimination				
	OR				
	It is smallest measurable input change of an instrument.				
	OR				
	it is the least incremental value of the electrical quantity on the scale				
	Calibration: (1 Mark)				
	Calibration means comparing the measuring instrument with standard instrument to find out the error				
	in the instrument under test.				
I) Ans:	State the function of controlling torque in electrical measuring instrument. (Each point 1 Mark)				
7 1115.					
	Function of controlling torque				
	1. The function is to opposes the deflection force and increases with the increase in the deflection of the moving system, to limit its movement				
	2 and brought pointer to set a position where the two opposing forces i.e. deflection and				
	controlling forces are equal.				
g)	State various types of errors in wattmeter.				
	$(\mathbf{A}_{1},\ldots,\mathbf{A}_{n},\mathbf{A}_{n},\ldots,\mathbf{A}_{n},\mathbf{A}_{n},\ldots,\mathbf{A}_{n},\mathbf{A}_{n},\ldots,A$				
	(Any one error $\frac{1}{2}$ Mark)				
	Types of Error in wattmeter:				
	1. Errors due to method of connection.				
	2. Error due to pressure coil inductance.				
	3. Error due to pressure coil Capacitance.				
Ans:	4 Error due to mutual inductance offect				
	5. Error due to stray magnetic fields.				
	6. Error due to eddy currents.				
	7. Temperature error.				
	8. Error due to vibration of moving system.				

	Winter-2017 Examinations			
	Subjec	t Code: 17322 <u>Model Answe</u>	Page 3 of 30	
h)	State a	ny two disadvantages of one wattmeter method	of measurement of 3 phase power.	
Ans:			(Any one 1 Mark)	
	Disadv	vantages of one wattmeter method:-		
	1.	Only used for balanced load		
	2.	It can not be used for unbalanced load		
	3.	It is used for star connection then neutral point m	ust be available	
	4.	Delta connection must be opened to connect curr	ent coil.	
i)	State t	he significance of power factor.		
Ans:			(Any one point 1 Mark)	
	Signifi	cance of power factor:-		
	1. Co	sine of angle between voltage & current in a cir	cuit is called power factor.	
	2. It I 3. Ind	s a measure of the real power in a circuit. Juctive & capacitive circuits causes low PF. Loy	v PF causes increase in current resulting in	
	ine	crease in copper losses in the system.	· · · · · · · · · · · · · · · · · · ·	
	4. La	rge KVA rating equipment		
	5. Gr	eater conductor size		
	6. Co	$s \omega = R/Z$ Cos $\omega =$ Active Power/ Appa	rent Power	
j)	Compa	are primary and secondary instruments (any tw	vo points).	
Ans:			(Any Two point 1 Mark)	
	Sr no	Primary instruments	Secondary instruments	
	1	Gives magnitude of quantity in terms of physical constants of instrument	Gives reading directly of the quantity measured.	
	2	Need no calibration	Calibrated with respect to absolute instruments	
	3	Measurement is tedious and time consuming (as indirect) due to calculations needed to be done	Quick method as direct method of reading.	
	4	Very rarely used.	Very widely used.	
	5	e.g. tangent galvanometer and current balance galvanometer.	e.g. magnetic meter, induction meter, hotwire meter and electrostatic meter	

Winter-2017 Examinations Subject Code: 17322 **Model Answer** Page 4 of 30 Draw block diagram of function generator. k) (Diagram without Labelling: 1 Mark & Neat Labelled diagram: 2 Mark) Ans: CONSTANT CURRENT SUPPLY SOURCE, 1 FREQUENCY CONTROL C VOLTAGE FREQUENCY OUTPUT CONTROL TEGRATOR J.L MULTI-0 Fi 1 OUTPUT EXTERNAL FREQUENCY OUTPUT CONSTANT RESISTANCE OUTPUT DIODE AMPLIFIER FREQUENCY SUPPLY SOURCE, 2 Q 2 CONTROL CIRCUIT OUTPUT Block Diagram of Function Generator Or equivalent figure I) Define energy. Write unit of it. Ans: **Energy** :-(1 Mark)Electrical energy is defined as the work done in moving electrical charge in electrical fields over specific time duration **OR** The total power delivered or consumed by consumer over specific time duration. Electric Energy = Power * Time Energy is the power w.r.t. time Unit :-(1 Mark) Its Unit in watt sec., WHr., KWHr. List the different types of frequency meters. m) Ans: (Any one Type 1 Mark) Different types of frequency meters 1. Reed type [Mechanical type] 2. Ferro-dynamic type [Resonances type] 3. Weston type 4. Ratio-meter type 5. Saturable core type 6. Digital type

