(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17646) Page **1** of **28**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **2** of **28**

Q No.	Answer	Marks	Total marks
1 A a)	Air Pollution: Air pollution is the introduction of particulates, biological	2	4
	molecules, or other harmful materials into Earth's atmosphere, causing disease,		
	death to humans, damage to other living organisms such as food crops, or the		
	natural or built environment.		
	Air Pollutant: A substance in the air that can be harmful to humans and the	2	
	environment is known as an air pollutant.		
b)	Sources of water pollution	2	4
	Industrial waste water		
	Domestic sewage		
	Agricultural run off		
	Run-off from urban areas		
	Effect of water pollution		
	The effects of water pollution are varied and depend on what chemicals are	2	
	dumped and in which locations.		
	Many water bodies near urban areas (cities and towns) are highly polluted.		
	This is the result of both garbage dumped by individuals and dangerous		
	chemicals legally or illegally dumped by manufacturing industries, health		
	centers, schools and market places.		
	The main problem caused by water pollution is that it kills life that depends on		
	these water bodies. Dead fish, crabs, birds and sea gulls, dolphins, and many		
	other animals often wind up on beaches, killed by pollutants in their habitat		
	(living environment).		
	Pollution disrupts the natural food chain as well. Pollutants such as lead and		
	cadmium are eaten by tiny animals. Later, these animals are consumed by fish		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **3** of **28**

ct code :(17	040)		i ay	e 3 01 28
	and shellfish, and the food c	hain continues to be disrupted at all higher levels.		
	Eventually, humans are af	fected by this process as well. People can get		
	diseases such as hepatitis by	y eating seafood that has been poisoned. In many		
	poor nations, there is alway	vs outbreak of cholera and diseases as a result of		
	poor drinking water treatmen	nt from contaminated waters.		
	Ecosystems (the interaction	of living things in a place, depending on each		
	other for life) can be severe	ly changed or destroyed by water pollution. Many		
	areas are now being affected	d by careless human pollution, and this pollution is		
	coming back to hurt humans	in many ways.		
c)	Methods used for pollution	control in fertilizer industry	1 mark	4
	API separation		each	
	Ammonia stripping		for any	
	Urea Hydrolisation		four	
	Cyanide reactions			
	Nitrification tanks			
	 Final clarification 			
d)	Classification of solid waste	e		
	Types	Example of sources	1 mark	4
		, r	each	
	Food wastes	Animal, fruits and vegetable residues resulting	for any	
		from the handling and preparation, cooking and	four	
		eating of foods		
	Rubbish	1.cobustible papers, plastics, leather, cardboard,		
		wood, rubber etc. 2. Non-combustible glass,		
		aluminium cans ,crockery, tin cans , dirt,		
		construction wastes.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **4** of **28**

	,			
	Ashes and residue	Material remaining from the burning of wood,		
		coal, and coke and other combustible wastes in		
		homes, stores, industrial and municipal		
		facilities for the purpose of heating and		
		cooking		
	Demolition and	Wastes from construction, remoulding,		
	construction waste	repairing of residential, commercial and		
		industrial buildings		
	Special waste	1.street sweepings. 2.road side litter from		
		municipal litter containers. 3. Dead animals		
	Treatment plant waste	From water, wastes water and industrial waste		
		treatment plants		
	Hazardous wastes	Chemical		
		Biological		
		Flammable		
		explosive		
	Agricultural wastes	Planting		
		Harvesting of crops, fields etc.		
1 B a)	Dust fall jar		4	6
	in diameter. A typical collect and 10-15 cm diameter at the bottom. A holder is provide collector. The sample is deposite dried and weighed. Usua 4mg/cm2. Since dust particle	r sampling air particles larger than 10 micrometer tor consists of plastic jar of about 20-35 cm height to base with a slight tapering of the wall from top to ded to ensure safe and upright position of the osited over a period of one month and the material ally only water insoluble dust fall is reported in as larger than 10 micrometer are seldom carried for m, dust fall station must be closely spaced for any		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

