
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 1/ 26

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance (Not

applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent

figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may

vary and there may be some difference in the candidate‟s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based

on candidate‟s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent

concept.

Q.1. Solve any FIVE: 20

a) Explain average and worst case analysis of algorithms.

(Average case 2M, Worst-case 2M)

Average case running Time:

The expected behavior when input is randomly drawn from a given distribution. The

average-case running time of an algorithm is an estimate of the running time for an

“average” input. Computation of a average-case running time entails knowing all possible

input sequences, the probability distribution of occurrence of these sequences, and the

running times for the individual sequence

Worst-case Running Time:
The behavior of the algorithm with respect to the worst possible case of the input instance. The

worst case running time of an algorithm is an upper bound on running time for any input. Knowing

it gives us a guarantee that the algorithm will never take any longer time.

b) What is meant by efficiency of algorithm? Explain it.

(Explanation 4M)

The complexity of an algorithm is a function describing the efficiency of the algorithm in

terms of the amount of data the algorithm must process. Usually there are natural units for

the domain and range of this function. There are two main complexity measures of the

efficiency of an algorithm:

 Time complexity is a function describing the amount of time an algorithm takes in terms of

the amount of input to the algorithm. "Time" can mean the number of memory accesses

performed, the number of comparisons between integers, the number of times some inner

loop is executed, or some other natural unit related to the amount of real time the

algorithm will take.

 Space complexity is a function describing the amount of memory (space) an algorithm

takes in terms of the amount of input to the algorithm. We often speak of "extra" memory

needed, not counting the memory needed to store the input itself. Again, we use natural

(but fixed-length) units to measure this.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 2/ 26

Efficiency is some time taken as the most important criterion and is not always adequately

specified. Possible sub-criteria include speed of execution, amount of main or secondary

storage required or amount of complexity of maintenance. The basic rule for considering

efficiency is that it is not optimize an algorithm against any efficiency sub-criterion until it

has first been shown to be effective.

c) Describe divide and conquer strategy. Explain with an example.

(Divide and conquer strategy 2M, Example 2M (any other relevant example can be

considered)

Divide- and conquer is a top-down technique for designing algorithm that consists of

dividing the problem into smaller sub problems hoping that the solutions of the sub

problems are easier to find and then composing the partial solutions into the solution of

the original problem. So, divide and conquer algorithms break the problem into several

sub problems that are similar to the original problem but smaller in size, solve the sub

problems recursively, and then combine these solutions to create a solution to the original

problem.

Little more formally, divide-and conquer paradigm consists of following major phases:

Breaking or divide the problem into several sub problem that are similar to the original

problem but smaller size,

Conquer sub problems by solving them recursively. If the sub problem sizes are small

enough, however, just solve the sub problems in a straightforward manner and then

Combine these solutions to sub problems to create a solution to the original problem.

 The divide–and-conquer strategy solves problem by:

1. Breaking it into sub problems that are themselves smaller instances of the same

type of problem.

2. Recursively solving these sub problems.

3. Appropriately combining their answers.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 3/ 26

d) Explain merge sm1 algorithm. Give the time complexity of merge sort.

(Algorithm 2M, Complexity 2M)

The key operation of the merge sort algorithm is the merging of two sorted sequences in

the “combine‟ step. To perform the merging, we use an auxiliary procedure

MERGE(A,p,q,r), where A is an array and p, q, and r are indices numbering elements of

the array p ≤ q < r . the procedure assumes that the sub arrays A[p .. q] and A[q + 1 .. r] are sorted

order. It merge them to form a single sorted sub array that replaces the current sub array A[p .. q].
MERGE (A, p, q, r)

1. n1 ← q − p + 1

2. n2 ← r − q

3. Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]

4. for i ← 1 TO n1

5. do L[i] ← A[p + i − 1]

6. for j ← 1 TO n2

7. do R[j] ← A[q + j]

8. L[n1 + 1] ← ∞

9. R[n2 + 1] ← ∞

10. i ← 1

11. j ← 1

12. for k ← p to r

13. do if L[i] ≤ R[j]

14. then A[k] ← L[i]

15. i ← i + 1

16. else A[k] ← R[j]

17. j ← j + 1

Average case analysisO(NlogN)

Best-case analysis O(NlogN)

Worst case analysis O(N
2
)

e) Explain dynamic programming. What is meant by principle of optimality?