Winter-2017 Examinations

Subject Code: 17322

Model Answer

Page 6 of 30

b)	Describe systematic errors in measuring instruments.			
Ans:	(Instrumental Error 2 marks, Environmental Error 1 mark, Observational Error 1 marks)			
	 Systematic errors: - ➤ Instrumental Error: These errors are caused due to the mechanical structure of measuring instrument. 			
	a) Inherent shortcomings of instruments: Instrument may read too low or too high.			
	b) Improper use of instruments: Improper handling e.g. overloading, overheating, failure to adjust zero, use of high resistance leads.			
	c) Loading effect: cause distortion in original signal.			
	Environmental Error: These are because of surrounding conditions such as temperature, pressure,			
	humidity, dust, vibrations, or external magnetic fields or electrostatic fields.			
	• Observational Error. Faranax errors, incorrect multiplying factor.			
c)	With neat diagram explain constructional details of dynamometer type wattmeter.			
Ans:	(Diagram 2 marks, constructional details 2 mark)			
	 Image: Constructional details of dynamometer type wattmeter: Fixed Coils [F1 & F2]. : fixed coil is divided into two sections to give a uniform field near the center IF1 & F2]. The operating field is produced by the fixed coil 			
	center [F1 & F2]. The operating field is produced by the fixed con			
	• Moving coil [M]:-The moving system consists of a coil mounted on the spindle which is free to			
	rotate in the space between the two fixed coils. The coil is made up of thin copper wire and is air			
	cored to avoid hysteresis.			
	• Control torque provided by two spiral springs. They also act as connecting leads for the moving			
	coil. Pointer is mounted on the spindle.			
	• Mirror is provided to avoid parallax error.			
	• Damping is provided by air friction damping			

Winter– 2017 Examinations Model Answer

Page 7 of 30

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Winter– 2017 Examinations Model Answer

Page 9 of 30

	Winter-2017 Examinations			
	Subject Code: 17322	Model Answer	Page 10 of 30	
f)	If the readings on two Wattm reversal of the current coil, c	neters are 5 kW and 0.5 Kw, the latter rea calculate the power and power factor of th	ading being obtained after ne load.	
A	(Note:- student may solve thi	is example considering any one of case gi	ve marks accordingly)	
Alls:	Case:1 current coil of second	l wattmeter get reverse		
		$W_1 = 5KW$, $W_2 = -0.5KW$		
		Total power $W_T = W_I + W_2$	(1 mark)	
		=5KW + (-0.5KW) = 4.5KW	(1 mark)	
		P.F of Load = $\cos\left\{\tan^{-1}\frac{\sqrt{3}(W1-W2)}{(W1+W2)}\right\}$	(1 mark)	
		$= \cos\left\{\tan^{-1}\frac{\sqrt{3} \ (5.5)kw}{(4.5)kw}\right\}$		
		= 0.42	(1 mark)	
		OR		
	Case:2 current coil of first w	attmeter get reverse		
		$W_1 = -5KW$, $W_2 = 0.5KW$		
		Total power $W_T = W_1 + W_2$	(1 mark)	
		= -5KW + 0.5KW = -4.5KW	(1 mark)	
		P.F of Load = $\cos\left\{\tan^{-1}\frac{\sqrt{3}(W1-W2)}{(W1+W2)}\right\}$		
		$= \cos\left\{\tan^{-1}\frac{\sqrt{3}(-5.5)kw}{(-4.5)kw}\right\}$	(1 mark)	
		= 0.42	(1 mark)	
		OR		
	Case:3 current coil of Both t	he wattmeter get reverse		
		$W_1 = -5KW$, $W_2 = -0.5KW$		
	Total	power $W_T = W_1 + W_2$	(1 mark)	
		=-5KW + (-0.5KW) = -5.5 KW	(1 mark)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