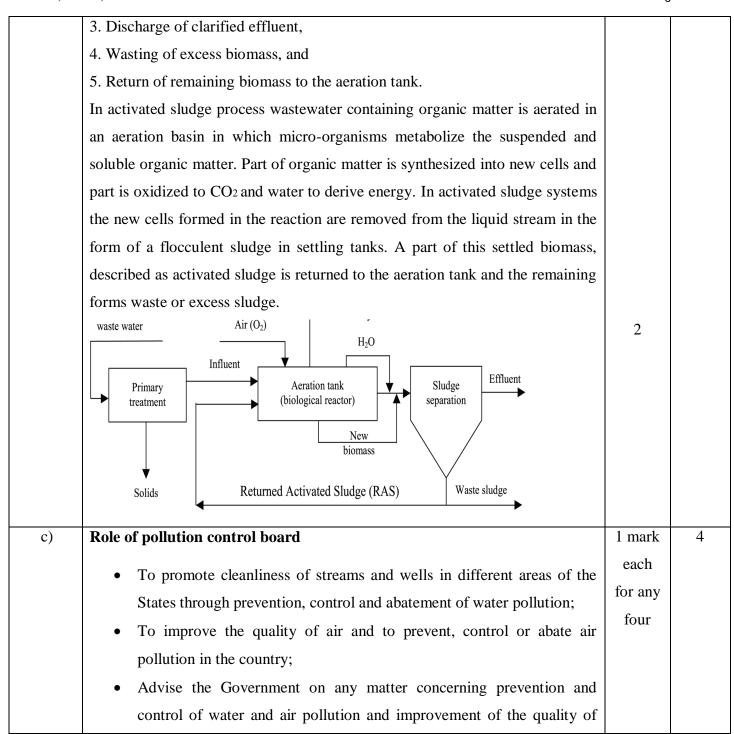
Subject code :(17646) Page **5** of **28**

	plastic Jar	2	
b) Sludge treatment		6	6
Sludge treatment descr	ibes the processes used to manage and dispose of		
sewage sludge produced	during sewage treatment. Sludge is mostly water with		
lesser amounts of solid n	naterial removed from liquid sewage. Primary sludge		
includes settleable solic	ls removed during primary treatment in primary		
clarifiers. Secondary sluc	lge separated in secondary clarifiers includes treated		
sewage sludge from secon	ndary treatment bioreactors.		
Sludge treatment is focus	sed on reducing sludge weight and volume to reduce		
disposal costs, and on	reducing potential health risks of disposal options.		
Water removal is the pri	mary means of weight and volume reduction, while		
pathogen destruction is	frequently accomplished through heating during		
thermophilic digestion, of	composting, or incineration. The choice of a sludge		
treatment method depend	s on the volume of sludge generated, and comparison		
of treatment costs requi	red for available disposal options. Air-drying and		
composting may be att	ractive to rural communities, while limited land		
availability may make ae	robic digestion and mechanical dewatering preferable		
for cities, and economies	of scale may encourage energy recovery alternatives		
in metropolitan areas.			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **6** of **28**


(1). euco	(0 1 0)	raç	je 6 01 2
	Energy may be recovered from sludge through methane gas production during		
	anaerobic digestion or through incineration of dried sludge, but energy yield is		
	often insufficient to evaporate sludge water content or to power blowers,		
	pumps, or centrifuges required for dewatering. Coarse primary solids and		
	secondary sewage sludge may include toxic chemicals removed from liquid		
	sewage by sorption onto solid particles in clarifier sludge. Reducing sludge		
	volume may increase the concentration of some of these toxic chemicals in the		
	sludge.		
2 a)	Gas adsorption: Adsorption is the adhesion of atoms, ions, or molecules from	2	4
	a gas, liquid, or dissolved solid to a surface. This process creates a film of the		
	adsorbate on the surface of the adsorbent		
	Venturi scrubber	2	
	Converging section Throat Diverging section		
b)	Activated sludge treatment	2	4
	Activated sludge plant involves:		
	1. Wastewater aeration in the presence of a microbial suspension,		
	2. Solid-liquid separation following aeration,		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **7** of **28**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17646) Page **8** of **28**

air;

- Plan and cause to be executed a nation-wide programme for the prevention, control or abatement of water and air pollution;
- Plan and organise training of persons engaged in programmes for prevention, control or abatement of water and air pollution;
- Organise through mass media, a comprehensive mass awareness programme on prevention, control or abatement of water and air pollution;
- Collect, compile and publish technical and statistical data relating to water and air pollution and the measures devised for their effective prevention, control and abatement;
- Prepare manuals, codes and guidelines relating to treatment and disposal of sewage and trade effluents as well as for stack gas cleaning devises, stacks and ducts;
- Disseminate information in respect of matters relating to water and air pollution and their prevention and control;
- Lay down, modify or annul, in consultation with the State Government concerned, the standards for stream or well, and lay down standards for quality of air;
- Establish or recognize laboratories to enable the Board to perform; and
- Perform such other functions as and when prescribed by the Government of India.
- To issue directions to any industry, local bodies, or other authority for violation of the notified general emission and effluent standards, and rules relating to hazardous waste, bio-medical waste, hazardous chemicals, industrial solid waste, municipal solid waste including

