

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code: 17315 Page 1 of 18

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

17315 Subject Title: Stoichiometry Subject code: Page **2** of **18**

Q No.	Answer	marks
1A	Any 4	8
1A-a	Dalton's law: It states that the total pressure exerted by a gas mixture is equal	1
	to the sum of partial pressures	
	Mathematical Statement : $P = P_1 + P_2 + P_3$	1
	where P is the total pressure of gas mixture, P ₁ ,P ₂ ,P ₃ are partial pressures	
1A-b	Pure component volume:	2
	Pure component volume of a component gas is the volume that would be	
	occupied by that component gas if it alone was present in the same pressure and	
	at the same temperature as the gas mixture.	
1A-c	5 kg O ₂	2
	Molecular weight of O ₂ =32	
	Moles of O_2 = weight / molecular weight	
	= 5 / 32 = 0.15625 kmoles	
	= 156.25 gmoles	
1A-d	Law of conservation of mass:	2
	Material input = material output + accumulation	
1A-e	Block diagram for extraction	2
	solvent	
	Feed extractor raffinate	
1A-f	Selectivity: Selectivity may be defined as the ratio of the moles of the desired	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject code : 17315 Subject Title: Stoichiometry Page **3** of **18**

	product to undesired or by product produced in a side reaction.	
	-Selectivity are applicable to a set of chemical reaction-complex reaction	
1-B	Any 2	12
1-B a	Basis: 100 kmol gas sample	1
	Avg. mol.wt of air = $M_1X_1 + M_2X_2 + M_3X_3$	1
	= 16 * 0.66 + 44 * 0.3 + 17 * 0.04	
	= 24.44	1
	Density = P* Mav / RT	1
	= 304 * 24.44/ 8.314 * 303	
	$= 2.95 \text{ Kg/m}^3$	2
1-B b	Basis: 100 kg mixture	
	Weight of $H_2 = 11.1 \text{ kg} = 5.55 \text{kmoles}$	
	Weight of $O_2 = 88.9 \text{ kg} = 2.78 \text{kmoles}$	1
	Average molecular weight = $2*0.67 + 32*0.33 = 11.9$	1
	Partial pressure of H_2 = Total pressure * mol.fraction	1
	= 100Kpa * 0.67	
	= 67 Kpa	1
	Partial pressure of O_2 = Total pressure * mol.fraction	1
	= 100Kpa * 0.33	
	= 33 Kpa	1
1-B c	Basis: CO-N ₂ mixture	1
	Weight of $CO = N_2 = 100 \text{ kg}$.	
	Kg. moles of $CO = 100/28 = 3.57$	
	Kg. moles of $N_2 = 100/28 = 3.57$	1
	Mole fraction of $N_2 = 0.5$	1
	Total pressure = 405.3 KPa	
		1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

17315 Subject Title: Stoichiometry Subject code: Page **4** of **18** Partial pressure of CO = total pressure * mole fraction of CO 1 =405.3*0.5= 202.65 KPa 2 2 Any 4 16 2-a Steps involved in solving material balance without chemical reactions: 1. Assume suitable basis of calculation as given in problem. 2. Adopt weight units in case of problem of process without chemical reaction. 3. Draw block diagram of process 4. Show input and output streams 5. Write overall material balance 6. Write individual material balance 7. Solve above two algebraic equations 8. Get values of two unknown quantities. 9. Write balances as follows: feed product Component removed Unchanging component Outgoing component Basis: 100 kg. of coal. 2-b