[]	Subject Code: 17322	Winter– 2017 Examination <u>Model Answer</u>	ns Page 11 of 30
		P.F of Load = $\cos\left\{\tan^{-1}\frac{\sqrt{3}(W1-W2)}{(W1+W2)}\right\}$	$\frac{V(2)}{2} $ (1 mark)
		$= \cos\left\{\tan^{-1}\frac{\sqrt{3}(-4.5)kw}{(-5.5)kw}\right\}$	<u>/</u> }
		= 0.57	(1 mark)
Q.3	Attempt any FOUR of th	e following :	16 Marks
a)	Compare PMMC and MI Working principle (iv) A	instruments on the following bases	sis : (i) Construction (ii) Symbol (iii)
Ans:		Spiculon .	(Each point 1 mark)
	Points	PMMC instruments	MI instruments
	Constriction	Delicate in nature	Robust
	Symbol	\square	
	Working		Piece of iron is attracted
	principal	conductor is placed in a magnetic field, it experiences a force	/repelled by magnet or magnetic field.
	Application	Used for only DC measurements	Used for DC as well as AC measurements
b)	Draw and describe worki	ng of electronic energy meter.	
Ans:	230 V 50 Hz	oscillator	(Diagram 2 marks, Working 2 mark) Analog Multiplier $V_{DC} \propto V_{L} I_{L}$ Voltage controlled oscillator $f \propto V_{L} I_{L}$ Display
		()	Or equivalent figure

Winter- 2017 Examinations Model Answer

Page 12 of 30

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

	W Subject Code: 17322	/inter– 2017 Examinations <u>Model Answer</u>	Page 14 of 30
d)	A 4 mA meter movement with an in ammeter. Calculate the value of shu	ternal resistance of 1 ohi	m is to be converted into 0-100 mA
Ans:	$R_m = 1\Omega , R_{Sh} = ? , I_m$	or $I_{FSD} = 4 ma =$ Full sca	le deflection of ammeter
	For 100) ma shunt resistance requi	red 1s,
	$R_S = \frac{I_m * R_m}{(1 - I_m)}$	or	$R_S = \frac{R_m}{(M-1)}, M = \frac{I}{I_m} $ (2 mark)
	$R_S = \frac{I_m * R_m}{(1 - I_m)}$		$R_S = \frac{R_m}{(M-1)}, M = \frac{I}{I_m}$ $M = \frac{I}{I_m}$
	$R_S = \frac{4 * 1}{(100 - 4)}$		$M = \frac{I_m}{I_m} = \frac{I_m}{4 ma}$
	$R_S = \frac{4}{96}$		M = 25 $R_S = \frac{1}{(25 - 1)}$
	$R_S = 0.0416 \ \Omega$		$R_S = 0.0416 \Omega \qquad (2 mark)$
e)	(e) Draw block diagram of CRO. W	rite the function of each l	block.
	Input Signal Vertical Amplifier Electro Gun To CRT HV Supply LV Supply To All Circuits Trigger Circuit Electro Gun To CRT To CRT Electro Gun Supply LV Supply To All Circuits To All Circuits	ay be Deflection Plates Horizontal Amplifier	Phosphor Screen Eelctron Beam Horizontal Deflection Plates
			Or equivalent figure
	1. Vertical amplifier strengthens the i	nput signal applied to verti	cal depleting plates
	2. Trigger circuit gives input to time b	base circuit	
	3. The output of time base generator i	s amplified by horizontal a	implifier and then applied to
	4. CRT consists of electron gun assen	ably which include therma	lly heated cathode, accelerating
	anode, focusing anode	inergia inergiae inerina.	