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **9** of **28**

d)	3R principle	1	4
	Reuse: In today's world use and through materials is increasing and hence		
	solid waste. Instead of throwing that material or item if it is used again, energy		
	and environment can be saved. Solid waste generation also will be reduced. In		
	industry various boxes, cans, pallets etc are used for material handling. These		
	can be used again for same purpose.		
	Recycle: Recycling is a process to change materials (waste) into new products		
	to prevent waste of potentially useful materials, reduce the consumption of	2	
	fresh raw materials, reduce energy usage, reduce air pollution (from		
	incineration) and water pollution (from landfilling) by reducing the need for		
	"conventional" waste disposal, and lower greenhouse gas emissions as		
	compared to plastic production. Recycling is a key component of modern		
	waste reduction and is the third component of the "Reduce, Reuse, and		
	Recycle" waste hierarchy. Recyclable materials include many kinds of glass,		
	paper, metal, plastic, textiles, and electronics. In the strictest sense, recycling		
	of a material would produce a fresh supply of the same material-for example,		
	used office paper would be converted into new office paper, or used foamed		
	polystyrene into new polystyrene.		
	Reduce: When you avoid making garbage in the first place, you don't have to	1	
	worry about disposing of waste or recycling it later. Changing your habits is		
	the key - think about ways you can reduce your waste when you shop, work		
	and play. There's a ton of ways for you to reduce waste, save yourself some		
	time and money, and be good to the Earth at the same time. Buy products in		
	bulk. Larger, economy-size products or ones in concentrated form use less		
	packaging and usually cost less per ounce.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

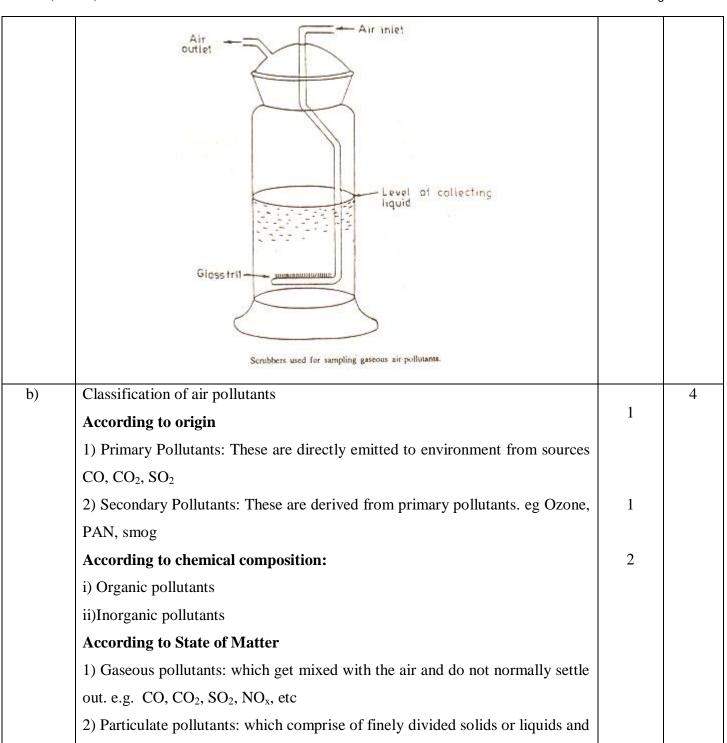
Subject code :(17646) Page **10** of **28**

)	Environmental audit	4	4
	An environmental audit is typically undertaken in three phases:		
	1. Pre-audit		
	2. On-site audit		
	3. Post-audit		
	Each of these phases comprises a number of clearly defined Objectives, with		
	each objective to be achieved through specific Actions, and these actions		
	yielding results in the form of Outputs at the end of each phase.		
	Pre-Audit Activities		
	Objectives		
	 To develop an audit plan for the on-site activities 		
	To make the necessary preparation and arrangements for the on-site		
	audit.		
	Conduct Initial Site Visit		
	• To arrange with the site facilitator(s) for an initial visit during normal		
	operation of audit site to:		
	Meet with officer-in-charge to explain purpose of audit		
	Assess whether background information gathered is up to date and		
	accurate		
	 Follow-up on the list of preliminary audit impressions 		
	Identify and request additional site information as necessary		
	 Confirm thoroughness of audit scope 		
	Establish adequacy of resources for audit		
	Develop On-Site Questionnaire and Audit Protocols		
	• To develop a series of step-by-step questions and evaluation criteria to		
	assess:		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **11** of **28**