(Explanation 4M)

Dynamic programming is a problem solving technique that, like divide and conquer, solve

problems by dividing them into subproblems. Dynamic programming is used when the

subproblems are not independent, eg. When they share the same subproblems. In this case,

divide and conquer may do more work than necessary, because it solves the same

subproblem multiple times.

Dynamic programming solves each subproblem once and stores the result in a table so that

it can be rapidly retrieved if needed again. It is often used in Optimization Problems: a

problem with many possible solutions for which we want to find an optimal(the best)

solution. (there may be more than 1 optimal solution). Dynamic programming is an

approach developed to solve sequential or multi stage, decision problems; hence, the name

“dynamic” programming. But as we shall see, this approach is equally applicable for

decision problems where sequential property is induced solely for computational

convenience.

Dynamic programming is a bottom-up mechanism we solve all possible small problems

and then combine them to obtain solution for bigger problem.

Optimal substructure:

If an optimal solution contains optimal sub solutions, then a problem exhibits optimal

substructure.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 4/ 26

f) Define Graph, Cyclic graph and Directed graph. Mention how representation of

graph is done in memory.

(Definition 1Mark each, graph representation 1M)

Graph: a graph is non empty set of vertices & edges denoted by G & given by G=V, E)

Directed Graph: a directed graph is also identified as digraph with an ordered pair(u,v)

Cycle: A path from a node to itself is called cycle. Thus a cycle is a path in which initial

& final vertices are same. If graph contains cycle it is cyclic otherwise it is acyclic.

Sequential representation of graphs:

Two methods for sequential representation of graph.

1) Adjacency matrix.

2) Linked representation.

Linked representation of graph.

g) Prove that the Dijkstra's algorithm finds the shortest path from a single source to the

other nodes of a graph.

(Explanation 4M)

Dijkstra algorithm, named after its discoverer, Dutch computer scientist Edsger Dijkstra,

is a greedy algorithm that solves the signal-source shortest path problem fro a directed

graph G=(V.E) with nonnegative edge weights i.e.. we assume that w(u,v)≥0 for each

edge(u,v) E.

Dijkstra algorithm maintain a set of S of vertices whose final shortest path weights from

the source s have already been determined. That is , for all vertices v S, we have

d[v]=δ(s,v). the algorithm repeatedly selects the vertex u V-S with the minimum

shortest path estimate, inserts into S and relaxes all edges leaving u. we maintain a

priority queue Q that contains all the vertices in v-s, keyed by their d values. Graph G is

represented by adjacency lists.

DIJKSTRA (G, w, s)
1. INITIALIZE SINGLE-SOURCE (G, s)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 5/ 26

2. S ← // S will ultimately contains vertices of final shortest-path weights from s

3. Initialize priority queue Q i.e., Q ← V[G]

4. while Q= priority queue Q is not empty do

5. do u ← EXTRACT_MIN(Q) // Pull out new vertex

6. S ← S {u} // Perform relaxation for each vertex v adjacent to u

7. for each vertex v [u]

8. do Relax (u, v, w)

Q.2. Solve any TWO: 16

a) What is asymptotic notation? Explain Big 0 notation.

(Asymptotic Notation Explanation 4M, Big-oh notation 4M)

Asymptotic means a line that tends to converge to a curve, which may or may not

eventually touch the curve. It is a line that stays within bounds.

Asymptotic notation is a shorthand way to write down and talk about fastest possible and

slowest possible running times for an algorithm, using high and low bound on speed.

These are also referred to as best case and worst case scenarios respectively.

Big-oh notation:

Big-oh is the formal method of expressing the upper bound of an algorithm‟s running

time. It is the measure of the longest amount of time it could possibly take for the

algorithm to complete. More formally, for non-negative functions, f(n) and g(n), if there

exists an integer n0 and a constant c>0 such that for all integers n>n0

b) Explain exponentiation as an example of divide and conquer.