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry Subject code: 17315 Page **5** of **18** → Burnt Carbon X kg. 100kg coal Burner 63 % C, 24% ash →Refuse Y kg. 7% C, 93% ash 1 Individual balance for ash. 24 = 0.93 YY = 25.80 kg. Balance for carbon 1 63 = X + 0.07 * 25.801 X = 61.194 kg. Unburnt carbon = 0.07 * 25.8 = 1.806 kg. 1 % of original carbon unburnt = (1.806/63) * 100= 2.867%2-c 1)Stoichiometric Equation: The stoichiometric equation of a chemical reaction is the statement indicating 1 relative moles of reactant and products that take part in the reaction. For example, the stoichiometric equation $CO + H_2 - - - \rightarrow CH_3OH$ 1 Indicates that one molecule of CO react with two molecules of hydrogen to produce one molecule of methanol 2) Stoichiometric Coefficient: It is the number that precedes the formula of each component involved in a 1 chemical reaction. For example, the stoichiometric equation

1

 $CO + H_2 - - - \rightarrow CH_3OH$

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code: 17315

Page 6 of 18

	,		
	In above example Stoichiometric (Coefficient of CO is one, Stoichiometric	
	Coefficient of H ₂ is Two and Stoichi	ometric Coefficient of methanol is one	
	(Students may write other suitable	example)	
2-d	$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$		
	SO_2 fed = 100 kg. moles		1
	SO_3 formed = 80 kg. moles		
	1 kg. mole SO_2 reacted = 1 kg. mole	SO ₃ formed	
	? = 80 kg. mol	le SO ₃ formed	1
	kg. mole SO_2 reacted = 80		1
	% conversion of SO ₂ =(SO ₂ react	red /SO ₂ fed)* 100	
	= 80*100/100	0 = 80%	1
2-е	Differentiate Conversion and Yield	1:	1 mark
	Conversion	Yield	each
	1.Conversion is the ratio of the	1. Yield of a desired product is the	
	amount of reactant reacted to the	ratio of the quantity of the desired	
	initial amount of the reactant	product actually obtained to its	
		quantity maximally obtainable.	
	2. Conversion gives us idea	2. The Yield of a desired product	
	regarding how efficient a given	tell us how efficient is a given	
	chemical process is from the point	chemical process is in terms of the	
	of view of utilization of the	reaction product.	
	starting materials.		
	3. Higher values of Conversion is	3. Higher values of Yield is the	
	the indication of minimum	indication of minimum occurrence	
	amount of the limiting reactant	of side reactions.	
	left unreacted.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject code : 17315 Subject Title: Stoichiometry Page **7** of **18**

	4. Conversion is applicable to	4. Yield is applicable to Complex	
	single reactions as well as to	reaction	
	Complex reaction.		
2-f	$C_{pm}^0 = 29.3955 \text{KJ} / (\text{K mol. K})$		
	Moles of air $(n) = 3$		
	$T = 473K$ $T_0 = 298$		1
	Heat added $Q = n^* C^0_{pm} (T - T_0)$		1
	= 3*29.3955(473-298)		
	= 15432.64 KJ		2
3	Any 2		16
3-a	Solution: Basis: 3000 kg of monochloroacetic	acid production per batch.	1
	Mol. Wt. of $CH_2ClCOOH = 94.5$		
	Moles of CH ₂ ClCOOH produced per	r batch = $\frac{3000}{94.5}$ = 31.75 kmol	1
	Reaction: CH ₃ COOH + Cl ₂ → CH ₂ C	ICOOH + HCl	
	From the reaction, 1kmol CH ₂ ClCO	$OH = 1 \text{ kmol } CH_2ClCOOH$	
	i.e., for producing 1 kmol CH ₂ ClCO	OH, 1 kmol acetic acid is consumed.	
	CH₃COOH reacted for 31.75 kmol C	CH ₂ ClCOOH production	
	$=31.75 \times \frac{1}{1} = 31.75 \text{ kmol}$		1
	Given: The reaction is 95% complete	te, i.e., conversion of acetic acid is 95%.	
	∴ $CH_3COOH charged = \frac{CH_3}{}$	COOH reacted ×100 % conversion	1