i couc .(1	7040)	rag	je II OI Z
	 Compliance with pertinent legislative and regulatory requirements Conformance with internal environmental policies, procedures and guidelines 		
	 Status of current environmental practices Staff awareness of internal environmental policies, procedures and guidelines 		
	Post audit		
	• Implement the suggestion given during sight visit.		
	Study the impact of implementation		
3 a)	Absorption method for gaseous sampling	03	4
	Absorption sampling method for gaseous pollutants: Absorption separates the desired pollutant from air either through direct solubility in the absorbing medium or by chemical reaction. Maintaining suitable bubble size and the requisite residence time are essential for efficient sampling. The absorbent used include water (for absorbing gases e.g. HF), oils (for absorbing hydrocarbons), alkalis (for absorbing acidic gases) and acids (for absorbing alkaline gases). The absorbing devices used include glass scrubbers, packed columns, impingers and counter current scrubbing systems.		
		01	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **12** of **28**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **13** of **28**

ect ((170 .(170	340)						Pay	je 13 01 20
		often	exist in colloidal state	e as aerosols.					
		a) Dust : Particle size 1 to 200 micrometer							
		b) Sn	noke : Particle size 0.0	1 to 1 micron	neter				
			mes : Particle size 0.1						
		ĺ							
		d) Mi	ist: Liquid droplets sm	aller than 10 i	micrometers (condensed in	air.		
		e) Fo	g: Water droplets in ai	ir.					
		f) Ae	rosols: All air born sus	spension eithe	r liquid or ga	ises.			
				1	1				
	c)	CPC	B air quality standar	ds:					4
		Sr.	Pollutant	Total	Concentrat	ion in]	1 mark	
		No		Weighted	Ambient A			each	
				Average	Industrial,	Ecologica		for	
					Residenti	lly		any	
					al, Rural	sensitive		four	
					and other	area		point	
					area				
		1	Sulphur dioxide	Annual*	50	20			
			$(SO2) \mu g/m^3$	24 hours**	80	80			
		2	Nitrogen	Annual*	40	30			
			dioxide(NO2)	24 hours**	80	80			
			$\mu g/m^3$						
		3	Particulate matter	Annual*	60	60			
			$(\text{size}_{2} < 10 \mu \text{m})$	24 hours**	100	100			
			μg/m ³						
		4	Particulate matter	Annual*	40	40			
			$\left \text{(size } < 2.5 \mu \text{m} \right $	24 hours**	60	60			
		<u> </u>	$\mu g/m^3$	0.1	100	100	-		
		5	Ozone µg/m ³	8 hours**	100	100			
			T 1 /3	1hours**	180	180	-		
		6	Lead μg/m ³	Annual* 24 hours**	0.5	0.5			
		7	Carbon monoxide	8 hours**	1.0	1.0	-		
		$\parallel '$	mg/m ³	1 hour**	02 04	02 04			
		8	Ammonia µg/m ³	Annual*	100	100	-		
1		110	₁ z minioma μg/m	¹ Millian	100	100		1	I I

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **14** of **28**

			24 hours**	400	400			
	9	Benzene µg/m ³	Annual*	5	5			
	10	Arsenic	Annual*	6	6			
d)	BOD in wa The b quant fat, or of or biode COD	*Annual arithm at a particular intervals. ** 24hourly or which should not ter by purely biological oxygen decity of bio-organic sulfils, carbohydrates and rganic chemicals content of the content of th	site taken to a site taken to	ninimum 10 wice a wee hourly mon ore than one ired to degree O in wastev stewater. To O also helps wastewater	of measurement 24 hours at the second water, is a note that are second water.	s as applicable waste present measure of the in the form of the quantum synthetic and	02	4
	COD can help gauge the quantum of both biodegradable and nonbiodegradable organics. It is quick method to determine strength of waste in water.							
e)	ii) pH v) To Biolo	nical Characteristics I iii) Acidity or alkalinotal carbon vi) Chlorinotal carbon vi) Chlorinotal Characteristic D) ii) presence of panisms	nity iv) hardner ne demand vii) es of waste w	ss Total disso ater: i) E	olved solids Biological ox	xygen demand	1/2 mark each for any four point	4
f)	specia	Sampling: It is san fic time. It represents and location of san eted manually. Grab	the conditions	s of the wa	ste water at method Sar	the particular mples usually	02	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **15** of **28**