(Explanation 8M any other relevant example can be considered)

 One technique for deriving a solution to a problem involves dividing the problem into

sub-parts which are easier to solve, and then deriving a solution to the original problem

by somehow recombining the solutions to the sub-parts.

 Commonly, a problem is broken into two nontrivial subparts and the resulting algorithm

naturally involves recursion… a topic we will not explore at this time.

 But in some cases, a problem is broken into a trivial part and a more complex part, and

the resulting algorithm is naturally iterative.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 6/ 26

 Binary search can be viewed in the latter light, where the current element is the trivial

case and the "in play" portion of the list constitutes the nontrivial part.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 7/ 26

c) Write down the Prims algorithm to generate minimum cost spanning tree. Simulate

the algorithm for the given graph and find MST for the given graph.

(Correct spanning Tree 8M)

Suppose 1 vertex is the root i.e. r. by EXRACT-MIN(Q) procedure. Now u=r &

Adj[u]={2.4}.

Removing u from the set Q and adds it to the set V-Q of vertices in the tree. Now, update

the key and π fields of every vertex v adjacent to u but not in the tree.

Key[2]=∞

W[1,2]=1 i.e., w(u,v)< Key[2]

So, π[2]=0 & Key[2]=1

And Key[2]=∞

Now, by EXRACT-MIN(Q) remove 2 because Key[2]=1, which is minimum so, u=2.

Adj[2]={1, 4, 5,3}

1≠Q

Key[4]=6

Key[5]=4

Key[3]=2

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 8/ 26

Now, by EXRACT-MIN(Q) remove 3 because Key[3]=2, which is minimum so, u=3.

Adj[3]={2,5,6}

2≠Q

Key[5]=5

Key[6]=6

Now, by EXRACT-MIN(Q) remove 5 because Key[5]=5, which is minimum so, u=5.

Adj[5]={2,4,3,6,7}

3≠Q, 2≠Q

Key[4]=3

Key[6]=8

Key[7]=7

Now, by EXRACT-MIN(Q) remove 4 because Key[4]=4, which is minimum so, u=4.

Adj[4]={1,2,5,7}

2≠Q, 1≠Q, 5≠Q,

Key[7]=4

Now, by EXRACT-MIN(Q) remove 7 because Key[7]=4, which is minimum so, u=7.

Adj[7]={4,5,6}

4≠Q,

Key[5]=7

Key[6]=3

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 9/ 26

Now, by EXRACT-MIN(Q) remove 6 because Key[6]=3, which is minimum so, u=6.

Thus final spanning tree is

Q.3. Solve any TWO: 16

a) Explain the Binary Search Algorithm using recursive function. Also explain the time

complexity of Binary Search.

(Recursive function of binary search 4M, Time complexity 4M)

BINARY WITH RECURSIVE FUNCTION

int binary(int a[],int n,int m,int l,int u){

 int mid,c=0;

 if(l<=u){

 mid=(l+u)/2;

 if(m==a[mid]){

 c=1;

 }

 else if(m<a[mid]){

 return binary(a,n,m,l,mid-1);

 }

 else

 return binary(a,n,m,mid+1,u);

 }

 else

 return c;

}

 COMPEXITY OF BINARY SEARCH

Worst case performance O(log n)

Best case performance O(1)

Average case performance O(log n)

Worst case space complexity O(1)

http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 10/ 26

b) Explain in detail radix sort algorithm with suitable example.

(Explanation 4M, example 4M)

Radix Sort is a sorting algorithm that is useful when there is a constant„d‟ such that all the

keys are d digit numbers. To execute Radix-Sort, for p=1 toward „d‟ sort the numbers

with respect to the pth digit from the right using any linear time stable sort.

Radix sort is sometimes used to sort records of information that are keyed by multiple

fields.

The following procedure assumes that each element in the n element array A has d digits

where digit 1 is the lowest-order digit and digit d is the highest order digit.