	Winter-2017 Examinations			
	Subject Code: 17322	Model Answer	Page 15 of 30	
	5. The electron beam comin6. The screen of CRT intern the input signal.	g out from electron gun assembly enters to deflect ally coated with Phosphors material on which we	ting plates. observe waveform of	
f)	Explain magnetic effect em	poloved in measuring instrument		
Ans.	Explain magnetic effect en	(Any Two Point Expected E	ach Carrying 2 Mark)	
1 1115.	Magnetic Effect:	(Any 1 wor one Expected E	ach Carrying 2 Mark)	
	I) In PMMC meters:			
	\succ When a current is pas	ssed through a conductor, magnetic field is produc	ced round the	
	conductor. Due to thi	is field when current carrying conductor is placed	in a magnetic field it	
	experiences a mechai	nical force. Examples: PMMC, galvanometer	0	
	II) In Moving Iron	Type meters:		
	When we bring one p	permanent magnet near to another electromagnet the	hen there is a force of	
	attraction or repulsion	n depending on the direction of current in the coil	of electromagnet.	
	Examples: Moving in	con type instruments, Moving coil type instrument	S	
	III) In Electrodynan	nic meters:		
	When a current is	s passed through a conductor, magnetic field is pro	oduced round the	
	conductor. Due to	o this field when current carrying conductor is place	ced in a magnetic field	
	it experiences a n	nechanical force.		
4	Examples: Electrodynamor	neter type instruments, induction type instrument.	1 (Massler	
.4	Attempt any FOUR of the	induction type energy meter and write energi	10 Marks	
Δns°	Draw a near sketch of 1-ph	(Diagram 2 marks, Operati	ng principle of it.	
7 1115.		(Diagram 2 marks; Operad	ng principal 2 mark)	
	A.C. Supply Braking magnet Cun cc (Less	To recording mechanism	Mi2 Load	
			Or equivalent figure	

	Winter–2017 Examinations			
	Subject Code: 17322	Model Answer	Page 16 of 30	
	Operating Principal:-			
	The disc is placed between	the two-flux due to pressure coil and flux due to	current coil, which will	
	set up torque on the disc which is proportional to power causing the disc to rotate.			
	As shown in the diagram el	ectromagnets, eddy currents will be induced on th	ne disc by two fluxes	
		OR		
	An aluminum disc is placed	d inside a magnetic core with two limbs. One carri	ies a voltage coil so its	
	flux is proportional to volta	ge, the second carries a current coil so its flux is p	proportional to current.	
b)	Describe with neat diagra	m phase sequence indicator.		
Ans:	Note:- student may write	any one of type (Diagram 2 marks, Operation	2 mark)	
	There are two types of pha	se sequence indicators and they are: (a) Rotating type (b) Static type.		
	Rotating type			
		R Y B		
			Or equivalent figure	
	 It works on the princ. The arrow marked or If the phase sequenced disc will rotate in the If the disc moves in the of rotation is in antic. Static type. Connect two lamps, the below figure. Recover currents and brocket. 	iple of induction motors. a the disc represents the direction of rotation. e of supply is same as that of the terminals marked direction of rotation(RYB) he clockwise direction then chosen sequence is R lockwise the sequence is reversed(RBY). <i>OR</i> , lamp1 to R-phase, lamp2 to Y-phase and inductor esistors are connected in series with the lamps for preakdown voltages.	on the indicator the YB and if the direction or to B-phase as shown in protecting the lamps from	

		Winter-2017 Examinations	
	Subjec	ect Code: 17322 <u>Model Answer</u>	Page 18 of 30
d)	With	n neat diagram describe gravity control method to obtain controlling to	rque.
Ans:		(Diagram 2 marks, 0	Operation 2 mark)
	1. 2. 3.	 In gravity control method, a small weight is attached to the spindle of the Weight W1 provides the controlling torque, W2 is for balancing the weight Due to the gravitational pull, a control torque (acting in opposite direction torque) is produced whenever the pointer tends to move away from its in 	Or equivalent figure e moving system. ght of the pointer. on to the deflecting itial position.
	4.	. In this case, Td is directly proportional to current I and Tc is directly prop	portional to sine of
		the deflection angle, $T_0 = W_1 \sin \Omega + L = W_1 L \sin \Omega$	
		$1c - w I \sin \Theta x L - w I L \sin \Theta$ Thus $Tc \alpha \sin \Theta$	
		As Td a I	
		$Tc \alpha \sin \Theta$	
		At steady state position <u>deflection torque=controlling torque</u>	
		$I \alpha \sin \Theta$	
		Thus the scale of the gravity control type instruments is non-uniform	
e)	Why	<u>CT is never operated with an open secondary ?</u>	acted 1 mark asch
AIIS:	1	(Any four points Exp	etteu: 1 mark each)
	1.	. If any reason C1 secondary is kept open the very high load current is pas	sing through the
		primary winding of CT which will create the Strong magnetic field	
	2.	. This Strong magnetic field will be link to the Secondary winding of the C	CT
	3.	. If no current flows in secondary, no ampere turns are produced by the sec	condary circuit.