	Large quantities of floating rubbish such as cans, cloth, wood and other	1 mark	
b)	Preliminary treatment consists of screening and grit removal.	1 moule	4
	collection devices.		
	as precleaners prior to passing the gas stream through high efficiency		
	particles have much smaller sizes than 50 µm these devices are normally used		
	are quite low for particles smaller than 50 µm. Since most of the troublesome		
	offer low pressure drop and require simple maintenance, but their efficiencies		
	remove large, abrasive particles (usually >50 μm) from gas streams. They		
	removal efficiency. Gravitational settling chambers are generally used to		
	horizontal shelves shorten the sealing path of the particles and improve		
	some have horizontal shelves and baffles, spaced about 2.5cm apart. The		
	0.5 to 2.5 m/s. Some settling chambers have simply enlarged conduits and		
	The gravitational settling chambers are usually operated with velocity between		
	floor.		
	velocities and allow time for the vertical velocity to carry the particle to the		
	settling chambers are provided with enlarged areas to minimize horizontal		
	chambers when the settling velocity is greater than about 0.12m/s. Gravity		
	Gravitational force may be employed to remove particulate in settling	· IIIIII	•
4A a)	Working Principle of Gravity settling chamber:	4 mark	4
	Automatic sampling equipment is usually used for composite sampling.		
	proportion to the amount of flow at that time.		
	sample, is a sample which consists of a mixture of several murvidual grab samples collected at regular and specified time periods, each sample taken in		
	Composite sampling : A composite sample, also known as an integrated sample, is a sample which consists of a mixture of several individual grab		
	plants with low flows.		
	residual, pH and dissolved oxygen. Grab samples are most appropriate to small	02	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **16** of **28**

	large	objects present in	waste water are usua	ally removed by metal bars, acting	1 mark		
	like s	like strainers as the waste water moves beneath them in an open channel.					
	Remo	oval of gross solid	ls is generally acco	mplished by passing waste water			
			_	ern mechanical screens cum filters			
	inclu	de rotary, self-clea	ning, gravity type	units and circular overhead fed	1 mark		
	vibra	tory units which are	effective in reducin	g the suspended solid and BOD.			
	Grit	is removed in the e	early stages of treatn	nent in grit channels or tanks. Grit,			
				separated from organic solids by	1 mark		
		_					
			flow velocity in the				
	If the	e waste water cont	ains appreciable qu	nantities of oil and grease, then it			
	is ad	visable to remove	as much of these	as possible, in the preliminary			
	treatr	treatment itself to avoid adverse effects on the rest of plant. This is achieved					
	by pa						
	by passing the waste water through skimming tanks where oil and grease are skimmed off.						
						4	
:)		Drinking water quality standards specified by WHO					
	Sr.	constituent	Recommended	Max. permissible	11-		
	No.		max.	concentration in mg/l	1 mark		
			concentration in		each		
		DI ' 1	mg/l		for		
	1	Physical:		25	any		
	1	Turbidity(units)	5	25	four		
	2	Color(units)	5	50	points		
		Chemical	7.05	65.00			
	3	pH, units	7-8.5	6.5 or 9.2			
	4	Total solids	500	1500			
	5	Calcium	75	200			
		Magnesium	50	150			
	6		0.3	1.0			
	7	Iron					
	7	Iron Copper	1.0	1.5			
	7 8 9			1.5 400			
	7	Copper	1.0				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **17** of **28**

	11 Arsenic -		0.2		
	12 Chromium -		0.05		
	13 Cyanide -		0.01		
1/	14 Lead -	1000	0.1	1 o	1
d)	Business Benefits of ISO14000:			1 mark each	4
	1. Efficiency, discipline and operational integration with ISO 9000.				
	2. Greater employee inv	ter employee involvement in business operations with a more			
	motivated workforce				
	3. Easier to obtain operation	points			
	4. Assists in developing and	transferring techn	ology within the company		
	5. Helps reduce pollution				
	6. Fewer operating costs				
	7. Savings from safer wor	xplace conditions8	B. Reduction of costs associated		
	with emissions, discharges,	waste handling,			
	transport & disposal				
	9. Improvements in the prod	luct as a result of p	process changes		
	10. Safer products				
	11. Minimizes hazardous ar	d non-hazardous v	vaste		
	12. Conserves natural res	ources - electrici	ty, gas, space and water with		
	resultant cost savings				
	13. Prevents pollution and r	educes wastage			
	14. Demonstrates to cus	tomers that the	firm has met environmental		
	expectations.				
	15. Meets potential nati	onal and interna	ntional government purchasing		
	requirements.				
	16. Delivers profits from ma	orketing "green" pr	roducts		
	17. Provides a competitive	narketing tool			
	18. Improves international of	ompetitiveness			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **18** of **28**