RADIX-SORT(A,d)

1 for i - 1 to d

2 do use a stable sort to sort Array A on digit i

Since a linear time sorting algorithm is used „d‟ times and d is a constant, the running

time of Raix Sort is linear. When each digits is in the range 1 to k, and k is not too large,

counting_sort is the obvious choice. Each pass over n d-digit numbers takes (n + k)

time. There are d passes, so the total time for Radix sort is (dn+kd). When d is constant

and k = O(n), the Radix sort runs in linear time.

Example:

The first column is the input. The remaining columns show the list after successive sorts

on increasingly significant digit positions. The vertical arrows indicate the digit position

sorted on to produce each list from the previous one

INPUT 1st pass 2nd pass 3rd pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

c) Explain the steps of Kruskal's algorithm for finding the minimum cost spanning tree

with suitable example.

(Explanation with example 8M)

MST-KRUSKAL(G, w)

1 A ← Ø

2 for each vertex v _ V[G]

3 do MAKE-SET(v)

4 sort the edges of E into nondecreasing order by weight w

5 for each edge (u, v) _ E, taken in nondecreasing order by weight

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 11/ 26

6 do if FIND-SET(u) ≠ FIND-SET(v)

7 then A ← A _ {(u, v)}

8 UNION(u, v)

9 return A

First we initialize the set A to the empty set and create |v| trees, one conataing each vertex

with MAKE-SET procedure. Then sort the edges in E into order by non-decreasing

weight, i.e.

Now, check for each edge (u,v), whether the end points u and v belong to the same tree. If

they do, then the edge(u,v)cannot be added. Otherwise, the two vertices belong to

different trees and the edge(u,v) is added to A and the vertices in the two trees are merged

in by UNION procedure.

So first take (h,g edge)

Then (g,f) edge

Then (a,b) and (i,g)edges are considered and forest becomes

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 12/ 26

Now, edge(h,i) both h and I vertices are in same set, thus it creates a cycle. So this

edge is discarded.

Then edge (c,d), (b,c), (a,h), (d,e), (e,f) are considered and forest becomes.

In (e,f)edge both end points e and f exist in same tree so discarded this edge then

(b,h) edge, it also creates a cycle.

Q.4. Solve any TWO: 16

a) Explain the following terms : (for each term 4M)

i. Problems and instances

A computational problem can be viewed as an infinite collection of instances together

with a solution for every instance. The input string for a computational problem is

referred to as a problem instance,

the instance is a particular input to the problem, and the solution is the output

corresponding to the given input.

a problem and an instance, consider the following instance of the decision version of the

traveling salesman problem: Is there a route of at most 2000 kilo metres passing through

all of Germany's 15 largest cities? The quantitative answer to this particular problem

instance is of little use for solving other instances of the problem, such as asking for a

round trip through all sites in Milan whose total length is at most 10 km. For this reason,

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 13/ 26

complexity theory addresses computational problems and not particular problem

instances.

ii. Efficiency of algorithms

The complexity of an algorithm is a function describing the efficiency of the algorithm

in terms of the amount of data the algorithm must process. Usually there are natural

units for the domain and range of this function. There are two main complexity

measures of the efficiency of an algorithm:

 Time complexity is a function describing the amount of time an algorithm takes in

terms of the amount of input to the algorithm. "Time" can mean the number of

memory accesses performed, the number of comparisons between integers, the

number of times some inner loop is executed, or some other natural unit related to the

amount of real time the algorithm will take.

 Space complexity is a function describing the amount of memory (space) an algorithm

takes in terms of the amount of input to the algorithm. We often speak of "extra"

memory needed, not counting the memory needed to store the input itself. Again, we

use natural (but fixed-length) units to measure this.

Efficiency is some time taken as the most important criterion and is not always

adequately specified. Possible sub-criteria include speed of execution, amount of main

or secondary storages required or amount of complexity of maintenance. The basic rule

for considering efficiency is that it is not optimize an algorithm against any efficiency

sub-criterion until it has first been shown to be effective.

b) Explain quick sort algorithm. Also explain time complexity of quick sort algorithm.

(Algorithm 4M, time complexity 4M)

Quick sort works by partitioning a given array A[p . . r] into two non-empty sub array

A[p . . q] and A[q+1 . . r] such that every key in A[p . . q] is less than or equal to every key

in A[q+1 . . r]. Then the two subarrays are sorted by recursive calls to Quick sort. The

exact position of the partition depends on the given array and index q is computed as a

part of the partitioning procedure.