	Winter-2017 Examinations				
S	Subject Code: 17322	Model Answer	Page 21 of 30		
b)	b) Explain significance and purpose of electrical measurement system.				
Ans:		(Significance	2 marks and purpose 2 marks)		
	Significance of E	lectrical Measurement System			
1.	The measurement is r	equired for measurement of all physical o	quantities for e.g speed, velocity,		
	temperature, pressur	e etc.			
2.	All electrical quantiti	es also for e.g. voltage, current, wattage,	energy		
3.	The measurement is 1	required for treading & dealing purpose	in our society		
4.	For controlling & fee	dback purpose the measurement is essen	tial		
5.	In every nation for th	eir military application there is need of 1	measurement and control		
6.	In industry or in gov	ernment organization there is R & D D	epartment The measurement is		
	widely required in va purpose	arious industries and in various educati	ional institutes for the training		
2	Purpose Of Electrica	al Measurement System			
1.	The measurement is t	he <u>sciences or process i</u> n which we are m	easuring the physical quantities		
	to fulfill the need of h	uman kind			
2.	For treading & dealing	ng purpose or any other			
3.	Measurement is basic	c need of human kind that's why all star	ndards and references designed		
	by the human kind				
4.	These standards and	references may changes time to time, are	ea to area person to person		
c) \$	State the advantages of a	instrument transformer in using for exte	ension of range of meters.		
Ans:		(Any four adva	ntages Expected: 1 mark each)		
	Advantages of instrume	nt transformer:			
]	. Extension of instrume	ent range is possible.			
	2. Isolation of instrumer	nts from high voltage side.			
	3. Power loss is less as co	ompared to shunts and multipliers.	titu maagunamant		
	5. Same instrument tran	od of range extension	tity measurement.		
	6. Increases in safety of	operator.			
	,	•			

4. For measurement purpose by using CT and PT

Winter-2017 Examinations

Subject Code: 17322

Model Answer

Page 23 of 30

	Winter-2017 Examinations	
Subject Code: 17322	2 <u>Model Answer</u>	Page 24 of 30
Active power	$\boldsymbol{P} = \boldsymbol{W}_1 + \boldsymbol{W}_2$	
	$= V_L * I_L * \cos(30 - \emptyset) + V_L * I_L * \cos(30 + \emptyset)$	
	$= V_L * I_L[cos(30 - \emptyset) + cos(30 + \emptyset)]$	
	$\cos A + \cos B = 2 * \cos \frac{A+B}{2} * \cos \frac{A-B}{2}$	
	$= V_L * I_L * 2 \cos 30 * \cos \emptyset$	
	$= V_L * I_L * 2 * \frac{\sqrt{3}}{2} * \cos \emptyset$	
	$P = \sqrt{3} * V_L * I_L * \cos\phi$	(1/2 mark)
Rective power		
	$W_1 - W_2 = V_L * I_L * cos(30 - \emptyset) - V_L * I_L * cos(30 + \emptyset)$	
	$= V_L * I_L[cos(30 - \emptyset) - cos(30 + \emptyset)]$	
	$\cos A - \cos B = 2 * \sin \frac{A+B}{2} * \sin \frac{B-A}{2}$	
	$= V_L * I_L * 2 \sin 30 * \sin \emptyset$	
	$W_1 - W_2 = V_L * I_L * Sin \phi$	(1/2 mark)
Multiply by $\sqrt{3}$		
	$\boldsymbol{Q}=\sqrt{3} \ * \boldsymbol{V}_L * \boldsymbol{I}_L * \boldsymbol{Sin} \ \boldsymbol{\emptyset}$	
	$\boldsymbol{Q} = \sqrt{3}(\boldsymbol{W}_1 - \boldsymbol{W}_2)$	
	$P = W_1 + W_2 = \sqrt{3} * V_L * I_L * \cos \emptyset$	
	$\boldsymbol{Q} = \sqrt{3}(\boldsymbol{W}_1 - \boldsymbol{W}_2) = \sqrt{3} * \boldsymbol{V}_L * \boldsymbol{I}_L * \sin \boldsymbol{\emptyset}$	
	$Q = \sqrt{3}(W_1 - W_2) = \sqrt{3} * V_L * I_L * \sin \emptyset$	
	$\frac{1}{P} = \frac{W_1 + W_2}{W_1 + W_2} = \frac{1}{\sqrt{3} * V_L * I_L * \cos \emptyset}$	
	$\frac{Q}{R} = \frac{\sqrt{3}(W_1 - W_2)}{W_1 - W_2} = \frac{\sin \emptyset}{\pi}$	
	$P \qquad W_1 + W_2 \qquad \cos \emptyset$	
	$\frac{Q}{P} = \frac{\sqrt{3}(W_1 - W_2)}{W_1 + W_2} = \tan \emptyset$	
	$\emptyset = \tan^{-1} \left[\frac{\sqrt{3}(W_1 - W_2)}{W_1 - W_2} \right] = \tan^{-1} \frac{Q}{R}$	(1 mark)
	$\begin{bmatrix} w_1 + w_2 \end{bmatrix}$	