0.1x+0.5y=1000*0.35

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION **Model Answer**

Subject Title: St	oichiometry	Subject code:	17315	Page 8 of 18
	$=\frac{31.75}{0.95} = 33.42 \text{ kmol}$			1
	From the reaction, 1 kmol $CH_3COOH = 1 \text{ km}$	nol Cl ₂		
	i.e., for 1 kmol CH ₃ COOH, theoretical Cl ₂ I	equired is 1 kmol. Ther	refore,	
	Theoretical requirement of Cl ₂			
	For 33.42 kmol CH ₃ COOH = $\frac{1}{1}$ × 33.42 = 33.	42 kmol		1
	Given: 15% excess Cl ₂ is used. Therefore,			1
	$Cl_2 \text{ fed/supplied} = 33.42 \times (1 + \frac{15}{100}) = 38.43$	kmol		1
	∴ Amount of Cl ₂ required per batch = 38.43	\times 71 = 2728.5 kg		1
	Amount of CH ₃ COOH required per batch =	$33.42 \times 60 = 2005.2 \text{ kg}$		
3-b	BASIS:1000 kg of final solution.			1
	A 107, salt 1000kg 35%, salt			1
	Let kg of A=x			
	Let kg of B=y			
	Therefore overall balance			
	X+y=1000(1)			1
	Salt balance			

Any 2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: S	toichiometry Subject code : 17315	Page 9 of 18
	0.1x+0.5y=350(2)	1
	Multiplying equation (1) by 0.1	
	0.1x+0.1y=100(3)	
	From eqution (2) and (3)	
	4y=250	
	Therefore y=250/4	
	=625kg	3
	X=375kg	
	Wt of 10% solution=375 kg	1
	Wt of 50% solution=625kg	
3-с	Basis: 10000 kg/hr of feed	1
	Distillate X kg/hr 10000 kg/hr solution 20 % methanol Waste solution Y kg/hr 1% methanol	2
	Overall balance is	1
	$10000 = X + Y \dots (1)$	
	Individual balance for CH ₃ OH is	1
	0.2*10000 = 0.98X+0.01*Y(2)	
	Solving the equations	
	X= 1958.76 Kg/hr	3
	Y=8041.24 kg/hr	
	Mass flow rate of distillate = 1958.76 Kg/hr	
	Mass flow rate of bottom product = 8041.24 kg/hr	

16

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject code : 17315 Subject Title: Stoichiometry Page **10** of **18**

	3	
4-a	Basis: 1 mol liquid C ₅ H ₁₂	1
	$\Delta H^0_R = \Sigma \Delta H^0_{f(pr)} - \Sigma \Delta H^0_{f(react)}$	2
	= [(-822.7)+(-296.81*4)]- (-178.02*2)	2
	= -1653.9KJ	3
4-b	Basis: 2000 kg wet solid	1
	→ Water Xkg	
	2000 Kg feed	
	70% solid dryer	2
	Product Y kg	
	1% moisture	
	Overall balance is	
	2000 = X + Y	1
	Balance for solid	
	0.70 * 2000 = 0.99 * Y	1
	Y = 1414.14 kg	2
	X = 585.86	
	Water removed = 585.86 kg	
	Product obtained = 1414.14 kg	1
4-c		
l		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject code: 17315 Page **12** of **18** Subject Title: Stoichiometry

	= 91.72%	
5	Any 2	16
5-a		
	Water Evaporated Thick Liquor 45% NaOH 10% NaCl 75% H ₂ O Evaporator NaCl Precipitated	1
	Basis: 15000 kg/hr of weak solution fed to the evaporator. Let X,Y,Z be the kg/hr of water evaporated thick liquor & Nacl precipitated	1
	respectively. Overall Material Balance : $\Sigma \text{Input stream} = \Sigma \text{ Output stream} \\ 15000 = X + Y + Z$	1
	Material balance of NaOH NaOH in feed = NaOH in thick liquor $0.15 \times 15000 = 0.45 \times Y$ $\therefore Y = 5000 \text{ kg/hr}$	1
	Material balance of NaCl NaCl in feed = NaCl in thick liquor + NaCl precipitated	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject code: 17315 Subject Title: Stoichiometry Page **13** of **18**