QuickSort (A, p, r)
1. If p < r then

2. q Partition (A, p, r)

3. Quick Sort (A, p, q-1)

4. Quick Sort (A, q + 1, r)

As a first step, Quick Sort chooses as pivot one of the items in the array to be sorted.

Then array is then partitioned on either side of the pivot. Elements that are less than or

equal to pivot will move toward the left and elements that are greater than or equal to

pivot will move toward the right.

Worst-case: O(N
2
)

This happens when the pivot is the smallest (or the largest) element.

Then one of the partitions is empty, and we repeat recursively the procedure for N-1

elements.

Best-case O(NlogN) The best case is when the pivot is the median of the array,

and then the left and the right part will have same size.

There are logN partitions, and to obtain each partition we do N comparisons

(and not more than N/2 swaps). Hence the complexity is O(NlogN)

Average-case - O(NlogN)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 14/ 26

c) Solve the following problem :

(W 1, W2, W3, W4, W5) = (1, 2, 5, 6, 7)

(V 1, V2, V3, V4, V5) = (1, 6, 18, 22, and 28)

& the capacity of knapsack (M) = 11.

(correct solved problem 8M)

 Initially

items wi vi

I1 1 1

I2 2 6

I3 5 18

I4 6 22

I5 7 28

Taking value per weight ratio i.e. Pi= vi/wi

Item wi vi Pi=

vi/wi

I1 1 1 1

I2 2 6 3

I3 5 18 3.7

I4 6 22 3.6

I5 7 28 4

Now arrange the value of pi in descending order

Item wi vi Pi=

vi/wi

I1 1 1 1

I2 2 6 3

I4 6 22 3.6

I3 5 18 3.7

I5 7 28 4

Now, fill the knapsack according to decreasing value of Pi

First we choose item I1 whose weight is 1, then choose I2 whose weight is 2, then choose I4

whose weight is 6. Now the total weight in knapsack is 1+2+6=9. Now the next item is I3 and its

weight is 5 but we want only 2. (The capacity of knapsack (M) =11, so we choose fractional part

of it is,

2

6 =11

2

1

 The value of fractional part of

 I3=(18/5*2)=7. Thus the maximum value is=1+6+22+7.2=36.2

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 15/ 26

Q.5. Solve any TWO: 16

a) What is a binomial heap? What is the advantage of binomial heap over a heap?

(Binomial heap 4M, advantage 4M)

A binomial heap is a set of binomial trees that satisfies the following binomial-heap

properties.

1. Each binomial tree in H is heap-ordered: the key of a node is greater than or equal to the

key of its parent.

2. There is at most one binomial tree in H whose root has a given degree.

3. A binomial heap is a sequence of binomial trees such that:

4. Each tree is heap-ordered.

5. There is either 0 or 1 binomial tree of order k.

The first property tells us that the root of a heap-ordered tree contains the smallest key in

the tree.

Binomial tree

Properties. Given an order k binomial tree Bk,

1. Its height is k.

2. It has 2k nodes.

3. It has nodes at depth i.

4. The degree of its root is k.

5. Deleting its root yields k binomial trees Bk–1, …, B0.

Binomial Heap Representation

1. Binomial trees. Represent trees using left-child, right-sibling pointers.

2. Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.

Binomial heap properties

Properties. Given a binomial heap with n nodes:

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 16/ 26

1. The node containing the min element is a root of B0, B1, …, or Bk.

2. It contains the binomial tree Bi iff bi = 1, where bk⋅ b2 b1 b0 is binary representation of

n.

3. It has ≤ ⎣log2 n⎦ + 1 binomial trees.

4. Its height ≤ ⎣log2 n⎦

Operations on Binomial Heap

1. Make-Heap().

2. Insert(H, x), where x is a node to be inserted in H.

3. Minimum(H).

4. Extract-Min(H).

5. Union(H1, H2): merge H1 and H2, creating a new heap.

6. Decrease-Key(H, x, k): decrease x.key (x is a node in H) to k

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 17/ 26

b) What is the solution generated by the job sequencing with deadlines algorithm to the

following scheduling instance n = 7

(P1, P2, P7) = (3, 5, 20, 8 ,1, 6, 30)

and (d1, d2, P7) = (1, 3, 4, 3, 2, 1, 2)?