	10 Improves the againstian's relationship with insurance companies		
	19. Improves the organization's relationship with insurance companies		
	20. Elimination of costs associated with conformance to conflicting national		
	standards		
4 B a)	The necessity of recovery of chemical from black liquor:	02	6
	i) The spent cooking liquor commonly called black liquor is treated to recover	mark each for	
	its chemical content for reuse and its organic content as heat.		
	ii) The dark color of the effluent is due to the lining compounds which are not	any	
	easily biodegradable and hence it imparts persistent color to the receiving	three	
		points	
	water streams and inhibits photosynthesis and other natural self-purification		
	process of the water streams.		
	iii) The immediate oxygen demand of the effluent brings about depletion of		
	oxygen of the receiving stream create adverse effects to aquatic life.		
	iv) The chemicals present in the effluent, e.g. sulfites, phenols, free chlorine,		
	methyl mercaptan are harmful to fauna and flora of the receiving water.		
	v) The settleable materials present may sink to the bottom and interfere with		
	aquatic life.		
b)	Objective of environment management:	1 mark	6
	 Endeavour to minimize use of potentially toxic materials. 	each for	
	Aim to source materials from sustainable origins.	any	
	Maximize use of recycled and recyclable materials	three	
		(03)	
	Maximize consideration of the environment in the roll out of new		
	recycling projects.		
	Where packaging is used minimize pack size to future reduce waste.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **19** of **28**

- Expand practice of materials segregation to allow increased recovery and recycling of waste materials.
 Promote appropriate waste management practices to stakeholders.
 Continuous research to gain a greater understanding of management
 - Continuously identify ways of minimizing energy consumption e.g. car share plan to control unnecessary mileage.

mechanisms for the benefit of the company and the community.

- Continually adopt fuel-efficient systems for any fleet transport and company vehicles.
- Promote energy management to employees.
- Sustainable development targets may be management or performance related.
- Management targets relate to the development of themanagement system, either to enhance the existing mechanism or to enlarge it to cover new areas.
- Performance targets are linked to inputs and outputs, aiming to improve these figures by a set percentage.
- To improve and develop further mechanisms for internal and external communication relating to corporate environmental issues.
- To report regularly on corporate environmental management issues.
- To research and gather more detailed data relating to the group's key impacts.
- Aim to increase the recycling of office waste collected
- To introduce a range of recycling projects across the group.
- The government regulations and growing public awareness over the health.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **20** of **28**

	Components of environmental management:		
	Control of atmospheric pollution and environmental degradation.		
	 Control of atmospheric pollution and environmental degradation. Adopting technologies which ensure sustainable development. Conducting environmental impact assessment to review the existing technologies and making it mandatory for clearing major projects of environmental concern. Instilling environmental perception among people by conducting awareness programmes. Environmental education and training at school, colleges and universities. Controlling over population. Controlling over consumption and craze by inculcating sublime human values such as service to society, non-material enrichment. 	1 mark each for any three (03)	
5 a)	Fabric filter	4	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **21** of **28**

		J	
	Dusty gas in Larger particle separation by centrifugal action		
b)	Types of water pollutants	1 mark	4
	1. Oxygen demanding waste: Organic waste, sewage, food industry waste,	each	
	distillery.	for any	
	2. Disease causing waste: Pathogens	four	
	3. Synthetic organic compounds: Industrial waste from petrochemical Plant.		
	4. Plant nutrients: Fertilizer from farms.		
	5. Inorganic chemicals: Waste from fertilizer, acid and chloro alkali Industry.		
	6. Thermal discharge: condenser water from thermal power plant.		
	7. Oil: oil from industrial equipment, crude oil tankers.		
	7. On on nomindustrial equipment, crude on tankers.		
c)	Primary treatment	2	4