	Winter-2017 Examinations				
	Subject Code: 17322	Model Answer	Page 25 of 30		
f)	Draw the circuit diagram o	f Whetstone's bridge and derive the form	ula for balanced load.		
Ans:			(Diagram 2 marks)		
		11 12			
	is acres of	$R_1 R_2 T$			
		I3 LR3 RA LA			
	स्वयः केव	12 AV			
	Or equivalent figure				
	When the bridge is in balance condition (no current flows through galvanometer G), we obtain;				
	voltage drop across R1 and R	22 is equal,			
		$R_1 = I_2 * R_2 - \dots - $	·(1)		
	voltage drop across R3 and R	4 is equal,			
	$I_3 *$	$I_{3} = I_{4} * R_{4}$ (2)	(1 mark)		
	in this point of balance, we als	so obtain; $I = I$ and $I = I$			
		$I_1 - I_3$ and $I_2 - I_4$			
	Divide eq. 1 & 2 we get				
		$I_1 * R_1 = I_2 * R_2$			
		$\frac{1}{I_3 * R_3} = \frac{2}{I_4 * R_4}$			
		$R_1 = R_2$			
		$\frac{R_1}{R_2} = \frac{R_2}{R_4}$	(1 mark)		
Q.6	Attempt any FOUR of the	following :	16 Marks		
a)	What arc the errors occur	ring in measuring devices due to stray r	nagnetic field and temp '?		
(d)	Explain how to compensate	e them.	(1 1)		
Ans:	1. Error due to stray ma	agnetic fields-	(I mark)		
	2 Componentian technic	auo	stray magnetic neids.		
	To avoid this error magnetic	yue shield made up of magnetic material is place	(1 mark)		
	3. Error due to Tempera	ature	$\frac{(1 \text{ mark})}{(1 \text{ mark})}$		
	Change in room temp	b, changes the value of resistance of pressure	coil and the stiffness of the		
	springs.	ges are value of resistance of pressure	ton and the summers of the		
	4. Compensation technic	que	(1 mark)		
	Using low temp. coe	fficient materials for coils and components t	his can be minimized.		

	Winter– 2017 Examinations					
	Subject Code: 17322	Model Answer	Page 26 of 30			
	Using copper and resist of 1:10 for pressure coil	ance alloy having a negligible resistance temp l	coefficient in the ratio			
b)	Describe the following errors	and their compensation: (i) Phase error (ii)	Speed error			
Ans:	(I) Phase error		(1 mark)			
	1. In the phase error the ph band/ring	ase difference angle between $\emptyset_1 \& \emptyset_2$ is kept 9	0 ^{<i>o</i>} by using the shading			
	 If the design and location between Ø₁ & Ø₂ will no This type of error is calle 	n of Shading band/ring is not proper then the ph t be exact 90^o , So that, the speed of the alumin ed as a phase angle error	ase difference angle um disc may change			
	CompensationTo minimize the phase error proper	r the design quality and location of shading ba	(1 mark) nd/ring should be			
	(II) Speed error		(1 mark)			
	Sometimes speed of the braking magnet. Hence meter g	e disc is more or less than the rated speed due to gives error.	o wrong positioning of			
	Compensation – Proper setting up of brake m rotating disc can be controlle	agnet. By changing the position of the brake med.	(1 mark) agnet speed of the			
c)	Power supplied to three phas 4 kW &2.55 kW. The sup supplied.	e load was measured by two wattmeter methoply voltage being 400 V. Determine (i) load	od. The readings were d P.F., (ii) total power			
Ans:						
		$W_1 = 4 \ KW$, $W_2 = -2.55 KW$				
		Total power $W_T = W_1 + W_2$	(1 mark)			
		= 4KW + (-2.55KW) = 1.45 KW	(1 mark)			
		P.F of Load = $\cos\left\{\tan^{-1}\frac{\sqrt{3}(W1-W2)}{(W1+W2)}\right\}$	(1 mark)			
		$= \cos\left\{\tan^{-1}\frac{\sqrt{3} \ (6.55)kw}{(1.45)kw}\right\}$				
		= 0.1267	(1 mark)			