(The data provided is insufficient, any data considered and assumed by the student

should be considered 8M)

1. Deadlock refers to a specific condition when two or more processes are each waiting for

another to release a resource, or more than two processes are waiting for resources in a

circular chain (see Necessary conditions).

2. Deadlock is a common problem in multiprocessing where many processes share a specific

type of mutually exclusive resource known as a software, or soft, lock.

3. Deadlocks are particularly troubling because there is no general solution to avoid (soft)

deadlocks.

There are four conditions that are necessary to achieve deadlock:

Mutual Exclusion - At least one resource must be held in a non-sharable mode; If any

other process requests this resource, then that process must wait for the resource to be

released.

Hold and Wait - A process must be simultaneously holding at least one resource and

waiting for at least one resource that is currently being held by some other process.

No preemption - Once a process is holding a resource (i.e. once its request has been

granted), then that resource cannot be taken away from that process until the process

voluntarily releases it.

Circular Wait - A set of processes { P0, P1, P2, . . ., PN } must exist such that every P[i

] is waiting for P[(i + 1) % (N + 1)].

Deadlock Prevention

 Deadlocks can be prevented by preventing at least one of the four required conditions:

Mutual Exclusion

 Shared resources such as read-only files do not lead to deadlocks.

 Unfortunately some resources, such as printers and tape drives, require exclusive access

by a single process.

Hold and Wait

 To prevent this condition processes must be prevented from holding one or more

resources while simultaneously waiting for one or more others. There are several

possibilities for this:

 Require that all processes request all resources at one time. This can be wasteful of

system resources if a process needs one resource early in its execution and doesn't need

some other resource until much later.

 Require that processes holding resources must release them before requesting new

resources, and then re-acquire the released resources along with the new ones in a single

new request. This can be a problem if a process has partially completed an operation

using a resource and then fails to get it re-allocated after releasing it.

 Either of the methods described above can lead to starvation if a process requires one or

more popular resources.

No Preemption

 Preemption of process resource allocations can prevent this condition of deadlocks, when

it is possible.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 18/ 26

 One approach is that if a process is forced to wait when requesting a new resource, then

all other resources previously held by this process are implicitly released, (preempted),

forcing this process to re-acquire the old resources along with the new resources in a

single request, similar to the previous discussion.

 Another approach is that when a resource is requested and not available, then the system

looks to see what other processes currently have those resources and are themselves

blocked waiting for some other resource. If such a process is found, then some of their

resources may get preempted and added to the list of resources for which the process is

waiting.

 Either of these approaches may be applicable for resources whose states are easily saved

and restored, such as registers and memory, but are generally not applicable to other

devices such as printers and tape drives.

Circular Wait

 One way to avoid circular wait is to number all resources, and to require that processes

request resources only in strictly increasing (or decreasing) order.

 In other words, in order to request resource Rj, a process must first release all Ri such that

i >= j.

 One big challenge in this scheme is determining the relative ordering of the different

resources

An Example

Consider the following situation:

 And now consider what happens if process P1 requests 1 instance of A and 2 instances of

C. (Request[1] = (1, 0, 2))

For the above data we create resource allocation and wait graph

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 19/ 26

cycles in the wait-for graph indicate deadlocks.

c) Explain the BFS algorithm. Also using a suitable example draw BFS tree.

(Explanation 4 M, Example 4M)

Breadth-first search starts at a given vertex s, which is at level 0. In the first stage, we visit all

the vertices that are at the distance of one edge away. When we visit there, we paint as

"visited," the vertices adjacent to the start vertex s - these vertices are placed into level 1. In

the second stage, we visit all the new vertices we can reach at the distance of two edges away

from the source vertex s. These new vertices, which are adjacent to level 1 vertices and not

previously assigned to a level, are placed into level 2, and so on. The BFS traversal

terminates when every vertex has been visited.