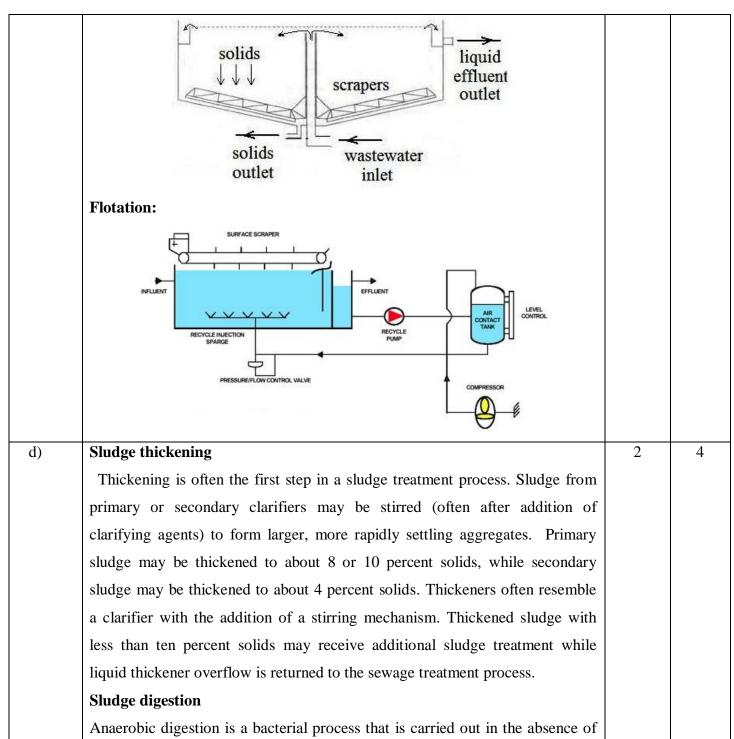
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **22** of **28**

by gravity. It includes the physical processes of screening, comminution, grit removal, and sedimentation. Screens are made of long, closely spaced, narrow metal bars. They block floating debris such as wood, rags, and other bulky objects that could clog pipes or pumps. In modern plants the screens are cleaned mechanically, and the material is promptly disposed of by burial on the plant grounds. A comminutor may be used to grind and shred debris that passes through the screens. The shredded material is removed later by sedimentation or flotation processes. Grit chambers are long narrow tanks that are designed to slow down the flow so that solids such as sand, coffee grounds, and eggshells will settle out of the water. Grit causes excessive wear and tear on pumps and other plant equipment. Its removal is particularly important in cities with combined sewer systems, which carry a good deal of silt, sand, and gravel that wash off streets or land during a storm.

Suspended solids that pass through screens and grit chambers are removed from the sewage in sedimentation tanks. These tanks, also called primary clarifiers, provide about two hours of detention time for gravity settling to take place. As the sewage flows through them slowly, the solids gradually sink to the bottom. The settled solids-known as raw or primary sludge -are moved along the tank bottom by mechanical scrapers. Sludge is collected in a hopper, where it is pumped out for removal. Mechanical surface-skimming devices remove grease and other floating materials


Sedimentation:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page 23 of 28

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **24** of **28**

code :()	17040)	Pay	e 24 of 2
	oxygen. The process can either be thermophilic digestion, in which sludge is		
	fermented in tanks at a temperature of 55 °C, or mesophilic, at a temperature		
	of around 36 °C. Though allowing shorter retention time (and thus smaller	2	
	tanks), thermophilic digestion is more expensive in terms of energy		
	consumption for heating the sludge.		
	Aerobic digestion is a bacterial process occurring in the presence of oxygen		
	resembling a continuation of the activated sludge process. Under aerobic		
	conditions, bacteria rapidly consume organic matter and convert it into carbon		
	dioxide. Once there is a lack of organic matter, bacteria die and are used as		
	food by other bacteria. This stage of the process is known as endogenous		
	respiration. Solids reduction occurs in this phase. Because the aerobic		
	digestion occurs much faster than anaerobic digestion, the capital costs of		
	aerobic digestion are lower. However, the operating costs are characteristically		
	much greater for aerobic digestion because of energy used by the blowers,		
	pumps and motors needed to add oxygen to the process. However, recent		
	technological advances include non-electric aerated filter systems that use		
	natural air currents for the aeration instead of electrically operated machinery.		
e)	Characteristics of solid waste	2	4
	The major physical characteristics measured in waste are: (1) density, (2) size		
	distribution of components, and (3) moisture content. Other characteristics		
	which may be used in making decision about solid waste management are: (1)		
	colour, (2) voids, (3) shape of components, (4) optical property, (5) magnetic		
	properties, and (6) electric properties. Optical property can be used to		
	segregate opaque materials from transparent substances which would		
	predominately contain glass and plastic. Moisture content is essential for		
	prodoffinately contain glass and plastic. Worstare content is essential for		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **25** of **28**