ofemometry Subject code . 17313	Tage 13
We know $X + Y + Z = 15000$	1
$\therefore X = 8600 \ kg/hr$	
$\therefore Water\ evaporated = 8600 \frac{kg}{hr}$	
Thick liquor obtained = 50 00 kg/hr	
NaCl crystal precipitated =1400 kg/hr	
Basis: 100 kmol of flue gas.	1
It contains 13.4 kmol CO ₂ ,80.5 kmol N ₂ and 6.1 kmol O ₂	
N_2 in supplied air = N_2 in flue gas = 80.5 kmol	1
Air contains 79% N_2 by volume.	
Amount of air supplied = $80.5/0.79 = 101.9$ kmol	1
Amount of O_2 in supplied air = 0.21X101.9=21.4 kmol	1
Amount of O_2 in flue gas = 6.1 kmol	1
Amount of O ₂ consumed in combustion of fuel	
= 21.4 - 6.1 = 15.3 kmol	1
% excess air = % excess O_2	
Present excess air supplied = $(21.4 - 15.3)/15.3 \times 100$	1
= 39.9 % Ans.	1
Basis: 1 Kmol of methane gas	1
Q = Heat added	
$ \begin{array}{c} T_2 \\ Q = n \int C^{o} p \ dT \end{array} $	1
T ₁ T ₂ T ₃ T ₄ T ₄ T ₄ T ₅ T ₄ T ₄ T ₅ T ₅ T ₅ T ₅ T ₆ T ₆ T ₆ T ₆ T ₇ T ₆ T ₇	2
$Q = n \int [19.2494 + 52.1135 *10 *T + 11.9/3 * 10 *T^{2}]$ T_{1} $-11.3173 * 10^{-9} T^{3}] dT$	
52.1135 *10 ⁻³	
	We know X + Y + Z = 15000 ∴ X = 8600 kg/hr ∴ Water evaporated = 8600 $\frac{kg}{hr}$ Thick liquor obtained = 5000 kg/hr NaCl crystal precipitated = 1400 kg/hr Basis: 100 kmol of flue gas. It contains 13.4 kmol CO ₂ .80.5 kmol N ₂ and 6.1 kmol O ₂ N ₂ in supplied air = N ₂ in flue gas = 80.5 kmol Air contains 79% N ₂ by volume. Amount of air supplied = 80.5/0.79 = 101.9 kmol Amount of O ₂ in supplied air = 0.21X101.9=21.4 kmol Amount of O ₂ in flue gas = 6.1 kmol Amount of O ₂ consumed in combustion of fuel = 21.4 - 6.1 = 15.3 kmol % excess air = % excess O ₂ Present excess air supplied = (21.4 - 15.3)/ 15.3 X 100 = 39.9 % Ans. Basis: 1 Kmol of methane gas Q = Heat added $Q = \prod_{1}^{7} C^{0}p \ dT$ T ₁ $Q = \prod_{1}^{7} [19.2494 + 52.1135*10^{-3}T + 11.973*10^{-6}T^{2}$ T ₁ -11.3173*10 ⁻⁹ T ³] dT

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry Subject code: 17315	Page 14 of 18
$= n \left[19.2494 (T2 - T1) + (T2^{2} - T1^{2}) \right]$ $= 11.973 *10^{-6} $	2
Q = 4234.9 + 4735 + 459.9 - 187.8 $Q = 9242 KJ$	2
6 Any 4	16
6-a Hess's law of constant heat summation : It states that the enthalpy change i.e. heat evolved or absorbed in a particular reaction is the same whether the reaction takes place in one or several steps. For Example : Carbon can be converted into CO_2 by two ways Path 1 : $C(s) + O_2(g) - CO_2(g) - D$ Path 2 : (i) $C(s) + \frac{1}{2}O_2(g) - CO_2(g) - D$ Has $C(s) + \frac{1}{2}O_2(g) - CO_2(g)$ Thus $C(s) + O_2(g) - CO_2(g)$ Thus $C(s) + CO_2(g) - CO_2(g)$	2
6-b Adiabatic Reaction:	