To keep track of progress, breadth-first-search colors each vertex. Each vertex of the graph is

in one of three states:

1. Undiscovered;

2. Discovered but not fully explored; and

3. Fully explored.

The state of a vertex, u, is stored in a color variable as follows:

1. color[u] = White - for the "undiscovered" state,

2. color [u] = Gray - for the "discovered but not fully explored" state, and

3. color [u] = Black - for the "fully explored" state.

The BFS(G, s) algorithm develops a breadth-first search tree with the source vertex, s, as its

root. The parent or predecessor of any other vertex in the tree is the vertex from which it was

first discovered. For each vertex, v, the parent of v is placed in the variable π[v]. Another

variable, d[v], computed by BFS contains the number of tree edges on the path from s to v.

The breadth-first search uses a FIFO queue, Q, to store gray vertices.

BFS(V, E, s)

1. for each u in V − {s} ▷ for each vertex u in V[G] except s.

2. do color[u] ← WHITE

3. d[u] ← infinity

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 20/ 26

4. π[u] ← NIL

5. color[s] ← GRAY ▷ Source vertex discovered

6. d[s] ← 0 ▷ initialize

7. π[s] ← NIL ▷ initialize

8. Q ← {} ▷ Clear queue Q

9. ENQUEUE(Q, s)

10 while Q is non-empty

11. do u ← DEQUEUE(Q) ▷ That is, u = head[Q]

12. for each v adjacent to u ▷ for loop for every node along with edge.

13. do if color[v] ← WHITE ▷ if color is white you've never seen it before

14. then color[v] ← GRAY

15. d[v] ← d[u] + 1

16. π[v] ← u

17. ENQUEUE(Q, v)

18. DEQUEUE(Q)

19. color[u] ← BLACK

The following figure (from CLRS) illustrates the progress of breadth-first search on the

undirected sample graph.

a. After initialization (paint every vertex white, set d[u] to infinity for each vertex u, and set

the parent of every vertex to be NIL), the source vertex is discovered in line 5. Lines 8-9

initialize Q to contain just the source vertex s.

b. The algorithm discovers all vertices 1 edge from s i.e., discovered all vertices (w and r) at

level 1.

c.

d. The algorithm discovers all vertices 2 edges from s i.e., discovered all vertices (t, x, and v)

at level 2.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 21/ 26

e.

f.

g. The algorithm discovers all vertices 3 edges from s i.e., discovered all vertices (u and y) at

level 3.

h.

i. The algorithm terminates when every vertex has been fully explored.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 22/ 26

Q.6. Solve any TWO:

a) Explain divide and conquer way of multiplication for the multiplication of981 by

1234.

(Explain and solve- 8 M)

The simple divide and conquer way of multiplication follows the following steps

1. Break A into A11, A12, A21, A22

2. Break B into B11, B12, B21, B22

3. Break C into C11, C12, C21, C22

Let C = product of 2 n/2 by n/2 arrays

C11=A11×B11+A12×B21

C12=A11×B12+A12×B22

C21=A21×B11+A22×B21

C22=A21×B12+A22×B22

T(n)=Θ(1)+8T(n/2)+Θ(n2)

 Θ(1) time to partition matrices

 8 Multiplications of arrays of size n/2

 Θ(n2) time to add n×n matrices

 T(n)=Θ(n3) by master method

For Larger integer multiplication

 Assume integers with n digits

o Implement with array with one digit per element [Ada bignumpkg]

 Naive divide and conquer:

o Performance: T(n)=4T(n/2)+Θ(n)=Θ(n2)

o More generally: xy×wz=xw×102k+(xz+yw)×10k+yz

981 * 1234 = 09 * 12 *102 +(09*34)+(81*12)*10 + 81*34

o Assume xy has 2k digits

o This requires 4 multiplications

OR

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 23/ 26

OR

b) What do you mean by scheduling? Also explain scheduling with deadlines by taking

a suitable example.

(Scheduling – 4 M, Deadlock- 4 M)

1. Whenever the CPU becomes idle, it is the job of the CPU Scheduler (the short-term

scheduler) to select another process from the ready queue to run next.