	cylinder having inverted cone at the bottom to collect dust particles. Out let is		
	It consists of rectangular inlet for dust laden gas. Inlet is attached to the		
6 a)	Cyclone separator Construction	1	4
6.0)	<u>'</u>	1	4
	vii) Improvement in employee awareness about environment viii) An ethical or social commitment		
	vi) Opening of international market & partners		
	v) Competitive advantage vi) Opening of international market & partners		
	iv) Cost containment & cost saving		
	iii) Improvement of corporate image	four	
	ii) Regulatory compliance	for any	
	i) Environmental improvements	each	
f)	Need of ISO14001:	1 mark	4
	more bacteria compared to dry waste.		
	damage and bacterial contamination of the environment Wet waste will host		
	land use as well as its composition is inversely proportional to the possible soil		
	hydrogen, oxygen, sulphur and ash. Solid waste production is a function of		
	carbon. Ultimate analysis of waste aims to analyse percent of carbon,		
	analysis of waste aims to determine moisture, volatile matter, ash and fixed		
	value, (7) percent of carbon, hydrogen, oxygen, sulphur and ash. Proximate		
	volatile matter, (3) ash, (4) fixed carbon, (5) fusing point of ash, (6) calorific		
	moisture (water content can change chemical and physical properties), (2)	2	
	substance. Important chemical properties measured for solid waste are: (1)		
	segregation as flaky substance will behave differently compared to non-flaky		
	transportation vehicle and size of the disposal facility. Shape can be used for		
	leachate calculation and composting. Density is used to assess volume of		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject

ct code :(1	17646)	Pag	e 26 of 2
	provided to discharge dust particles. Out let for clean gas is provided at the		
	top. Outlet pipe is extended well below inlet of gas to avoid short circuiting of		
	gas flows. Cyclone is not having any moving part.		
	Working		
	A dust laden gas enters in a cyclone separator takes spiral motion. It utilizes a		
	centrifugal force generated by spinning gas stream to separate particle matter		
	from the gas. The centrifugal force on a particles in spinning gas stream is		
	much greater than gravity, there for it is effective in removing small particles.	2	
	The gas spirals downwards to the bottom of the cone and at, and at the bottom		
	the gas flow reverses to form an inner vortex which leaves through the outlet		
	pipe. Cyclone separator is used to separate gas-solid, gas-liquid in Cement		
	industry, Oil refinery, Petrochemical Plant, Power plants, and Metallurgical		
	Industry etc.		
	4 clean gus	1	
	Distri O'n		
b)	Fixed bed absorber	2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **27** of **28**

ct code :(17	646)	Pag	e 27 of 28
	Polituted gas A dsor bent: Clean gas		
	A polluted gas enters a bed at the top and travels downwards through the bed and leaves the bottom. Initially front portion of bed adsorb pollutants very rapidly and little amount of solute left is taken up by deeper layer of adsorber. Thus initially gas leaving bed is pollution free. After period of time layer of solid at the entrance will become saturated and active zone moves deeper in the bed. When it reaches at the bottom of bed regeneration of bed is required.	2	
c)	Sedimentation	4	4
	The settleable solids are removed by gravitational settling under quiescent conditions. The sludge formed at the bottom of the tank is removed by underflow either by vacuum suction or by raking it to the discharge point at the bottom of tank for withdrawal. The clear liquid produced is known as overflow. The sedimentation operation in waste treatment plant is carried out in rectangular horizontal flow, circular radial flow and vertical flow basins. In rectangular tank feed is introduced at the one end along with width of the tank and overflow is collected at the surface at different points along the length of tank. An endless conveyor scraps the floating material into a screen though while it also pushes the settled solids into sludge hopper. In circular radial flow the feed is introduced through center well and the clarified effluent is collected at weirs along the periphery of the tank. Sludge removal is effected by means of rotary sludge scrapper.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17646) Page **28** of **28**

		1	
	In vertical flow tank feed in introduced in tank by center pipe and liquid comes		
	in upward direction along with solid particles. A sludge blanket maintained		
	acts as a filter and settled solid below blanket are removed from underflow.		
d)	pH is a measure of the hydrogen ion concentration of a solution. Solutions	2	4
	with a high concentration of hydrogen ions have a low pH and solutions with		
	low concentrations of H+ ions have a high pH. Solutions with a pH less than 7		
	are said to be acidic and solutions with a pH greater than 7 are basic or		
	alkaline. Pure water has a pH of 7		
	Dissolved oxygen refers to the level of free, non-compound oxygen present in		
	water or other liquids. It is an important parameter in assessing water quality	2	
	because of its influence on the organisms living within a body of water.		
e)	Pollutants from urea plant	1 mark	4
	Oil and grease	each	
	Ammonia	for any	
	• Fluorides	four	
	• Phosphate		
	• NaOH		
	• Arsenic		
f)	Solid waste disposal processes	1 mark	4
	Open dumping	each	
	Sanitary landfill	for any	
	 Composting 	four	
	Incineration		
	Anaerobic digestion		