	Winter-2017 Examinations				
Subjec	t Code: 17322 <u>Mod</u>	<u>el Answer</u>	Page 27 of 30		
d) Explai	Explain the effect of power factor on the wattmeter measurements.				
Ans: In two	In two wattmeter method the readings of two wattmeter's are given by eq.				
$W_1 =$ We wi	$W_1 = V_L * I_L * \cos(30 + \emptyset) \& W_2 = V_L * I_L * \cos(30 - \emptyset)$ We will consider different cases of power factors				
1.	1. If power factor is unity i.e. p.f.=1 (Ø=0)(1 ma				
	For connection [<i>W</i> ₁]	For connection [W	²]		
	$W_1 = V_L * I_L * \cos(30 + \emptyset)$	$W_2 = V_L * I_L * \cos(3)$	0 – Ø)		
	$W_1 = V_L * I_L * \cos(30 + 0)$	$W_2 = V_L * I_L * \cos(3)$	0-0)		
	$W_1 = V_L * I_L * cos(30)$	$W_2 = V_L * I_L * cos($	(30)		
Thus,	Thus, both the watt meters read equal readings.				
2.	2. If power factor is 0.5 lagging i.e.ø =60 (1 ma		(1 mark)		
For c	connection 1 [W ₁]	For connection 2 [<i>W</i> ₂]			
	$W_1 = V_L * I_L * \cos(30 + \emptyset)$	$W_2 = V_L * I_L * \cos(30$	- Ø)		
	$W_1 = V_L * I_L * \cos(30 + 60)$	$W_2 = V_L * I_L * \cos(30$	- 60)		
	$W_1 = V_L * I_L * cos(90)$	$W_2 = V_L * I_L * cos(-$	30)		
	$W_1 = 0$	$W_2 = V_L * I_L * \frac{3}{2}$			
Thus it wattree	Thus it is observed that one of the wattmeter reads zero and all the power is measured by second wattmeter.				
3.	3. If power factor is between 0.5 and 0.				
	s than 90 in this case one of the w give negative reading	attmeter gives			
Hence for taking reading of second wattmeter its pressure coil connections of			ns or current coil		
	connections is to be interchanged				
4.	4. If power factor is 0 i.e. $\phi = 90$ (1 mar		(1 mark)		
For c	connection 1 [W ₁]	For connection $2[W_2]$			

$W_1 = V_L * I_L * \cos(30 + \emptyset)$	$W_2 = V_L * I_L * \cos(30 - \emptyset)$
$W_1 = V_L * I_L * \cos(30 + 90)$	$W_2 = V_L * I_L * cos(30 - 90)$
$W_1 = V_L * I_L * -Sin(30)$	$W_2 = V_L * I_L * Sin(30)$

Therefore, with zero power factor, the readings. of the two Wattmeter's are equal but of opposite sign.

Winter-2017 Examinations

Subject Code: 17322

Model Answer

Page 30 of 30

- 1. Clip on ammeters are used to measure the high current flowing through bus bar, cable or fuse holders carrying currents.
- 2. They consist of split core current transformer whose secondary winding is connected to rectifier type moving coil instrument.
- 3. The primary become conductor, whose current is to be measured. The split core gets aligned by the force of a spring tension.
- 4. While the core is covered with insulating material. Hence higher current through conductors can be measured.
- 5. A selector switch is provided to select secondary number of turns which ultimately changes the current range.
- 6. For measuring current the core is opened by pressing trigger shown and then clipped over the conductor carrying current. The dial will record the current directly.

-----END------