2. The storage structure for the ready queue and the algorithm used to select the next process

are not necessarily a FIFO queue

3. Almost all programs have some alternating cycle of CPU number crunching and waiting

for I/O of some kind. (Even a simple fetch from memory takes a long time relative to

CPU speeds.)

4. In a simple system running a single process, the time spent waiting for I/O is wasted, and

those CPU cycles are lost forever.

5. A scheduling system allows one process to use the CPU while another is waiting for I/O,

thereby making full use of otherwise lost CPU cycles.

6. The challenge is to make the overall system as "efficient" and "fair" as possible, subject

to varying and often dynamic conditions, and where "efficient" and "fair" are somewhat

subjective terms, often subject to shifting priority policies.

CPU-I/O Burst Cycle

 Almost all processes alternate between two states in a continuing cycle, as shown in

Figure below :

 A CPU burst of performing calculations, and

 An I/O burst, waiting for data transfer in or out of the system.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 24/ 26

Earliest-Deadline-First Scheduling

1. Earliest Deadline First (EDF) scheduling varies priorities dynamically, giving the

highest priority to the process with the earliest deadline.

2. Figure shows our previous example repeated under EDF scheduling:

1. At time 0 P1 has the earliest deadline, highest priority, and goes first., followed by P2 at

time 25 when P1 completes its first burst.

2. At time 50 process P1 begins its second period, but since P2 has a deadline of 80 and the

deadline for P1 is not until 100, P2 is allowed to stay on the CPU and complete its burst,

which it does at time 60.

3. P1 then starts its second burst, which it completes at time 85. P2 started its second period

at time 80, but since P1 had an earlier deadline, P2 did not pre-empt P1.

4. P2 starts its second burst at time 85, and continues until time 100, at which time P1 starts

its third period.

5. At this point P1 has a deadline of 150 and P2 has a deadline of 160, so P1 preempts P2.

6. P1 completes its third burst at time 125, at which time P2 starts, completing its third burst

at time 145.

7. The CPU sits idle for 5 time units, until P1 starts its next period at 150 and P2 at 160.

c) Explain with suitable example the DFS for undirected graph; also explain the Depth

First Search algorithm.

(DFS – 4 M, Example – 4 M)

1. Depth-first search selects a source vertex s in the graph and paint it as "visited." Now the

vertex s becomes our current vertex. Then, we traverse the graph by considering an

arbitrary edge (u, v) from the current vertex u. If the edge (u, v) takes us to a painted

vertex v, then we back down to the vertex u. On the other hand, if edge (u, v) takes us to

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 25/ 26

an unpainted vertex, then we paint the vertex v and make it our current vertex, and repeat

the above computation.

2. DFS time-stamps each vertex when its color is changed.

1. When vertex v is changed from white to gray the time is recorded in d[v].

2. When vertex v is changed from gray to black the time is recorded in f[v].

3. The discovery and the finish times are unique integers, where for each vertex the finish

time is always after the discovery time. That is, each time-stamp is an unique integer in

the range of 1 to 2|V| and for each vertex v, d[v] < f[v]. In other words, the following

inequalities hold:

1 ≤ d[v] < f[v] ≤ 2|V|

The DFS forms a depth-first forest comprised of more than one depth-first trees. Each

tree is made of edges (u, v) such that u is gray and v is white when edge (u, v) is explored.

The following pseudocode for DFS uses a global timestamp time.

DFS (V, E)

1. for each vertex u in V[G]

2. do color[u] ← WHITE

3. π[u] ← NIL

4. time ← 0

5. for each vertex u in V[G]

6. do if color[u] ← WHITE

7. then DFS-Visit(u) ▷ build a new DFS-tree from u

DFS-Visit(u)

1. color[u] ← GRAY ▷ discover u

2. time ← time + 1

3. d[u] ← time

4. for each vertex v adjacent to u ▷ explore (u, v)

5. do if color[v] ← WHITE

6. then π[v] ← u

7. DFS-Visit(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time ▷ we are done with u

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

Summer – 15 EXAMINATION

Subject Code: 17636 Model Answer Page 26/ 26