It is the reaction which proceeds without loss or gain of heat, When the

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

17315 Subject Title: Stoichiometry Subject code: Page **15** of **18**

	adiabatic reaction is exothermic, the temperature of the product stream rise and	2
	when the adiabatic reaction is endothermic, the temperatures of the product	
	stream decreases	
	Adiabatic reaction temperature: Temperature of product under adiabatic	
	condition is called adiabatic reaction temperature.	2
6-c	Basis: 100 Kg of coke	1
	Amount of carbon in coke = $0.9 * 100 = 90 \text{ Kg}$	
	Amount of $C = 90/12 = 7.5$ katom	
	Reaction : $C + O_2> CO_2$	1
	From reaction , $1 \text{ katom } C = 1 \text{ kmol } O_2$	
	$12 \text{ Kg C} = 32 \text{ Kg O}_2$	
	90 Kg C = $(32/12)$ * 90 Kg O ₂	1
	O_2 theoretically required = $(32/12)$ * 90 = 240 Kg	
	O_2 theoretically required = 240/32 = 7.5 kmol	
	Air theoretically required = $7.5 * (100/21) = 35.71 \text{ kmol}$	
	% excess of air = 10%	
	% excess Air actually supplied = Air theoretically required (1+) 100	
	10 Air actually supplied = 35.71 * (1+) 100 Air actually supplied = 39.281 kmol ans.	1
6-d	$N_2 + 3H_2 \longrightarrow 2NH_3$	
	Assume nitrogen is the limiting component.	

1000 = X + Y

Balance for solid

Y = 904.52 kg

X = 95.48**kg**

0.90 * 1000 = 0.995 * Y

Water removed = 95.48kg

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

17315 Subject Title: Stoichiometry Subject code: Page **16** of **18** For 4 moles of nitrogen fed, theoretical requirement of hydrogen is 12 kmoles. 1 But hydrogen fed is only 10 kmoles. Therefore nitrogen is not the limitinhg component. Therefore Hydogen is the limiting component and Nitrogen is the excess 1 component. N_2 fed = 4 kmoles Theoretical requirement nitrogen corresponding to N_2 fed 4 kmoles = 3.33 1 % excess N_2 = (kmoles N_2 fed- kmoles N_2 theoretical/ kmoles N_2 theoretical)* 100 = (4-3.33/3.33)*1001 **= 20.12%** Basis: 1000 kg wet ONA 6-е 1 → Water Xkg 1000 Kg feed 90% solid dryer Product Y kg 0.5% moisture Overall balance is

1

1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

17315 Subject Title: Stoichiometry Subject code: Page **17** of **18**

	Product obtained = 904.52 kg	1
	% of original water removed = (Water removed/original water 0*100	
	= (95.48/100)*100 = 95.48%	
6-f	Basis – 50Kmol SO ₂	
	150 Kmol air	
	Reaction	1
	$SO_2 + \frac{1}{2}O_2 = SO_3$	
	Air used = 150Kmol	
	O_2 in air = $150 \times (0.21)$	
	= 31.5 Kmol	
	Theoretical requirement of O ₂	1
	$1 \text{ Kmol SO}_2 \equiv 0.5 \text{ Kmol O}_2$	
	$=\frac{0.5}{1}\times50$	
	= 25 Kmol	
	∴% excess of O ₂ used	
		1
	$= \frac{O_2 \text{ in supplied} - O_2 \text{ theo read}}{O_2 \text{theo read}}$	
	$= \frac{31.5 - 25}{25} \times 100$	
	= 26	1
	\therefore % excess air used = 26%	
	OR	
	Theo.air read = $\frac{100}{21} \times 25$	
	= 119.05 Kmol	
	∴ % excess air used = $\frac{150-119.05}{119.05}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry		Subject code: 1732	15 Pa	Page 18 of 18	
	= 26 %				